
Domain Theory I

Domain Theory I

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

Domain Theory I

Semantics of Loops

B: Boolean-expression

C: Command

. . .

C ::= . . . | while B do C | . . .

. . .

C[[while B do C]] =

λs. B[[B]]s → C[[while B do C]](C[[C]]s) [] s

Problem: meaning of a syntax phrase may be
defined only in terms of its proper subparts.

C[[while B do C]] = w

where w: Store⊥ → Store⊥
w = λs.B[[B]]s → w(C[[C]]s) [] s

Recursion in syntax exchanged for recursion
in function notation!

Wolfgang Schreiner 1

Domain Theory I

Recursive Function Definitions

• Function Definition
q = λn.n equals zero → one [] q(n plus one)

• Possible Function Graphs:
– {(zero, one)}

= {(zero, one), (one, ⊥), (two, ⊥), . . . }
– {(zero, one), (one, six), (two, six), . . . }
– {(zero, one), (one, k), (two, k), . . . }

Several functions satisfy specification; which
one shall we choose?

Wolfgang Schreiner 2

Domain Theory I

Least Fixed Point Semantics

Theory that establishes meaning of recursive
specifications:

1. Guarantees that every specification has a
function satisfying it.

2. Provides means for choosing the “best”
function out of the set of possibilities.

3. Ensures that the selected function cor-
responds to the conventional operational
treatment of recursion.

Argument is mapped to defined answer iff simplification

of the specification yields a result in a finite number of

recursive invocations.

Wolfgang Schreiner 3

Domain Theory I

The Factorial Function

fac(n) = n equals zero → one
[] n times (fac(n minus one))

Only one function satisfies specification:

graph(factorial) =
{(zero, one), (one, one),
(two, two), (three, six),
. . . , (i, i!), . . . }

Wolfgang Schreiner 4

Domain Theory I

Simplification

fac(three)

→ three equals zero

→ one [] three times fac(three minus one)

= three times fac(three minus one)

= three times fac(two)

→ three times (two equals zero

→ one [] two times fac(two minus one))

= three times (two times fac(one))

→ three times (two times (one equals zero

→ one [] one times fac(one minus one)))

= three times (two times one (times fac(zero)))

→ three times (two times (one times (zero equals zero

→ one [] zero times fac(zero minus one))))

= three times (two times one (times one))

= six

Wolfgang Schreiner 5

Domain Theory I

Partial Functions

• Answer is produced in a finite number of
unfolding steps.
• Idea: place limit on number of unfoldings

and investigate resulting graphs
– zero: {}
– one: {(zero, one)}
– two: {(zero, one), (one, one)}
– i + 1: {(zero, one), (one, one), . . . (i, i!)}

• Graph at stage i defines function faci.
– Consistency with each other:

graph(faci) ⊆ graph(faci+1)

– Consistency with ultimate solution:

graph(faci) ⊆ graph(factorial)

– Consequently
⋃∞

i=0 graph(faci) ⊆ graph(factorial)

Wolfgang Schreiner 6

Domain Theory I

Partial Functions

• Any result is computed in a finite number
of unfoldings.

(a, b) ∈ graph(factorial)

→ (a, b) ∈ graph(faci) (for some i)

• Consequently
graph(factorial) ⊆ ⋃∞

i=0 graph(faci)

• Thus
graph(factorial) =

⋃∞
i=0 graph(faci)

Factorial function can be totally understood
in terms of the finite subfunctions faci!

Wolfgang Schreiner 7

Domain Theory I

Partial Functions

• Representations of sub-functions
fac0 = λn. ⊥
faci+1 = λn. n equals zero → one

[] n times faci(n minus one)

• Each definition is non-recursive
Recursive specification can be understood in terms of

a family of non-recursive ones.

• Common format can be extracted
“Functional” F

F: (Nat → Nat⊥) → (Nat → Nat⊥)

F = λf. λn. n equals zero → one

[] n times f(n minus one)

Each subfunction is an instance of the func-
tional!

Wolfgang Schreiner 8

Domain Theory I

Functional and Fixed Point

• Partial functions
faci+1 = F(faci) = Fi(⊥)

⊥ := (λn.⊥)

• Function graph
graph(factorial) =

⋃∞
i=0 graph(F i(⊥))

• Fixed point property
graph(F(factorial)) = graph(factorial)

F(factorial) = factorial

The function factorial is a fixed point of the
functional F!

