Formale Grundlagen der Informatik 2 Entscheidbarkeit und Unentscheidbarkeit

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

Entscheidungsprobleme

- (Entscheidungs)problem *P*:
 - (Entscheidungs)frage P mit formalen Parameters n_1, \ldots, n_k .

 Ist die natürliche Zahl n eine Quadratzahl?
- Eine Instanz $P(a_1, ..., a_k)$ des Problems:
 - Frage P mit konkreten Argumenten a_1, \ldots, a_k .

 Ist die natürliche Zahl 15 eine Quadratzahl?
- Die Sprache L_p des Problems:
 - $L_p := \{(a_1, \ldots, a_k) \mid \text{Die Antwort auf } P(a_1, \ldots, a_k) \text{ ist "ja"} \}$ Die Menge aller Quadratzahlen.

Wir beschäftigen uns im Folgenden mit Entscheidungsproblemen.

Die Entscheidbarkeit von Problemen

- Problem P heißt entscheidbar, wenn L_p rekursiv ist.
 - Es existiert eine Turing-Maschine (Algorithmus) M, die für jede Instanz $P(a_1, \ldots, a_k)$ terminiert und "ja" oder "nein" antwortet:
 - Sowohl L_p als auch $\overline{L_p}$ sind rekursiv aufzählbar.
 - M kann also alle Argumente (a_1, \ldots, a_k) aufzählen, für die die Antwort auf $P(a_1, \ldots, a_k)$ "ja" ist und (gleichzeitig) auch alle Argumente, für die die Antwort "nein" ist.
 - Für die gegebenen Argumente (a_1, \ldots, a_k) wartet M, bis diese in einer der beiden Aufzählungen auftauchen und gibt dementsprechend die Antwort "ja" oder "nein".
- Problem P heißt semi-entscheidbar, wenn L_p rekursiv aufzählbar ist.
 - Es existiert eine Turing-Maschine (*Semi-Algorithmus*), die für jede Instanz $P(a_1, \ldots, a_k)$ entweder "ja" oder aber gar nicht antwortet:
 - M kann alle Argumente (a_1, \ldots, a_k) aufzählen, für die die Antwort auf $P(a_1, \ldots, a_k)$ "ja" ist.
 - Für die gegebenen Argumente (a_1, \ldots, a_k) wartet M, bis diese in der Aufzählung auftauchen und antwortet dann "ja"; tauchen sie aber nie auf, wartet M unendlich lange und antwortet daher nie.

Die Codierung einer Turing-Maschine

Turing-Maschine $M = (\{q_1, \ldots, q_n\}, \{0, 1\}, \{0, 1, \sqcup\}, q_1, \{q_2\}, \delta).$

- Die Codierung $\langle M \rangle$ von M:
 - Eine Folge von 0*en* und 1*en* der Form: 111 code₁ 11 code₂ 11 ... 11 code_r 111
 - $code_1, \ldots, code_r$ sind die Codierungen der r Operationen von M.
 - Jede Operation ist bestimmt durch eine Abbildung $\delta(q_i, X_j) = (q_k, X_l, D_m)$
 - $X_1 = 0, X_2 = 1, X_3 = \sqcup, D_1 = L, D_2 = R$ "Richtung" S kann durch Folge RL ersetzt werden.
 - code = $0^{i}10^{j}10^{k}10^{l}10^{m}$ Codierung des Tupels (i, j, k, l, m)

Eine Turing-Maschine lässt sich als Bit-Folge codieren; es gibt also abzählbar viele Turing-Maschinen.

Die Auflistung aller Turing-Maschinen

5/24

- Wir können alle Turing-Maschinen als M_1, M_2, M_3, \ldots reihen.
 - (Bit)-alphabetische Sortierung ihrer Codierungen.
- Wir können alle möglichen Eingabewörter w_1, w_2, w_3, \ldots reihen.
 - (Bit)-alphabetische Sortierung.
- Wir können die folgende unendliche Matrix konstruieren:

