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Sets, Relations, and Functions

Overview

e The Datatype Set
e Predicates as Sets
e Functions as Sets

e Sequences and Matrices
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The Datatype Set
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Motivation

e Most important mathematical domain.
Default for interpretation of logic formulas.

e Universal domain.

— Most other datatypes can be defined as sets.

— Relations, functions, numbers, arrays, lists, trees, databases, ...

e Fundamental domain.

— Not defined by other (more fundamental) domain.

— Characterized by its properties (axioms).

Building material for other theories.
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Basics

e Domain values are called sets.
All objects are sets.

e Single binary predicate is element of €.

— All other predicates and functions defined by this predicate.

—x € y: x is element of y.

Behavior of € characterized by axioms.
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Some Axioms

e Two sets are equal, iff they have the same elements:
Ve,y:x =y (Vz:z€x & 2 €y).
e [ here exists a set that does not have any elements:
dx Yy iy & x.

— We call this set empty set:
) :=suchz:Vy:ydu.

— Because of second axiom, () is well defined:
Yy :y & 0.

— Because of first axiom, () is unique:

Vz: (Vy : y&z)=2z=0.
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Set Enumeration
Definition: term {1y, T},...,T,—1}

e Terms 7;
e Set that contains exactly the values denoted by the T;:

Ve :x e {Ty, T1,.... Ty 1} (x=TyVe=TyV...Vx="T,,).
Special Case: {} =0

Example: S := {1,0,{1,2},a}
elecS eSS {1,2}eS, aecsb.

e S ={{1,2},a,0, 1}
eS=1{1,110 a {1 2}, a}.
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Subset

Definition: subset
e x is subset of y iff every element of x is also a element of y:

rCy:&s (Vzex: zey).

Proposition: for all x, y, and z, we have
e Minimum: ) C z,
e Reflexivity: x C z,
e Antisymmetry: (x CyAy Cz)=x =y,

e Transitivity: (t CyAyCz) =z C 2.

Ordering relationship among sets.
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Subset and Equality
Proposition: For every x and vy, we have

r=y<(xCyAyCux).

Proof: Take arbitrary x and y. We prove z =y < (x Cy Ay C x).
e Weprovex =y = (xt CyAy C z). Assume x = v, i.e., by definition of ‘=,
(W) Vz:zex e zey.
We have to prove x C y Ay C .

— We prove x C vy, i.e., by definition of ‘'C’, Vz € x : z € y. Take arbitrary z. We have to
prove z € x = z € y. Assume (2) z € x. We have to prove z € y which is a consequence

of (1) and (2).

— The proof of y C x proceeds analogously.
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Subset and Equality (Continued)

Proof (continued):
e We prove (t CyAy Cz)=x=y. Assumex C y Ay C z, i.e., by definition of ‘C’
(H)Vzex:zey;
2)Vzey: z €.
We prove x = y, i.e., by definition of ‘=", Vz : 2 € x & 2 € y. Take arbitrary z. We have to
prove z € * &< 2 € V.

—We prove z € * = z € y. Assume (3) z € x. We have to prove z € y which is a
consequence of (1) and (3).

—We prove z € y = 2z € z. Assume (4) z € y. We have to prove z € x which is a
consequence of (2) and (4).

A well-structured argument based on definitions and given knowledge.
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Set Quantifier

{reS: A}
e Variable z, term S, formula A.

e Term whose value is the set of all elements x in S with property A:
Ve:xe{x eSS At (x e SANA).
e Variable domain S dropped, if clear from context:

{x: A}

Tool to construct subsets of given sets.
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Example

olet Sbe{l 23,4,56,7,89,10}. Then
{reS: x<3Vaxiseven}
is {1,2,3,4,6,8,10}.
e Let N be the set of all natural numbers. Then
{neN:n>1AViiiln=(i=1Vi=n)}
is the set of all prime numbers.

e For every set S,
{reS: x¢gS}
is the empty set ().

Wolfgang Schreiner
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Generalized Set Quantifier

{T,: x€ SNA}

e Term 1, with free variable x.

Variable 2 has to be deduced from context.

e Term whose value is the set of all values of 17, where x is an element

of S for which A holds:
{T, . x€e SNA}={y - Tz eSS y=T, NA)}

More convenient syntax for set construction.
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Example

e [ he term
{2%x:1 <2z <5}

is usually interpreted as
{2%xx: 2 e NA1<x <5}
which denotes the set {2,4,6,8,10}.

e [ he term

{r+y:1<y<5}

typically denotes the set {x+1,x+2,x+3,x+4,x+5} (assuming
that only v is bound by the quantifier and that its domain is N).
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Generalized Set Quantifier

(Zey:z€SANyeTNA}

o Term Z; y with free variables x and .

