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Sets, Relations, and Functions

Overview

• The Datatype Set

• Predicates as Sets

• Functions as Sets

• Sequences and Matrices
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The Datatype Set
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Sets, Relations, and Functions

Motivation

•Most important mathematical domain.

Default for interpretation of logic formulas.

• Universal domain.
– Most other datatypes can be defined as sets.

– Relations, functions, numbers, arrays, lists, trees, databases, ...

• Fundamental domain.
– Not defined by other (more fundamental) domain.

– Characterized by its properties (axioms).

Building material for other theories.
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Basics

•Domain values are called sets.

All objects are sets.

• Single binary predicate is element of ∈.
– All other predicates and functions defined by this predicate.

– x ∈ y: x is element of y.

Behavior of ∈ characterized by axioms.
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Some Axioms

• Two sets are equal, iff they have the same elements:

∀x, y : x = y ⇔ (∀z : z ∈ x⇔ z ∈ y).

• There exists a set that does not have any elements:

∃x : ∀y : y 6∈ x.

– We call this set empty set:

∅ := such x : ∀y : y 6∈ x.

– Because of second axiom, ∅ is well defined:

∀y : y 6∈ ∅.

– Because of first axiom, ∅ is unique:

∀z : (∀y : y 6∈ z)⇒ z = ∅.
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Set Enumeration

Definition: term {T0, T1, . . . , Tn−1}
• Terms Ti
• Set that contains exactly the values denoted by the Ti:

∀x : x ∈ {T0, T1, . . . , Tn−1} ⇔ (x = T0 ∨ x = T1 ∨ . . . ∨ x = Tn−1).

Special Case: {} = ∅

Example: S := {1, ∅, {1, 2}, a}
• 1 ∈ S, ∅ ∈ S, {1, 2} ∈ S, a ∈ S.

• S = {{1, 2}, a, ∅, 1}.

• S = {1, 1, 1, ∅, a, {1, 2}, a}.
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Subset

Definition: subset

• x is subset of y iff every element of x is also a element of y:

x ⊆ y :⇔ (∀z ∈ x : z ∈ y).

Proposition: for all x, y, and z, we have
• Minimum: ∅ ⊆ x,

• Reflexivity: x ⊆ x,

• Antisymmetry: (x ⊆ y ∧ y ⊆ x)⇒ x = y,

• Transitivity: (x ⊆ y ∧ y ⊆ z)⇒ x ⊆ z.

Ordering relationship among sets.
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Subset and Equality

Proposition: For every x and y, we have

x = y ⇔ (x ⊆ y ∧ y ⊆ x).

Proof: Take arbitrary x and y. We prove x = y ⇔ (x ⊆ y ∧ y ⊆ x).

• We prove x = y ⇒ (x ⊆ y ∧ y ⊆ x). Assume x = y, i.e., by definition of ‘=’,

(1) ∀z : z ∈ x⇔ z ∈ y.

We have to prove x ⊆ y ∧ y ⊆ x.

– We prove x ⊆ y, i.e., by definition of ‘⊆’, ∀z ∈ x : z ∈ y. Take arbitrary z. We have to

prove z ∈ x ⇒ z ∈ y. Assume (2) z ∈ x. We have to prove z ∈ y which is a consequence

of (1) and (2).

– The proof of y ⊆ x proceeds analogously.
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Subset and Equality (Continued)

Proof (continued):
• We prove (x ⊆ y ∧ y ⊆ x)⇒ x = y. Assume x ⊆ y ∧ y ⊆ x, i.e., by definition of ‘⊆’

(1) ∀z ∈ x : z ∈ y;

(2) ∀z ∈ y : z ∈ x.

We prove x = y, i.e., by definition of ‘=’, ∀z : z ∈ x⇔ z ∈ y. Take arbitrary z. We have to

prove z ∈ x⇔ z ∈ y.

– We prove z ∈ x ⇒ z ∈ y. Assume (3) z ∈ x. We have to prove z ∈ y which is a

consequence of (1) and (3).

– We prove z ∈ y ⇒ z ∈ x. Assume (4) z ∈ y. We have to prove z ∈ x which is a

consequence of (2) and (4).