	M_1	M_2		
w ₁ w ₂ w ₃	a ₁₁	a ₁₂ a ₂₂ a ₃₂	a_{13}	
w_2	a ₂₁	a_{22}	a ₂₃	
w ₃	a ₃₁	a_{32}	азз	
:			:	• • •

$$a_{ij} := \left\{ egin{array}{ll} 0, & ext{wenn } w_i \in L(M_j) \\ 1, & ext{sonst} \end{array}
ight.$$

Die Diagonalsprache einer Turing-Maschine

- Die Diagonalspache $L_d := \{w_j \mid a_{jj} = 1\}$:
 - $w_j \in L_d \Leftrightarrow a_{jj} = 1 \Leftrightarrow w_j \notin L(M_j)$
 - w_j ist ein Wort der Diagonalsprache, wenn es nicht von der Turing-Maschine M_i akzeptiert wird.
- Satz: Die Diagonalsprache ist nicht rekursiv aufzählbar.
 - Angenommen, L_d wäre rekursiv aufzählbar, dann gäbe es eine Turing-Maschine M_j mit $L_d = L(M_j)$. Es gilt nun $w_j \in L_d \Leftrightarrow a_{j,j} = 1 \Leftrightarrow w_j \notin L(M_j)$ und daher $L_d \neq L(M_j)$.

Die Diagonalsprache ist daher auch nicht rekursiv.

Das Akzeptierungsproblem

- Das Akzeptierungsproblem für Turingmaschinen:
 - Akzeptiert die Turing-Maschine mit Codierung M das Wort w?
 - Die universelle Sprache L_u ist die Sprache des Akzeptierungsproblems:
 - $L_u = \{(\langle M \rangle, w) \mid w \in L(M)\}$
 - Turing-Maschine M akzeptiert $w \Leftrightarrow (\langle M \rangle, w) \in L_u$
 - Eine universelle Turing-Maschine akzeptiert L_u .
 - Existiert, da L_u rekursiv aufzählbar ist (Beweis siehe Skriptum).
 - Ist ein Interpreter für Turing-Maschinen.
- Satz: das Akzeptierungsproblem ist unentscheidbar (d.h. L_n ist nicht rekursiv).
 - Angenommen, es gäbe M_u , das L_u akzeptiert und für jede Berechnung terminiert. Dann könnten wir M' mit $L(M') = L_d$ konstruieren:
 - M' bestimmt für die Eingabe w den Index i sodass $w = w_i$.
 - M' bestimmt $\langle M_i \rangle$ und übergibt die Eingabe $(\langle M_i \rangle, w_i)$ an M_u .
 - M_u akzeptiert die Eingabe: M' akzeptiert w nicht.
 - M_u akzeptiert die Eingabe nicht: M' akzeptiert w.

Das Halteproblem

Ein scheinbar etwas einfacheres Problem.

- Das Halteproblem für Turing-Maschinen:+ Endet die Berechnung der Turing-Maschine M für Eingabe w?
- Die Sprache dieses Problems:

$$L_h = \{(\langle M \rangle, w) \mid M \text{ hält bei Eingabe } w \text{ an}\}$$

- Satz: das Halteproblem ist unentscheidbar (d.h. L_h ist nicht rekursiv).
 - Angenommen, es gäbe M_h , das L_h akzeptiert und für jede Berechnung terminiert. Dann könnten wir M' mit $L(M') = L_u$ konstruieren:
 - M' leitet seine Eingabe $(\langle M \rangle, w)$ an M_h weiter.
 - ullet M_h akzeptiert die Eingabe nicht: M' akzeptiert die Eingabe nicht.
 - M_h akzeptiert die Eingabe: M' übergibt w an M und wartet auf das Ende der Berechnung. M' akzeptiert $(\langle M \rangle, w)$ genau dann wenn M das Wort w akzeptiert.
 - M' terminiert immer; wir wissen aber, dass L_u nicht rekursiv ist!

Es kann auch kein Algorithmus zur Lösung des Halteproblems existieren.

Das Halteproblem

Volkstümliche Version (nach Wikipedia).