Variables have to be deduced from context.
e Value of the term is the set

{z:(FreSyeTl z2=Z;y. NA)}

Set quantifier may bind arbitrary number of variables.

Wolfgang Schreiner
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Example

{fr+y 1<z<3N0<y <2}

{r+y . 2eNAYyeNA1I<z<3IAN0<y<2}

{s:(FreNyeN:s=r4+yAN1<z<3A0<y<2)}

{140, 1+1, 1+2, 240, 241, 2+2, 3+0, 3+1, 3+2}

11,2 3,4 5)

Wolfgang Schreiner
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Logic Evaluator

set(xin S: A, T)={T, x € SANA}

term setix in nat(l, 10): true, =);

» 41, 2, 3,4, &, &6, T, 8, 9, 10}.

term set(x i1n nat(l, 10): true, +(x =));

» {2, 4, 6, 8, 10, 12, 14, 16, 18, 20;.

pred diwidesim, n} <= exists(p 1n nat{l, n): =(n, *{p, my)y;
> predicate divides/2.

term setix in nat{l, 10): divides(2, x), *(x, x));

=1l

Wolfgang Schreiner
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Operational Interpretation

public final class SetTerm implements Term

{

private String x; private Term S; private Formula A; private Term T,

public Value eval() throws EvalException
{
Set set = new Set();
Iterator iterator = Model.iterator(S);
while (iterator.hasNext()) {
Context.begin(x, iterator.next());
if (A.eval()) set.addElement(T.eval());
Context.end(); }
return set;

}
}
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Set Union
Definition: union
e Binary function: all elements in x or in y
rUy ={z:2z€xVzey}
e Unary function: all elements in some element of x

Um::{z:(3y€$1263/>}

e Quantor: union of all term values

U T::U{T::CES/\A}.

TESNA

Wolfgang Schreiner
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Set Intersection

Definition: intersection

e Binary function: all elements in 2 and in y
rNy ={z€x:z€y}

e Unary function: all elements in every element of x

ﬂx;:{zeLJx:(VyEx:zEy)}

e Quantor: intersection of all term values

ﬂ T::ﬂ{T:xES/\A}

TESNA

Wolfgang Schreiner
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More Set Functions

e Definition: difference

r\y ={z€x:z<&y}

The set of all elements in x but not in y.

e Definition: powerset

P(x) ={y:y Sz}

The set of all subsets of x.

Wolfgang Schreiner
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Example

olet S:=1{1,23,4,5}, T:={2,57} U:={1,3,57,9)}.

SNT ={25};
SUT = {1,2,3,4,5,7}:
(S, T, U} = {5};

UH{S, T, U} ={1,2,3,4,5,7,9};
P(T) = {0,{2}, {53 {7}, 42,5}, 42,73, {5, 7},{2,5, 7} }.

e Let N be the set of natural numbers and N, ;= {z € N: 2z < n}.

Uz'eN N; = N;
ﬂieN N; = {}7

Wolfgang Schreiner 21
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Set Identities

For every A, B, and C, we have:

e Ildempotency, ldentity and Domination

AUA=A, AU
ANA=A AN

0= A,
0= 0;

)

e Commutativity
AUB=BUA,
ANB=BNA;

e Associativity

AU

(BUC)=(AUB)UC,
AN(BNC)=(AnB)NnC;

Wolfgang Schreiner
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Set Identities

For every A, B, and C, we have:
e Distributivity

e Cancellation

e De Morgan

Wolfgang Schreiner
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Proof
Proposition: VA, B: AUB=BUA

Proof: Take arbitrary A and B. By definition of =, we have to prove
(WVex:z2€¢ AUB < x€ BUA.

Take arbitrary .
e We provexr € AUB = x € BUA. Assume
(2) x € AUB.
We have to prove x € B U A. By definition of U, we have to prove
B)re BVvuzeA.

If © €B, we are done. Thus assume (4) © ¢ B. By (2) and definition of U, we have (5)
r € AV x € B. From (4) and (5), we have x € A and thus (3).

e The proof of x € BUA = x € AU B proceeds analogously.
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Equality Reasoning

VA,B,C: (BUA)N(CUA)=(BnNnC)U A.

Venn diagram:

We prove the proposition as follows:

(BUA)N(CUA) = (commutativity)

(AuUB)N(AUC) = (distributivity)
AU(BNC) = (commutativity)
(BNC)U A.