A well-structured argument based on definitions and given knowledge.
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Set Quantifier

{x ∈ S : A}
• Variable x, term S, formula A.

• Term whose value is the set of all elements x in S with property A:

∀x : x ∈ {x ∈ S : A} ⇔ (x ∈ S ∧ A).

• Variable domain S dropped, if clear from context:

{x : A}

Tool to construct subsets of given sets.
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Example

• Let S be {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Then

{x ∈ S : x ≤ 3 ∨ x is even}
is {1, 2, 3, 4, 6, 8, 10}.
• Let N be the set of all natural numbers. Then

{n ∈ N : n > 1 ∧ ∀i : i|n⇒ (i = 1 ∨ i = n)}
is the set of all prime numbers.

• For every set S,
{x ∈ S : x 6∈ S}

is the empty set ∅.
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Generalized Set Quantifier

{Tx : x ∈ S ∧ A}

• Term Tx with free variable x.

Variable x has to be deduced from context.

• Term whose value is the set of all values of Tx where x is an element
of S for which A holds:

{Tx : x ∈ S ∧ A} = {y : (∃x ∈ S : y = Tx ∧ A)}

More convenient syntax for set construction.
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Example

• The term
{2 ∗ x : 1 ≤ x ≤ 5}

is usually interpreted as

{2 ∗ x : x ∈ N ∧ 1 ≤ x ≤ 5}
which denotes the set {2, 4, 6, 8, 10}.
• The term

{x + y : 1 ≤ y ≤ 5}
typically denotes the set {x+1, x+2, x+3, x+4, x+5} (assuming
that only y is bound by the quantifier and that its domain is N).
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Generalized Set Quantifier

{Zx,y : x ∈ S ∧ y ∈ T ∧ A}

• Term Zx,y with free variables x and y.

Variables have to be deduced from context.

• Value of the term is the set

{z : (∃x ∈ S, y ∈ T : z = Zx,y. ∧ A)}

Set quantifier may bind arbitrary number of variables.

Wolfgang Schreiner 14



Sets, Relations, and Functions

Example

{x + y : 1 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2}
=

{x + y : x ∈ N ∧ y ∈ N ∧ 1 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2}
=

{s : (∃x ∈ N, y ∈ N : s = x + y ∧ 1 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2)}
=

{1+0, 1+1, 1+2, 2+0, 2+1, 2+2, 3+0, 3+1, 3+2}
=

{1, 2, 3, 4, 5}.
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Logic Evaluator

set(x in S: A, T ) = {Tx : x ∈ S ∧ A}.
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Operational Interpretation

public final class SetTerm implements Term

{
private String x; private Term S; private Formula A; private Term T;

public Value eval() throws EvalException

{
Set set = new Set();

Iterator iterator = Model.iterator(S);

while (iterator.hasNext()) {
Context.begin(x, iterator.next());

if (A.eval()) set.addElement(T.eval());

Context.end(); }
return set;

}
}
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Set Union

Definition: union

• Binary function: all elements in x or in y

x ∪ y := {z : z ∈ x ∨ z ∈ y}

• Unary function: all elements in some element of x⋃
x := {z : (∃y ∈ x : z ∈ y)}

•Quantor: union of all term values⋃
x∈S∧A

T :=
⋃
{T : x ∈ S ∧ A}.
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Set Intersection

Definition: intersection

• Binary function: all elements in x and in y

x ∩ y := {z ∈ x : z ∈ y}

• Unary function: all elements in every element of x⋂
x := {z ∈

⋃
x : (∀y ∈ x : z ∈ y)}

•Quantor: intersection of all term values⋂
x∈S∧A

T :=
⋂
{T : x ∈ S ∧ A}

Wolfgang Schreiner 19



Sets, Relations, and Functions

More Set Functions

•Definition: difference

x\y := {z ∈ x : z 6∈ y}

The set of all elements in x but not in y.

