Basic Structure of Denotational Definitions

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria
Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

A Calculator Language

- Buttons and display screen,
- Single memory cell,
- Conditional evaluation feature.

Input	Display
ON	
$(4+12) * 2$	32
TOTAL	
$1+$ LASTANSWER	33
TOTAL	
IF LASTANSWER $+1,0,2+4$ TOTAL	6
OFF	

(See Schmidt, Figures 4.2 and 4.3)

Evaluation Functions

- P: Program \rightarrow Nat ${ }^{*}$

Program mapped to list of outputs.

- S: Expr-sequence \rightarrow Nat $\rightarrow N a t^{*}$

Expression sequence and content of memory cell mapped to list of outputs.

- E: Expression \rightarrow Nat \rightarrow Nat

Expression and content of memory cell mapped to evaluation result.

- \mathbf{N} : Numeral \rightarrow Nat

Numeral mapped to natural number.

Observations

1. Global data structures are modelled as arguments to valuation functions.

No "global variables" for functions.
2. Meaning of a syntactic construct can be a function.

S's functionality states thant the meaning of an expression sequence is a function from a memory cell to a list of numbers.

S Rule

S[[E TOTAL S]]

- Calculator actions:

1. Evaluate $[[\mathrm{E}]]$ using cell n producing value n^{\prime}.
2. Print n^{\prime} on the display.
3. Place n^{\prime} into the memory cell.
4. Evaluate the rest of sequence [[S]] using the cell.

- Representation in semantic equation

1. $\mathrm{E}[[\mathrm{E}]](n)$ is bound to variable n^{\prime},
2. n^{\prime} cons \ldots
3. and 4. $\mathbf{S}[[S]]\left(n^{\prime}\right)$

However right-hand side of equation is a mathematical value!

Simplification

P[[ON $2+1$ TOTAL IF LA , 2, 0 TOTAL OFF]]
$=\mathbf{S}[[2+1$ TOTAL IF LA, 2, 0 TOTAL OFF]](zero)
$=$ let $n^{\prime}=\mathbf{E}[[2+1]]$ (zero)
in n^{\prime} cons $\mathbf{S}\left[\left[\mathrm{IF}\right.\right.$ LA , 2,0 TOTAL OFF]] $\left(n^{\prime}\right)$
$=$ let $n^{\prime}=$ three
in n^{\prime} cons $\mathbf{S}\left[\left[\right.\right.$ IF LA , 2,0 TOTAL OFF]] $\left(n^{\prime}\right)$
$=$ three cons S[[IF LA, 2, 0 TOTAL OFF]](three)
$=$ three cons (E[[IF LA , 2, 0]] (three) cons nil)
$=$ three cons (zero cons nil)
$\mathbf{E [[I F ~ L A , ~ 2 , ~ 0]] (t h r e e) ~}$
$=\mathbf{E}[[L A]]($ three $)$ equals zero \rightarrow $\mathbf{E [[2]] (\text { three }) ~ [] ~} \mathbf{E [[0]] (\text { three }) ~}$
$=$ three equals zero \rightarrow two [] zero
$=$ false \rightarrow two [] zero
= zero

Simplification

- Each simplification step preserves meaning.
- Goal is to produce equivalent expression whose meaning is more obvious than the meaning of the original.
- Simplification process shows how program operates.
- Denotational definition \rightarrow specification.
- Denotational definition plus simplification strategy \rightarrow implementation.