Angenommen, es gibt eine Funktion haltetest:

haltetest(Programm, Eingabe)
wenn Programm(Eingabe) terminiert
dann return Ja
sonst return Nein

Dann lässt sich diese im folgenden Programm verwenden:

test(Programm)
wenn haltetest(Programm, Programm) = Ja dann
laufe in einer leeren Endlosschleife

Wenn man nun der Prozedur *test* sich selbst als Eingabe übergibt, kann diese kein richtiges Ergebnis liefern:

test(test);

Dieser Aufruf terminiert genau dann, wenn er nicht terminiert.

Der Satz von Rice

Welche Eigenschaften von Turing-Maschinen (d.h. rekursiv aufzählbarer Sprachen) sind überhaupt entscheidbar?

- Eine Eigenschaft rekursiv aufzählbarer Sprachen ist eine Menge solcher Sprachen.
- Eine Eigenschaft S heißt trivial wenn S leer ist oder alle rekursiv aufzählbaren Sprachen enthält.
- Eine Eigenschaft \mathcal{S} heißt entscheidbar, wenn die Sprache $L_{\mathcal{S}} := \{\langle M \rangle \mid L(M) \in \mathcal{S}\}$

rekursiv ist (d.h. wenn es für jede Turing-Maschine M entschieden werden kann, ob die von ihr akzeptierte Sprache in $\mathcal S$ enthalten ist).

Satz von Rice (1953): Keine nicht-triviale Eigenschaft rekursiv aufzählbarer Sprachen ist entscheidbar.

Alle "interessanten" Eigenschaften von Turing-Maschinen (d.h. der von ihnen akzeptierten Sprachen) sind unentscheidbar.

Der Satz von Rice

- Beweis: Sei \mathcal{S} eine nicht-triviale Eigenschaft r.a. Sprachen. Annahme: $\emptyset \notin \mathcal{S}$ (andernfalls betrachten wir $\overline{\mathcal{S}}$).
 - Sei $L \in \mathcal{S}$ eine Sprache und M_L eine Turing-Maschine mit $L(M_L) = L$.
 - Wir konstruieren eine Turing-Maschine A, die aus Eingabe $(\langle M \rangle, w)$ die Ausgabe $\langle M' \rangle$ produziert, sodass

$$L(M') \in \mathcal{S} \Leftrightarrow w \in L(M)$$

- M' simuliert M auf w. Akzeptert M das Wort nicht, akzeptiert es auch M' nicht. Ansonsten simuliert M' das Verhalten von M_L auf w und akzeptiert w genau dann, wenn es von M_L akzeptiert wird.
- Also $L(M') = \begin{cases} \emptyset, & \text{wenn } w \notin L(M) \\ L, & \text{wenn } w \in L(M) \end{cases}$
- Angenommen S wäre durch eine Turing-Maschine M_S entscheidbar. Dann könnten wir auch M_u zur Entscheidung von L_u konstruieren:
 - Wende A auf die Eingabe $(\langle M \rangle, w)$ an und erzeuge $\langle M' \rangle$.
 - M_u akzeptiert $(\langle M \rangle, w)$ gdw. M_S die Eingabe $\langle M' \rangle$ akzeptiert.
- Wir wissen aber bereits, dass L_u nicht rekursiv ist.

Weitere unentscheidbare Probleme

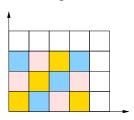
Anwendungen des Satzes von Rice.

- Das eingeschränkte Akzeptierungsproblem ist unentscheidbar. Akzeptiert die Turing-Maschine mit Codierung M die Eingabe ε?
 - $L_{u,\epsilon} := \{ \langle M \rangle \mid \epsilon \in L(M) \}$ ist nicht rekursiv.
 - lacksquare $L_{u,\epsilon}=L_{\mathcal{S}_{\mathcal{A}}}$, für eine nicht-triviale Eigenschaft $\mathcal{S}_{\mathcal{A}}$.
- Das eigeschränkte Halteproblem ist unentscheidbar. Endet die Berechnung der Turing-Maschine M für die Eingabe ϵ ?
 - $L_{h,\epsilon} := \{ \langle M \rangle \mid M \text{ hält bei Eingabe } \epsilon \text{ an} \} \text{ ist nicht rekursiv.}$
 - Wäre $L_{h,\epsilon}$ rekursiv, wäre auch $L_{u,\epsilon}$ rekursiv.
 - Beweis analog zu Beweis für allgemeines Halteproblem.
- Das Problem $L(M_1) = L(M_2)$? ist unentscheidbar.
- Das Problem $L(M_1) \subseteq L(M_2)$? ist unentscheidbar.
- Das Problem L(M) = L'? ist unentscheidbar.