Wolfgang Schreiner 9

Domain Theory I

q Function

Q = λq.λn.n equals zero
→ one [] q(n plus one)

Q0(⊥) = (λn.⊥)

graph(Q0(⊥)) = {}

Q1(⊥) = λn.n equals zero

→ one [] (λn.⊥)(n plus one)

= λn.n equals zero → one [] ⊥
graph(Q1(⊥)) = {(zero, one)}

Q2(⊥) = Q(Q1(⊥)) = λn.n equals zero

→ one [] ((n plus one) equals zero → one [] ⊥)

graph(Q2(⊥)) = {(zero, one)}

Wolfgang Schreiner 10

Domain Theory I

q Function

• Convergence has occured
graph(Qi(⊥)) = {(zero, one)}, i ≥ 1

• Resulting graph
⋃∞

i=0 graph(Qi(⊥)) = {(zero, one)}
• Fix point property

Q(qlimit) = qlimit

• Still many solutions possible
graph(qk) =

{ (zero, one), (one, k), . . . , (i, k), . . . }
• Least fixed point property

graph(qlimit) ⊆ graph(qk)

The function qlimit is the least fixed point of
the functional Q!

Wolfgang Schreiner 11

Domain Theory I

Recursive Specifications

The meaning of a recursive specification f = F (f) is

taken to be fix(F), the least fixed point of the functional

denoted by F .

graph(fix F) =
⋃∞

i=0 graph(F i(⊥))

• The domain D of F must be a pointed
cpo
– partial ordering on D,

– every chain in D has a least upper bound in D,

– D has a least element.

• F must be continuous
Preserves limits of chains.

• Semantic domains are cpos and their oper-
ations are continuous.

Pointed cpos are created from primitive domains and

union domains by lifting.

Wolfgang Schreiner 12

Domain Theory I

Factorial Function

F = λ f. λ n. n equals zero → one
[] n times (f(n minus one))

Simplification rule

fix F = F(fix F)

(fix F)(three)

= (F (fix F))(three)

= (λ f. λ n. n equals zero → one

[] n times (f(n minus one))(fix F))(three)

= (λ n. n equals zero → one

[] n times (fix F)(n minus one))(three)

= three equals zero → one

[] three times (fix F)(three minus one)

= three times (fix F)(two)

= three times (F (fix F))(two)

= . . .

= three times (two times (fix F)(two))

Fixed point property justifies rec. unfolding!

Wolfgang Schreiner 13

Domain Theory I

Double Recursion

g = λn. n equals zero → one
[] (g(n minus one) plus

g(n minus one)) minus one

graph(F0(⊥)) = {}
graph(F1(⊥)) = {(zero, one)}
graph(F1(⊥)) = {(zero, one), (one, one)}
graph(F2(⊥)) = {(zero, one), (one, one), (two, one)}
. . .

graph(Fi+1(⊥)) = {(zero, one), . . . , (i, one)}

fix F = λn. one

Stepwise construction of graph yields insight!

Wolfgang Schreiner 14

Domain Theory I

Simultaneous Definitions

f, g: Nat → Nat⊥
f = λx. x equals zero → g(zero)

[] f(g(x minus one)) plus two

g = λy. y equals zero → zero

[] y times f(y minus one)

T = Nat → Nat⊥
F: (T × T) → (T × T)

F = λ(f,g).(. . . , . . .)

F0(⊥) = ({}, {})
F1(⊥) = ({}, {(zero, zero)})
F2(⊥) = ({(zero,zero)}, {(zero, zero)})
. . .

F5(⊥) = ({(zero,zero), (one, two), (two, two)},
{(zero, zero), (one, zero),

(two, four), (three, six)})
Fi(⊥) = F5(⊥), i > 5

fix(F) = (f,g)

Wolfgang Schreiner 15

Domain Theory I

While Loops

C[[while B do C]] =

fix(λf.λs. B[[B]]s → f(C[[C]]s) [] s)

Function: Store⊥ → Store⊥
Example:

C[[while A>0 do (A:=A-1; B:=B+1)]]

= fix F where

F = λf.λs. test s → f(adjust s) [] s

test = B[[A > 0]]

adjust = C[[A:=A-1; B:=B+1]]

Partial function graphs:

• Each pair in graph shows store prior to loop
entry and after loop exit.

