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Languages with Contexts

• In any language, the context of a phrase
influences its meaning.

• In programming languages, contexts at-
tribute meanings to identifiers.

•Does the store establish the context?

begin
integer X; integer Y

Y:=0

X:=Y

Y:=1

X:=Y+1

end

• But the store constantly changes within the
block!

•Declarations establish block context.

• Commands operate within that context.
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Languages with Contexts

begin integer X

X:=0

begin real X

X:=1.5

end
X:=X+1

end

•Outer X denotes integer object.

• Inner X denotes real object.

• X is the name used for both objects.

• Scope rules are needed to resolve ambigu-
ities.

Meaning of an identifier can’t be just its
storable value!
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Contexts

• “Objects” are computer store locations.

• The meaning of an identifier is the location
bound to it.

• A context is the set of identifier/store loca-
tion pairs accessible at a textual position.

• Each position in a program resides within
a unique context.

Context of a phrase can be determined with-
out running the program.
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Environments

Mathematical value that models context.

1. Environment establishes context for syn-
tactic phrase

Resolution of ambiguities concerning meaning of iden-

tifiers.

2. As many environment values as distinct
program contexts.

Multiple environments are maintained during program

evaluation.

3. Environment is a static object.
Phrases uses the same environment each time it is eval-

uated.

• Simple model: store = environment
– Only one environment.

– Used in previous program examples.

• Complex model: store + environments.
– One store.

– Multiple environments.
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Compiler’s Symbol Table

Real-life example of an environment

• Used for translation of source program into
compiled code.
•One entry for each identifier in the pro-

gram
– Data type.

– Mode of usage (variable, constant, parameter).

– Relative location in run-time store.

• Resolution of name conflicts
1. Different symbol table for each block.

2. Build table as single stack

Incremented and decremented upon block entry and

exit.

• Compile-time object (Pascal, C, C++),

• Run-time object (Lisp, Smalltalk).
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Static and Dynamic Semantics

• Static semantics
– Part of semantics definition that use environment to re-

solve context questions.

– Type-checking, scope resolution, storage calculations.

•Dynamic semantics
– “Real” production of meanings.

– Code generation and execution.

No clear separation.
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Evaluation Functions

• Environments used as additional argu-
ment

C: Command → Environment → Store → Store⊥

• Environment domain
Environment = Identifier → Denotable-value

Language Features

1. Declarations.

2. Block structures.

3. Scoping mechanisms.

4. Compound data structures.
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A Block-Structured Language

See Figures 7.1 and 7.2

• Composition of commands
C[[C1; C2]]=λe.(C[[C2]] e) ◦ (C[[C1]] e)

• Both C1 and C2 are evaluated in e.

• C1 may contain local declarations.

• Environments created within C1 do not af-
fect C2.
• Static scoping

– Context of phrase solely determined by its textual position.

– Identifier declared within block only referenced by com-

mands within that block.

– Straight-forward management of storage locations.
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Strongly Typed Languages

• Environment processing can proceed inde-
pendently of store processing.

•P[[P]] can be simplified without value of
initial base location t and initial store s.

• Result neither contains occurences of envi-
ronment arguments nor checking of deno-
table and expressible value tags.

• Simplifications correspond to declaration
and type-checking actions in a compiler.
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Example

See Figure 7.3

λl.(λs. return (update l (one plus two) s))

! (check (fix (λf. λs.

((access l s) equals zero →
(λs. return(update (next-locn l)

(access l s) s)) ! (check f)

[] return

) s )))

! (check (λs. return (update l one s)))

(f !g := g ◦ f)

Resembles series of machine code instructions
parameterized on the store’s base address l.
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Stack-Managed Storage

• Store of block-structured languages always
used in a stack-like fashion
– Locations are bound to identifiers sequentially using ’next-

locn’.

– Location bound to identifier in local block are freed for

re-use when block is exited.

• Storage reuse automatically in C[[C1; C2]]
– Locations bound to identifiers in [[C1]] are reserved by en-

vironment built from e for C[[C1]].

– C[[C2]] uses original e (and original location marker) effec-

tively deallocating these locations.

Significant characteristics of block-structured
languages!
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Stack-Managed Storage

•Make storage calculations explicit in Store
algebra
– Store = (Location → Storable-value) × Location

– First component is data space of the stack

– Second component indicates “top of stack”

– ’allocate-locn’ becomes the run-time version of ’reserve-

locn’

• Environment domain is freed from storage
management
– Environment = Id → Denotable-value

– ’reserve-locn’ is dropped.

Processing of declarations requires store as
well as environment.
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Stack-Managed Store

•Declarations
D: Declaration → Environment → Store → (Environ-

ment × Poststore)

D[[var I]] =

λe.λs. let (l, p) = (allocate-locn s)

in ((updateenv [[I]] inLocation(l) e), p)

D[[D1; D2]] =

λe.λs. let (e′, p) = (D[[D1]]e s)

in (check D[[D2]]e
′)(p)

• Blocks
K[[begin D;C end]] = λe.λs.

let l = mark-locn in

let (e′, p) = D[[D]]e s in

let p′ = (check (C[[C]]e′))(p)

in (check (deallocate-locns l))(p′)

Environment beckomes run-time object be-
cause binding of location values to identifiers
depends on run-time store.
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The Meaning of Identifiers

• Assignment X := X+1
– Left-hand side value of X is location,

– Right-hand side value is storable value associated to loca-

tion.

• Context problem occurs even at primitive
command level!
• Variable identifier denotes pair of values

– I[[I]] = (L-value, R-value)

– L-value is kept in environment.

– R-value is kept in store.
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The Meaning of Identifiers

• Valuation I: Id → Environment → Store
→ (Location × Storable-value)
– L: Id → Environment → Store → Location.

– R: Id → Environment → Store → Storable-value.

• L[[I]] = accessenv [[I]]

•R[[I]] = access ◦ accessenv [[I]]

• Semantic equations with variables
E[[I]] = R[[I]]

C[[I:=E]] = λe.λs.

return(update(L[[I]]e) (E[[E]]e s) s)
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The Meaning of Identifiers

•Other view: R-value = Function(L-value)
– “True” meaning is L-value.

– “Coercion” on right-hand side of assignment

• Coercion = dereferencing.
J: Id → Environment → Denotable-value

J[[I]] = λe. (accessenv [[I]] e)

C[[I:=E]] = λe.λs.

return(update (J[[I]]e) (E[[E]]e s) s)

E[[I]] = λe.λs. access (J[[I]]e) s

• Some system languages (BCPL) require ex-
plicit dereferencing operator (X=@X+1)

E[[I]] = λe.λs. inLocation(J[[I]]e)

E[[@E]] = λe.λs. cases (E[[E]]e s) of

isLocation(l) → (access l s)

[] . . . end
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