•Definition: powerset

P(x) := {y : y ⊆ x}

The set of all subsets of x.
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Example

• Let S := {1, 2, 3, 4, 5}, T := {2, 5, 7}, U := {1, 3, 5, 7, 9}.
S ∩ T = {2, 5};
S ∪ T = {1, 2, 3, 4, 5, 7};⋂
{S, T, U} = {5};⋃
{S, T, U} = {1, 2, 3, 4, 5, 7, 9};

P(T ) = {∅, {2}, {5}, {7}, {2, 5}, {2, 7}, {5, 7}, {2, 5, 7}}.

• Let N be the set of natural numbers and Nn := {x ∈ N : x < n}.⋃
i∈NNi = N;⋂
i∈NNi = {};
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Set Identities

For every A, B, and C, we have:

• Idempotency, Identity and Domination

A ∪ A = A, A ∪ ∅ = A,
A ∩ A = A, A ∩ ∅ = ∅;

• Commutativity
A ∪B = B ∪ A,
A ∩B = B ∩ A;

• Associativity
A ∪ (B ∪ C) = (A ∪B) ∪ C,
A ∩ (B ∩ C) = (A ∩B) ∩ C;
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Set Identities

For every A, B, and C, we have:

•Distributivity

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C);

• Cancellation
A ∪ (A ∩B) = A,
A ∩ (A ∪B) = A;

•De Morgan
C\(A ∪B) = C\A ∩ C\B,
C\(A ∩B) = C\A ∪ C\B.
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Proof

Proposition: ∀A,B : A ∪B = B ∪ A

Proof: Take arbitrary A and B. By definition of =, we have to prove

(1) ∀x : x ∈ A ∪B ⇔ x ∈ B ∪ A.

Take arbitrary x.

• We prove x ∈ A ∪B ⇒ x ∈ B ∪ A. Assume

(2) x ∈ A ∪B.

We have to prove x ∈ B ∪ A. By definition of ∪, we have to prove

(3) x ∈ B ∨ x ∈ A.

If x ∈B, we are done. Thus assume (4) x 6∈ B. By (2) and definition of ∪, we have (5)

x ∈ A ∨ x ∈ B. From (4) and (5), we have x ∈ A and thus (3).

• The proof of x ∈ B ∪ A⇒ x ∈ A ∪B proceeds analogously.
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Equality Reasoning

∀A,B,C : (B ∪ A) ∩ (C ∪ A) = (B ∩ C) ∪ A.
Venn diagram:

We prove the proposition as follows:
(B ∪ A) ∩ (C ∪ A) = (commutativity)

(A ∪B) ∩ (A ∪ C) = (distributivity)

A ∪ (B ∩ C) = (commutativity)

(B ∩ C) ∪ A.
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Tuples

Definition: n-tuple 〈x0, x1, . . . , xn−1〉
• tuple constructor 〈 〉 (n-ary function)

• tuple selectors .0, .1, . . . , .n−1 (n 1-ary functions)

〈x0, x1, . . . , xn−1〉0 = x0;
〈x0, x1, . . . , xn−1〉1 = x1;
. . .
〈x0, x1, . . . , xn−1〉n−1 = xn−1.

Ordered sequence of elements (can be implemented as sets).
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Example

• T := 〈1, 2〉.
T0 = 1;
T1 = 2.

• U := 〈2, T, {1}〉.
U0 = 2;
U1 = T ;
U2 = {1}.
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Tuple Equality

Proposition: Two n-tuples are equal iff their components are equal.

For every n and all x0, x1, . . . , xn−1 and all y0, y1, . . . , yn−1:

〈x0, x1, . . . , xn−1〉 = 〈y0, y1, . . . , yn−1〉 ⇔
(x0 = y0 ∧ x1 = y1 ∧ . . . xn−1 = yn−1).

Example:

• 〈1, 2〉 6= 〈2, 1〉;
• 〈1, 2〉 6= 〈1, 2, 2〉.
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Cartesian Product

Definition: Cartesian Product of S0, . . . , Sn−1.

• Set of all n-tuples whose i-th component is in Si:

S0 × . . .× Sn−1 :=
{〈x0, . . . , xn−1〉 : x0 ∈ S0 ∧ . . . ∧ xn−1 ∈ Sn−1}.