Wolfgang Schreiner
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Tuples
Definition: n-tuple (g, 1, ..., Tn_1)

e tuple constructor ( ) (n-ary function)

e tuple selectors .. .1......,,_1 (n 1-ary functions
p 07 17 » T 1 y
<ZCO, I’l, e 737n—1>0 — CEO;
(o, 21, .-, Tp_1)1 = T1;
(T0, T1, - s Tp—1)p—1= Tn_1.

Ordered sequence of elements (can be implemented as sets).

Wolfgang Schreiner
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Example

o1 :=(1,2).

o U = (2,T,{1}).

1o =1,
T, =9
Uy = 2;
Uy =1
Uy ={1}.

Wolfgang Schreiner
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Tuple Equality

Proposition: Two n-tuples are equal iff their components are equal.

For every n and all xzg,zq,...,2,—1 and all yg,y1, ..., yn—1:

<:C07 xla R 7xn—1> — <y07 yla coee 7y77,—1> <~
(To=YoNTI=Y1 N ... Tp_1=Yp—_1)-

Example:
o (1,2) # (2,1);
o (1,2) #(1,2,2).

Wolfgang Schreiner
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Cartesian Product

Definition: Cartesian Product of S, ..., 5,,_1.
e Set of all n-tuples whose i-th component is in S;:
SQX XSn_l =
{{xg,...,xp_1) 20 €ESoN ... NTp_1 € Sp_1}-

Example:

fa,b} x {0,1,2) = {{a,0), (a, 1), {a,2), (b,0), (b,1), (b, 2)}.

Wolfgang Schreiner
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Predicates as Sets

Wolfgang Schreiner
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Logic and Set Theory

e First-order predicate logic.

— Variables may represent domain objects, not predicates or functions.
— No quantifiers over predicates or functions.

— Problem: “for all predicates p, ...", “there is a function f, such that ..."

e First-order predicate logic over domain of sets.

— Domain objects are sets.
— May encode predicates and functions as sets.
— Interpret statements about sets as statements about predicates and functions.

— Overcome limitations of first-order predicate logic.

The combination of first-order predicate logic and set theory is the
working horse of mathematics.
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Basic ldea

e A binary predicate p defines a set S of 2-tuples:

S = {(z,y) : pz,y)}.
e A set S of 2-tuples defines a binary predicate p:

p(z,y) = (z,y) € S.

We may interpret a set of tuples as a predicate (relation).

Wolfgang Schreiner
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Relations

Definition: relation

R is a relation between S, ..., 5,1 &
RCSyx...x5,_1.

R is an n-ary relation :&
350, ...,5,-1: R is a relation between Sy, ..., 5,,_1;

R is an n-ary relation on § &
R CS x...xS (cartesian product of n instances of .5).

R is a relation on S < R is a 2-ary (binary) relation on S.

Set of tuples of related values.

Wolfgang Schreiner
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Relations

Definition: R holds on zp, ..., T,

R(aj‘o, o ,:Un_l) = <CI3(), s ,xn_1> c R.

Example:
Ve :3dR: (Vy: R(z,y) = x =y)

s interpreted as
Ve:3dR: (Vy : (x,y) € R=x =1y)

Blur distinction between relations as sets and predicates.

Wolfgang Schreiner

34




Sets, Relations, and Functions

Example

o |et
R={{zx,y):x e NAye NAz <y}

R is a relation on N (R € N x N); it is also a relation on Z
(RCZX1Z).

o |et
S :={{x,x/2) v € N}

S is a relation between N and Q (R € N x Q) and it is also a
relation on Q (R C Q x Q); it is not a relation on N (R Z N x N).
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Representation of Relations

Predicate definition:

Rz,y) rxeNAyeNAz <y <5

Set quantifier:
R={(z,y):reNAyeNAxr<y<b5}

Set enumeration:
R = {<07 1>7 <O7 2>7 <Ov 3>7 <074>7
(1,2),(1,3),(1,4),(2,3),(2,4), (3,4) }.

Wolfgang Schreiner
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Representation of Relations (Continued)
Truth table:

0 1 2 3 4
false true true true true
false false true true true
false false false true true
false false false false true
false false false false false

T\

A LODMN R O

Matrix entry for /vy is true iff x is in relation to y.
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Representation of Relations (Continued)

Directed graph:

Graph has arrow from x to y iff x is in relation to y.

Wolfgang Schreiner
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Domain and Range

Definition: domain and range of a binary relation R

e The domain of R is the set of first components of the tuples in R:
domain(R) :={rg: r € R}.

e The range of R is the set of second components of the tuples in R:

range(R) .= {r1:r € R}.

Proposition:

Vr :x € domain(R) < Jy : (x,y) € R,
Yy :y € range(R) < dr : (x,y) € R.