Es können keine Algorithmen (höchstens Semi-Algorithmen) zur Lösung dieser Probleme existieren.

Auch manche mathematische Probleme können auf Probleme über Turing-Maschinen zurückgeführt werden.

- Das Pflasterungsproblem:
 - **Eine** endliche Menge von Typen von Pflastersteinen der Größe 1×1 .
 - Ein "Anfangsstein" und eine Menge von "Nachbarschaftsregeln".
 - Welche Steintypen dürfen horizontal bzw. vertikal benachbart sein?
 - Gesucht ist eine Pflasterung des rechten oberen Quadranten der Ebene beginnend mit dem Anfangsstein an der linken unteren Ecke, sodass die Nachbarschaftsregeln berücksichtigt werden.



- Ein Pflasterungssystem $\mathcal{D} = (D, d_0, H, V)$:
 - D ... eine endliche Menge von Pflastersteintypen.
 - $d_0 \in D$... der Typ des Anfangssteins.
 - $H, V \subseteq D \times D$... die Mengen der horizontal bzw. vertikal erlaubten Paare von benachbarten Typen.
- \blacksquare f ist eine Pflasterung zum Pflasterungssystem \mathcal{D} :
 - $f: \mathbb{N} \times \mathbb{N} \to D$
 - $f(0,0) = d_0$
 - $\forall n, m \in \mathbb{N} : (f(n, m), f(n + 1, m)) \in H$
 - $\forall n, m \in \mathbb{N} : (f(n, m), f(n, m + 1)) \in V$
- Das Pflasterungsproblem:

Gibt es eine Pflasterung zum Pflasterungssystem \mathcal{D} ?

Satz: Das Pflasterungsproblem ist unentscheidbar.

- **Beweis:** wir führen das eingeschränkte Halteproblem von Turingmaschinen auf das Pflasterungsproblem zurück.
 - Wir konstruieren zur Turing-Maschine $M=(Q,\Sigma,\Gamma,q_0,F,\delta)$ ein Pflasterungssystem $\mathcal{D}_M=(D,d0,H,V)$, sodass es genau dann eine Pflasterung zu \mathcal{D}_M gibt, wenn M bei Eingabe ϵ nicht anhält.
 - Wäre das Pflasterungsproblem entscheidbar, dann wäre auch das eingeschränkte Halteproblem entscheidbar.
 - Wir nehmen dabei eine Übergangsfunktion der folgenden Form an: $\delta: Q \times \Gamma \to Q \times (\Gamma \cup \{L, R\})$:
 - $\delta(q, \gamma) = (p, \eta)$: M liest im Zustand q das Symbol γ , geht in Zustand p über und schreibt Symbol η (L/S-Kopf bleibt stationär).
 - $\delta(q, \gamma) = (p, L)$: M liest im Zustand q das Symbol γ , geht in Zustand p über, und bewegt den L/S-Kopf nach links (ohne zu schreiben).
 - $\delta(q, \gamma) = (p, L)$: M liest im Zustand q das Symbol γ , geht in Zustand p über, und bewegt den L/S-Kopf nach rechts (ohne zu schreiben).

(keine Einschränkung der Mächtigkeit von Turing-Maschinen)

- Beweis: D enthält die folgenden Pflastersteintypen:

 - Für $\gamma \in \Gamma$ den Typ \prod_{γ}^{γ} Für $\delta(q,\gamma)=(p,\eta)$ den Typ $\prod_{(q,\gamma)}^{(p,\eta)}$
- Benachbarte Typen: müssen an Rändern zusammenpassen.
- Pflasterung zu \mathcal{D}_M : unendliche Berechnung von M bei Eingabe ϵ .