Example:

{a, b} × {0, 1, 2} = {〈a, 0〉, 〈a, 1〉, 〈a, 2〉, 〈b, 0〉, 〈b, 1〉, 〈b, 2〉}.
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Predicates as Sets
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Logic and Set Theory

• First-order predicate logic.
– Variables may represent domain objects, not predicates or functions.

– No quantifiers over predicates or functions.

– Problem: “for all predicates p, . . . ”, “there is a function f , such that . . . ”

• First-order predicate logic over domain of sets.
– Domain objects are sets.

– May encode predicates and functions as sets.

– Interpret statements about sets as statements about predicates and functions.

– Overcome limitations of first-order predicate logic.

The combination of first-order predicate logic and set theory is the
working horse of mathematics.
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Basic Idea

• A binary predicate p defines a set S of 2-tuples:

S := {〈x, y〉 : p(x, y)}.

• A set S of 2-tuples defines a binary predicate p:

p(x, y) :⇔ 〈x, y〉 ∈ S.

We may interpret a set of tuples as a predicate (relation).
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Relations

Definition: relation

R is a relation between S0, . . . , Sn−1 :⇔
R ⊆ S0 × . . .× Sn−1.

R is an n-ary relation :⇔
∃S0, . . . , Sn−1 : R is a relation between S0, . . . , Sn−1;

R is an n-ary relation on S :⇔
R ⊆S ×. . .×S (cartesian product of n instances of S).

R is a relation on S :⇔ R is a 2-ary (binary) relation on S.

Set of tuples of related values.
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Relations

Definition: R holds on x0, . . . , xn−1

R(x0, . . . , xn−1) :⇔ 〈x0, . . . , xn−1〉 ∈ R.

Example:
∀x : ∃R : (∀y : R(x, y)⇒ x = y)

is interpreted as

∀x : ∃R : (∀y : 〈x, y〉 ∈ R⇒ x = y)

Blur distinction between relations as sets and predicates.
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Example

• Let
R := {〈x, y〉 : x ∈ N ∧ y ∈ N ∧ x ≤ y}

R is a relation on N (R ⊆ N × N); it is also a relation on Z
(R ⊆ Z× Z).

• Let
S := {〈x, x/2〉 : x ∈ N}

S is a relation between N and Q (R ⊆ N × Q) and it is also a
relation on Q (R ⊆ Q×Q); it is not a relation on N (R 6⊆ N×N).
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Representation of Relations

Predicate definition:

R(x, y) :⇔ x ∈ N ∧ y ∈ N ∧ x < y < 5

Set quantifier:

R := {〈x, y〉 : x ∈ N ∧ y ∈ N ∧ x < y < 5}

Set enumeration:

R = {〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈0, 4〉,
〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉, 〈3, 4〉}.
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Representation of Relations (Continued)

Truth table:

x\y 0 1 2 3 4 . . .
0 false true true true true
1 false false true true true
2 false false false true true
3 false false false false true
4 false false false false false

. . .

Matrix entry for x/y is true iff x is in relation to y.
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Representation of Relations (Continued)

Directed graph:

Graph has arrow from x to y iff x is in relation to y.
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Domain and Range

Definition: domain and range of a binary relation R

• The domain of R is the set of first components of the tuples in R:

domain(R) := {r0 : r ∈ R}.

• The range of R is the set of second components of the tuples in R:

range(R) := {r1 : r ∈ R}.

Proposition:

∀x : x ∈ domain(R)⇔ ∃y : 〈x, y〉 ∈ R,
∀y : y ∈ range(R)⇔ ∃x : 〈x, y〉 ∈ R.
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Example

Take the relation

R := {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 2〉}.

We have
domain(R) = {0, 1}
range(R) = {0, 1, 2}.

We have domain(∅) = range(∅) = ∅.
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Inverse of a Relation

Definition: inverse of a binary relation R

R−1 := {〈b, a〉 : a ∈ domain(R) ∧ b ∈ range(R) ∧ 〈a, b〉 ∈ R}.

Proposition:
The inverse of a relation from A to B is a relation from B to A.

∀R,A,B : R ⊆ A×B ⇒ R−1 ⊆ B × A.