• Each graph F i+1(⊥) contains those pairs
whose input stores finish processing in at
most i iterations.

Wolfgang Schreiner 16

Domain Theory I

Example

graph(F0(⊥))={}
graph(F1(⊥))={

({ ([[A]],zero), ([[B]],zero), . . . },
{ ([[A]],zero), ([[B]],zero), . . . }),

. . .

({ ([[A]],zero), ([[B]],four), . . . },
{ ([[A]],zero), ([[B]],four), . . . }), . . . }

graph(F2(⊥))={
({ ([[A]],zero), ([[B]],zero), . . . },
{ ([[A]],zero), ([[B]],zero), . . . }),

. . .

({ ([[A]],zero), ([[B]],four), . . . },
{ ([[A]],zero), ([[B]],four), . . . }),

. . .

({ ([[A]],one), ([[B]],zero), . . . },
{ ([[A]],zero), ([[B]],one), . . . }),

. . .

({ ([[A]],one), ([[B]],four), . . . },
{ ([[A]],zero), ([[B]],five), . . . }), . . . }

Wolfgang Schreiner 17

Domain Theory I

While Loops

Representation by finite subfunctions

C[[while B do C]] =
⊔{

λs.⊥,

λs.B[[B]]s → ⊥ [] s,

λs.B[[B]]s → (B[[B]](C[[C]]s) → ⊥ [] C[[C]]s)

[] s,

λs.B[[B]]s → (B[[B]](C[[C]]s) →
(B[[B]](C[[C]](C[[C]]s)) → ⊥
[] C[[C]](C[[C]]s)) [] C[[C]]s) [] s, . . . }

=
⊔{

C[[diverge]],

C[[if B then diverge else skip]],

C[[if B then (C; if B then diverge else skip)

else skip]],

C[[if B then (C; if B then
(C; if B then diverge else skip)

else skip) else skip]], . . . }

Loop iteration can be understood by sequence
of non-iterating programs.

Wolfgang Schreiner 18

Domain Theory I

Reasoning about Least Fixed Points

• Fixed Point Induction Principle:
To prove P (fix F), it suffices to prove

1. P (⊥)

2. P (d) → P (F (d)), for arbitrary d ∈ D

for pointed cpo D, continuous functional F : D → D, and

inclusive predicate P : D → B.

• Inclusiveness of predicates
If predicate holds for every element of chain, it also

holds for its least upper bound.

• All universally quantified combinations of
conjunctions/disjunctions that use only v
over functional expressions are inclusive.

Mainly useful for showing equivalences of pro-
gram constructs.

Wolfgang Schreiner 19

Domain Theory I

Reasoning about Least Fixed Points

C[[repeat C until B]] = fix(λf.λs.

let s′ = C[[C]]s in B[[B]]s′ → s′ [] (fs′))

C[[C; while ¬B do C]] ?= C[[repeat C until B]]

Proof: P (f, g) = ∀s.f (C[[C]]s) = (gs)

1. P(⊥, ⊥) holds obviously.

2. Prove P (F (f), G(g))
F = (λf.λs. B[[¬ B]]s → f(C[[C]]s) [] s)

G = (λf.λs. let s′ = C[[C]]s in B[[B]]s′

→ s′ [] (fs′))

(a) F (f)(C[[C]]⊥) = ⊥ = G(g)(⊥).

(b) s 6= ⊥:

i. C[[C]]s = ⊥: F (f)(⊥)=⊥=(let s′ = ⊥ in B[[B]]s′ →
s′ [] (gs′)) = G(g)(⊥).

ii. C[[C]]s = s0 6= ⊥: F (f)(s0)=B[[¬ B]]s0 →
f(C[[C]]s0)[]s0 = B[[B]]s0 → s0 [] f(C[[C]]s0) =

B[[B]]s0 → s0 [] f(gs0) = G(g)(s)

Wolfgang Schreiner 20