Beispiel

Turing-Maschine $M_4 = (\{q_0, q_1\}, \emptyset, \{\sqcup\}, \emptyset, \delta)$:

$$\delta(q_0, \sqcup) = (q_1, R), \ \delta(q_1, \sqcup) = (q_0, L).$$

Pflasterung zu \mathcal{D}_M :

⊔	(q_1, \sqcup)	⊔	⊔	<u> </u>
	(q_1, \sqcup)			
$\stackrel{q_1}{\rightarrow}$	$\stackrel{q_1}{\rightarrow}$ \sqcup	υυ	υυ	Ш
(q_0, \sqcup)		⊔	⊔	
(q_0, \sqcup)				
90	9 0 ⊔	υυ	υυ	Ш
⊔	(q_1, \sqcup)	⊔	⊔	
	(q_1, \sqcup)			
$\stackrel{q_1}{\rightarrow}$	$\stackrel{q_1}{\rightarrow}$ \sqcup	шш	шш	Ш
(q_0, \sqcup)	⊔	⊔	⊔	
(q_0, \sqcup)	П	П	П	
L L	ш ш	н н	н н	
(q_0, \sqcup)		Ш		

Turing-Maschine kommt nie über zweite Bandzelle hinaus.

Das Korrespondenzproblem von Post

- Das Korrespondenzproblem von Post:
 - Gegeben sind zwei Listen von Wörtern über einem Alphabet Σ w_1, \ldots, w_k und x_1, \ldots, x_k .
 - Gibt es eine Folge von Zahlen $i_1, \ldots, i_m \in \{1, \ldots, k\}, m \ge 1$, sodass $w_{i_1} \ldots w_{i_m} = x_{i_1} \ldots x_{i_m}$?
- Beispiel: sei $\Sigma = \{0, 1\}$ und $w_1 = 1, w_2 = 10111, w_3 = 10$ und $x_1 = 111, x_2 = 10, x_3 = 0$ Es gilt $w_2w_1w_1w_3 = 1011111110 = x_2x_1x_1x_3$

also ist
$$i_1 = 2$$
, $i_2 = 1$, $i_3 = 1$, $i_4 = 3$ eine Lösung.

- Satz: Das Korrespondenzproblem von Post ist unentscheidbar.
 - Sogar, wenn $i_1 = 1$ festgelegt wird.
 - Beweis siehe Skriptum.

Als Konsequenz ist zum Beispiel auch unentscheidbar, ob eine kontextfreie Grammatik mehrdeutig ist.

Das Emptiness-Problem

■ Das Non-Emptiness-Problem:

Akzeptiert die Turing-Maschine mit Codierung M ein Wort?

Die Sprache L_{ne} dieses Problems:

$$L_{ne} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

- Satz: L_{ne} ist rekursiv aufzählbar aber nicht rekursiv. Beweis siehe Skriptum.
- Das Problem ist nur semi-entscheidbar.

Das Emptiness-Problem:

Akzeptiert die Turing-Maschine mit Codierung M kein Wort?

■ Die Sprache L_e dieses Problems:

$$L_e = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

- Satz: L_e ist nicht rekursiv aufzählbar. Beweis siehe Skriptum.
- Das Problem ist nicht einmal semi-entscheidbar.

Weitere unentscheidbare Probleme.

Orakel-Turingmaschinen

Was wäre, wenn wir gewisse unentscheidbare Probleme (mit einem stärkeren Berechnungsmodell?) doch entscheiden könnten?

- Orakel-Turingmaschine M^A mit Orakel für A:
 - Sprache $A \subseteq \Sigma^*$.
 - Turing-Maschine mit drei ausgezeichneten Zuständen $q_{?}$, q_{j} und q_{n} .
 - Ist M^A in Zustand q_?, wird an das Orakel die Frage gestellt:
 Ist das Wort rechts vom L/S-Kopf (bis zum ersten Leersymbol) in A?
 - Ist Antwort "ja", geht M^A in den Zustand q_i .
 - Ist Antwort "nein", geht M^A in den Zustand q_n .
- Ist A nicht rekursiv, so kann M^A durch keine Turing-Maschine (ohne Orakel) simuliert werden.
 - L(M^A) ist möglicherweise nicht rekursiv aufzählbar.

Das Konzept der Orakel-Turingmaschinen ist nützlich zur Klassifikation unentscheidbarer Probleme.