Example:

•R := {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 2〉}.
•R−1 = {〈0, 0〉, 〈1, 0〉, 〈2, 0〉, 〈2, 1〉}.
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Composition of Relations

Definition: composition of two binary relations R and S.

R ◦ S := {〈a, c〉 : a ∈ domain(R) ∧ c ∈ range(S) ∧
(∃b : 〈a, b〉 ∈ R ∧ 〈b, c〉 ∈ S)}.

Proposition: The composition of a relation from A to B and of a
relation from B to C is a relation from A to C.

∀R, S,A,B,C :
(R ⊆ A×B ∧ S ⊆ B × C)⇒ R ◦ S ⊆ A× C.
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Visualization
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Logic Evaluator
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Composition Laws

For every A, B, C, D and every R ⊆ A × B, S ⊆ B × C, and
T ⊆ C ×D, we have:

(R−1)−1 = R;
R ◦ (S ◦ T ) = (R ◦ S) ◦ T ;

(R ◦ S)−1 = S−1 ◦R−1.

Proof: see lecture notes (will be discussed later).
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Functions as Sets

Wolfgang Schreiner 46



Sets, Relations, and Functions

Basic Idea

• A unary function f defines a binary relation (the function graph):

S := {〈x, y〉 : y = f (x)}.

• A binary relation S defines a function, if the first component of
every tuple in S is unique:

f (x) := such y : 〈x, y〉 ∈ S.

We may interpret a special binary relation as a unary function.
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Functions

Definition: function
f is a function :⇔
f is a binary relation ∧
∀x, y0, y1 : (〈x, y0〉 ∈ f ∧ 〈x, y1〉 ∈ f )⇒ y0 = y1.

Definition: partial function from A to B

f : A
partial−→ B :⇔

f is a function ∧
f ⊆ A×B.

Definition: (total) function from A to B

f : A→ B :⇔
f : A

partial−→ B ∧
∀x ∈ A : ∃y ∈ B : 〈x, y〉 ∈ f.
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Functions

• Every unary function is a binary relation.

The functions domain, range, inverse, and composition also apply to functions.

• n-ary functions can be modelled as unary functions.
– Pack n arguments into a single n-tuple.

– E.g., a binary function f is represented as (for some A, B, C)

f : A×B → C
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Example

The following binary relations are functions:

• ∅;
• {〈0, 0〉, 〈1, 0〉, 〈2, 1〉, 〈3, 2〉};
• {〈x, x2〉 : x ∈ N};
• {〈x, x2〉 : x ∈ N ∧ x is even} ∪ {〈x, 0〉 : x ∈ N ∧ x is odd};
• {〈x, y〉 : x ∈ N ∧ y ∈ N ∧ x + y = 100};
• {〈〈x, y〉, x + y〉 : x ∈ N ∧ y ∈ N}.

Check unicity of first tuple component.
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Example

The following binary relations are not functions:

• {〈0, 0〉, 〈0, 1〉};
• {〈x, x2〉 : x ∈ N ∧ x is prime} ∪ {〈x, 0〉 : x ∈ N ∧ x is odd};
• {〈x, y〉 : x ∈ N ∧ y ∈ N ∧ x + y ≤ 100};

Every argument must be mapped to at most one result.
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Function Applications

Definition: function application

apply(f, x) := such y : 〈x, y〉 ∈ f.

Notation: we write f(x) instead of apply(f, x).
Notation: we write f (x0, . . . , xn−1) to denote f (〈x0, . . . , xn−1〉).

Proposition: a function maps every argument in its domain to a well-
defined result.

∀f :f is function ⇒
∀x ∈ domain(f ) :
f (x) ∈ range(f ) ∧ 〈x, f(x)〉 ∈ f.
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Example

A statement with quantified function variables

∀y : ∃f : ∀x : f (x) = y

is interpreted as

∀y : ∃f : ∀x : apply(f, x) = y

i.e., as
∀y : ∃f : ∀x : 〈x, y〉 ∈ f.