Wolfgang Schreiner 39
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Example

Take the relation

R = {{0,0), (0, 1), (0,2), (1,2)}.

We have
domain(R) = {0, 1}

range(R) = {0,1, 2}.

We have domain(()) = range(()) = 0.

Wolfgang Schreiner
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Inverse of a Relation

Definition: inverse of a binary relation R

R~ = {(b,a) : a € domain(R) A b € range(R) A (a,b) € R}.

Proposition:
The inverse of a relation from A to B is a relation from B to A.

VR, AB:RCAxB= R 1CBxA.

Example:

o R :={(0,0),(0,1),(0,2), (1,2)}.
e R~ ={(0,0),(1,0),(2,0), (2,1)}.

Wolfgang Schreiner
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Composition of Relations

Definition: composition of two binary relations R and S.

Ro S :={{a,c):a € domain(R) A ¢ € range(S5) A
(Fb: (a,b) € RA(b,c) € S)}.

Proposition: The composition of a relation from A to B and of a
relation from B to C'is a relation from A to C.

VR, S A, B,C :
(RCAXBASCBXx(C)=RoSCAxC.
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Visualization

oS

Wolfgang Schreiner
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Logic Evaluator

read relation;
» file ‘set. txt’ read.
» file ‘relation. txt' read.
fun o(R: Relation, S: Relation) =
let{ad = domain(R), B = **({range(R)., domain(S)), C = range(5):
setia in &, c© 1in G:
exists(b 1n B: and{in(tuplefa, b), R}, in{tupleib, c). 51},
tupleia, c))y;
» function ofE.
fun R = seti{x 1n nat(0, 5): troe, tupleix, *(2, =)));
» function ER/0.
term R;
o0, O, <1, 2, <2, 4, <3, 6 <4, 8, <&, 10:}.
fun § = seti(x 1n nat(0, 2), v 1n nat(0,3): <=(x *(2,v)), tuplelz. v));
» function 5/0.
term 5;
» {«<0, O, <0, 1, <0, 2, <0, 3, <1, 1=, <1, 2, <1, 3+, <2, 1=,
<2, B», <2, 3:}.
term oK, S5);
»o4<0, O, <0, 1, <0, 2, <0, 3 <1, 1=, <1, 2, <1, 3:}.
term o5, R);
» <0, 0O, <0, 2, <0, 4, <0, 6, <1, 2=, <1, 4, <1, 6r, <2, 23,
€2, 4d», <2, B},

term ofiR, ~-1({R));

Wolfgang Schreiner
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Composition Laws

For every A, B, C, D andevery R C AXx B, S C B x (C, and
T C C x D, we have:

(R~ =R,
Ro(So T):(ROS)OT;
(RoS)"t=5"1oR™ 1

Proof: see lecture notes (will be discussed later).
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Functions as Sets

Wolfgang Schreiner
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Basic ldea

e A unary function f defines a binary relation (the function graph):

S={{z,y)y=[flz)}.

e A binary relation S defines a function, if the first component of
every tuple in S is unique:

f(x) =suchy: (z,y) € 5.

We may interpret a special binary relation as a unary function.

Wolfgang Schreiner 47




Sets, Relations, and Functions

Functions
Definition: function

f is a function &
f is a binary relation A

Yz, yo,y1 - ((z,90) € f N x,y1) € ) = yo =1

Definition: partial function from A to B

f A partial B <
f is a function A

fCAXB.

Definition: (total) function from A to B
f:A— B &
f:Apar—m;lB/\
Vee A:Jye B: (z,y) € f.

Wolfgang Schreiner
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Functions

e Every unary function is a binary relation.

The functions domain, range, inverse, and composition also apply to functions.

e n-ary functions can be modelled as unary functions.

— Pack n arguments into a single n-tuple.

— E.g., a binary function f is represented as (for some A, B, ()

f:AxB—C

Wolfgang Schreiner
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Example

The following binary relations are functions:
o ()

0,0, (1,0, (2,1), (3,2)};
o {(x, > r € N}

o {(z,y) :x e NANye NAx+y=100};
o {{((r,y),v+y):x e NAy € N}

Check unicity of first tuple component.

<
(x,x
o {(z,2%) :z e NAzisevent U{(z,0): 2z € NAzisodd};
(Y
<

Wolfgang Schreiner
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Example

The following binary relations are not functions:

e {(0,0), (0, 1)};
o{<x,x2> cx € NAxis prime} U {(x,0) : x € NA x is odd};
o {(z,y) :x e NAye NAz+y <100};

Every argument must be mapped to at most one result.

Wolfgang Schreiner
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Function Applications

Definition: function application

apply(f,x) :=such y : (z,y) € [.