Orakel-Turingmaschinen und Sprachen

- Eine Sprache B ist rekursiv aufzählbar bezüglich A:
 - Es gibt eine Orakel-Turingmaschine M^A mit $B = L(M^A)$.
- Eine Sprache *B* ist rekursiv bezüglich *A*:
 - Es gibt eine Orakel-Turingmaschine M^A mit $B = L(M^A)$, deren Berechnungen für jede Eingabe enden.
- Zwei Sprachen sind äquivalent:
 - Jede Sprache ist rekursiv bezüglich der anderen.

Äquivalente unentscheidbare Probleme sind also "gleich schwierig" (nicht) zu lösen.

Orakel für das Emptiness-Problem

Was wäre, wenn wir ein Orakel für das Emptiness-Problem hätten?

- Nicht jede Sprache ist rekursiv bezüglich Le:
 - Es gibt überabzählbar viele Sprachen aber nur abzählbar viele Turing-Maschinen.
 - Also gibt es Probleme, die sich nicht mit einer Orakel-Turingmaschine M^{Le} entscheiden lassen.
 - Wir können für solches Problem P ein Orakel annehmen und damit die Probleme lösen, deren Sprachen rekursiv bezüglich L(P) sind.
 - Dieser Prozess lässt sich beliebig fortsetzen.

ldee für den Aufbau einer Hierarchie von Orakeln.

Hierachie von Orakeln

■ Wir können so eine Hierachie von Orakeln konstruieren:

```
S_0 := \emptyset
S_1 := \{ \langle M \rangle \mid L(M^{S_0}) = \emptyset \}
S_2 := \{ \langle M \rangle \mid L(M^{S_1}) = \emptyset \}
\vdots
S_{i+1} := \{ \langle M \rangle \mid L(M^{S_i}) = \emptyset \}
```

- $S_0 = \emptyset$; das entsprechende Orakel ist trivial. ■ M^{S_0} entspricht einer Turing-Maschine ohne Orakel.
- $S_1 = L_e$; das entsprechende Orakel löst das Emptiness-Problem für Turing-Maschinen ohne Orakel.
- Das Orakel für S_{i+1} löst das Emptiness-Problem für die Orakel-Turingmaschinen M^{S^i} .
- Wir erhalten damit eine Hierachie von Sprachen über {0, 1}:
 - Entscheidbar mit Orakel für S_0 : rekursive Sprachen.
 - Entscheidbar mit Orakel für S₁.
 - Entscheidbar mit Orakel für S₂.

Klassifikation unentscheidbarer Probleme

Man kann einige (nicht alle) unentscheidbare Probleme nach ihrer Äquivalenz zu Elementen der Folge S_0, S_1, S_2, \ldots klassifizieren.

- Das Problem $L(M) = \Sigma^*$. Akzeptiert die Turing-Maschine M alle Eingaben?
 - $\Sigma = \{0, 1\}$ das Eingabealphabet von M.
- Satz: Das Problem $L(M) = \Sigma^*$ ist äquivalent zu S_2 .
 - Beweis: dieses Problem ist rekursiv bezüglich S_2 .
 - Wir konstruieren $M_3^{S_2}$ mit $L(M_3^{S_2}) = \overline{\{M \mid L(M) = \Sigma^*\}}$.
 - $M_3^{S_2}$ konstruiert \widehat{M}^{S_1} , das alle Wörter $x \in \Sigma^*$ aufzählt und für jedes x das Orakel S_1 befragt, ob $x \in L(M)$. \widehat{M}^{S_1} akzeptiert seine Eingabe, wenn es ein x mit $x \notin L(M)$, d.h.

$$L(\widehat{M}^{S_1}) = \begin{cases} \emptyset, & \text{wenn} L(M) = \Sigma^* \\ \Sigma^* & \text{sonst} \end{cases}$$

- $M_3^{S_2}$ befragt Orakel S_2 ob $L(\widehat{M}^{S_1}) = \emptyset$. Wenn ja, akzeptiert $M_3^{S_2}$ seine Eingabe, ansonsten nicht.
- Beweis, dass S₂ rekursiv zum Problem ist, ist im Skriptum skizziert.