Blur distinction between functions as sets and functions in logic.
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Defining Functions

Various common formats:

f : A→ B
x 7→ T

f : A→ B
f (x) := T

f : A→ B
f := λx.T

f (x : A) : B = T
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Defining Functions

All definition formats are interpreted as the formula

f : A→ B ∧ ∀x ∈ A : f (x) = T

or, equivalently, as

f = {〈x, T 〉 : x ∈ A} ∧ (∀x ∈ A : T ∈ B)

with a corresponding generalization to multiple arguments.
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Example

The statement

div : N× N→ Q

div(x, y) := x/y;

is to be read as the formula

div = {〈〈x, y〉, x/y〉 : x ∈ N, y ∈ N} ∧
(∀x ∈ N, y ∈ N : div(x, y) ∈ Q).

Claim about function range has to be proved.
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Function Inversion

Let

f := {〈0, 0〉, 〈1, 0〉, 〈2, 1〉}.

Then

f−1 = {〈0, 0〉, 〈0, 1〉, 〈1, 2〉}

is not a function, because it contains 〈0, 0〉 and 〈0, 1〉.

The inverse of a function is not necessarily a function.
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Function Composition

Proposition: The composition of two functions is also a function,.

∀f, g, A,B,C :
f : A→ B ∧ g : B → C ⇒
f ◦ g : A→ C.

Proof: see lecture notes (will be discussed later).

Proposition: direct characterization of function composition

∀f, g, A,B,C :
f : A→ B ∧ g : B → C ⇒
∀x ∈ A : (f ◦ g)(x) = g(f (x)).
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Commutative Diagrams

Visualization of propositions about function compositions:

Proposition: h = f ◦ g

for f : A→ B and g : B → C and h : A→ C.
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Function Composition

Proposition: function composition is associative.

∀A,B,C,D, f : A→ B, g : B → C, h : C → D :
f ◦ (g ◦ h) = (f ◦ g) ◦ h
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Sequences and Matrices
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Sequences

Definition: sequence of length n over S

s is a sequence of length n over S :⇔ s : Nn→ S.

Definition: length of a sequence

length(s) :=
such n ∈ N: ∃S : s is a sequence of length n over S.

Definition: finite sequence

s is a finite sequence over S :⇔
∃n ∈ N : s is a sequence of length n over S.

Definition: infinite sequence

s is an infinite sequence over S :⇔ s : N→ S.
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Sequences

Indexed collections of elements:

• tables,

• arrays,

• vectors,

• lists.

i-th component s(i) of a sequence s:

• si;
• s[i];
• s.i.
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Example

• S := {〈0, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 4〉, 〈4, 5〉}:
S = [2, 3, 4, 4, 5].

We have length(S) = 5 and

S0 = 2, S1 = 3, S2 = 4, S3 = 4, S4 = 5.

Furthermore (∀i ∈ N5 : 0 < Si < 10).

• T := {〈i, i2〉 : i ∈ N}:
T = [0, 1, 4, 9, 16, 25, . . .].

We have (∀i ∈ N : Si = i2).
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Matrices

Definition: matrix with m rows and n columns over S

M is a m× n-matrix over S :⇔ M : Nm × Nn→ S.

Matrix component M(〈i, j〉):

•M(i, j);

•M [i, j];

•Mi,j.
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Example

M :=

{〈〈0, 0〉, 1〉, 〈〈0, 1〉, 2〉, 〈〈0, 2〉, 3〉,
〈〈1, 0〉, 4〉, 〈〈1, 1〉, 5〉, 〈〈1, 2〉, 6〉,
〈〈2, 0〉, 7〉, 〈〈2, 1〉, 8〉, 〈〈2, 2〉, 9〉}

Shorter:

M :=

 1 2 3
4 5 6
7 8 9


We have

∀i ∈ N3, j ∈ N3 : Mi,j = 3i + j + 1.
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Summary

• Sets
– ∈, ∅, set enumeration, =, ⊆, set quantifier.

– Union, intersection, difference, powerset.

– Tuples, constructor 〈 〉, selectors .i, =, Cartesian product.

• Relations.
– Encoding and interpretation as sets.

– Representation forms, truth tables, directed graphs.

– Domain, range, inverse, composition.

• Functions.
– Partial function, total function, function application.

– Inversion, composition, commutative diagrams.

• Sequences and matrices as special functions.
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