Notation: we write f(x) instead of apply(f, ).
Notation: we write f(xq,...,x,_1) to denote f({xg,...,Tp_1)).

Proposition: a function maps every argument in its domain to a well-
defined result.
Vf :f is function =
Va € domain(f) :
f(x) € range(f) A (z, f(z)) € f.
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Example

A statement with quantified function variables

Vy:3df Va: f(zx)=1y

iIs interpreted as
Yy :3df Vo :apply(f,z) =y

l.e., as

Yy 3df Vo : (z,y) € f.

Blur distinction between functions as sets and functions in logic.

Wolfgang Schreiner
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Defining Functions

Various common formats:
f:A— B
r— T
f:A— B
fla) =T
f:A— B
f =zl

flx :A):B=T

Wolfgang Schreiner
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Defining Functions

All definition formats are interpreted as the formula

fiA—=>B AVzeA: flx)=T

or, equivalently, as

f={(z,T):x2€ A} N Vre A:T e B)

with a corresponding generalization to multiple arguments.

Wolfgang Schreiner
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Example

The statement

div: NxN—Q
div(z,y) = z/y;

Is to be read as the formula

div={{{z,y),z/y) :x € N;y € N} A
(Vx € N,y € N div(z,y) € Q).

Claim about function range has to be proved.

Wolfgang Schreiner
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Function Inversion

Let

J = {<07 O>7 <17 O>7 <27 1>}

Then
F71 = 1(0,0), (0, 1), (1,2)}

is not a function, because it contains (0,0) and (0, 1).

The inverse of a function is not necessarily a function.

Wolfgang Schreiner

57




Sets, Relations, and Functions

Function Composition

Proposition: The composition of two functions is also a function,.

\v/f,ng,B,C:
f:A—-BANg:B—-(C =
fog: A—C.

Proof: see lecture notes (will be discussed later).

Proposition: direct characterization of function composition
Vf? g? A7 B7 C
f:A—-BANg:B—-C =
Vo e A: (fog)(x)=g(f(z)).

Wolfgang Schreiner
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Commutative Diagrams

Visualization of propositions about function compositions:

Proposition: h = fog

A C

B

for fi:A— Bandg: B—Candh:A— C.

Wolfgang Schreiner
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Function Composition

Proposition: function composition is associative.
VA, B.C D, f-A—-B,g:B—-C,h:C — D
folgoh)=(fog)oh

Wolfgang Schreiner
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Sequences and Matrices

Wolfgang Schreiner
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Sequences

Definition: sequence of length n over S
s is a sequence of length n over S < s: N, — §.
Definition: length of a sequence
length(s) :=
such n € N: 45 : s is a sequence of length n over S.

Definition: finite sequence

s is a finite sequence over S &
dn € N : s is a sequence of length n over §.

Definition: infinite sequence

s is an infinite sequence over S < s: N — §.

Wolfgang Schreiner

62




Sets, Relations, and Functions

Sequences

Indexed collections of elements:

e tables,

e arrays,

® vectors,

o lists.

i-th component s(i) of a sequence s:
® S,

® si;

®S.1.

Wolfgang Schreiner
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Example
o 5 :=1{(0,2),(1,3),(2,4),(3,4), (4,5) }:

S =12,3,4,4,5].
We have length(S) = 5 and

S0=2,51=3,5 =4,5,=4,5, =5.

Furthermore (Vi € N5 : 0 < .S; < 10).
o T :={(i,i?) i € N}:
T =100,1,4,9,16,25,. . .].
We have (Vi € N : S; = 4?).
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Matrices

Definition: matrix with m rows and n columns over S

M is a m X n-matrix over S < M N, x N, — §.

Matrix component M ((i, 7)):
o M(i,7);

o Mli, jl;

o M; ;.

Wolfgang Schreiner
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Example

Shorter:

We have

M =
{{(0,0),1), ({0,1),2), ({0,2), 3),
((1,0),4), ((1,1),5), ((1,2),6),
((2,0),7),((2,1),8),((2,2),9) }
123
M:=1456
_7 8 9_

\V/iENg,jENgiMi’jzgi—i—j—l—l.
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Summary

e Sets

— &, (), set enumeration, =, C, set quantifier.
— Union, intersection, difference, powerset.

— Tuples, constructor ( ), selectors .;, =, Cartesian product.
e Relations.

— Encoding and interpretation as sets.
— Representation forms, truth tables, directed graphs.

— Domain, range, inverse, composition.
e Functions.

— Partial function, total function, function application.

— Inversion, composition, commutative diagrams.

e Sequences and matrices as special functions.
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