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Overview

e Directed Graphs
e Paths and Reachability
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Directed Graphs

Definition: A directed graph is a pair (V| E/) of a set V' of vertices/
nodes and a set of F of edges/arcs where E is binary relation on V-

(G is directed graph <
V. E :
G=(V,E) A
ECV xV.
Interpretation: (x,y) € F
e 1 is connected to y in G,

e x is initial node of edge,

e y is terminal node of edge.
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Example
Graph (N5, E)
E ={(0,1),{0,2),(1,1),(1,2),(2,1), (3,3), (4,0), (4, 1)}

The visual representation of a graph is not unique.
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Example
Graph (N5, E)
E ={(0,1),{0,2),(1,1),(1,2),(2,1), (3,3), (4,0), (4, 1)}

0 1 2 3 4
false true true false false
false true true false false
false true false false false
false false false true false
true true false false false

~ Lo N = O

Matrix representation is used for computing.
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Adjacency Matrix

Definition: Let G = (V, E) be a directed graph with |V| = n. The
adjacency matrix of G is the boolean nxn matrix M where M (z,y) =
true if and only if (z,y) € E:

adjacency(G) =
let V =Go, F =Gy
such M € V xV — {true, false} :
Ve eV,iyeV : M(x,y) =true & (x,y) € F).

Matrix representation from graph.
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Undirected Graph

Definition: An undirected graph is a directed graph whose edge rela-
tion I1s symmetric:
(G is undirected graph <
JV, E
G=(V,FE),
ECV XV,

E is symmetric on V.

Special kind of directed graph.
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Example
Graph (N5, F)

b= {<07 1>7 <170>7 <072>7 <27 O>7
<2, 1>, <3, 3>, <O,4>, <4, O>, <1,4

~— —
7
e~
p—
~_——
N~/

Draw single undirected edge instead of pair of directed edges.

Wolfgang Schreiner




More on Relations 3

Example
Graph (N5, F)
E = {(0,1),(1,0),(0,2),(2,0),(1,1),(1,2),
(2,1),(3,3),(0,4), (4,0), (1,4), (4, 1)}

o 1 2 3 4

0 false true true false true
1 true true false true
2 false false false
3 true false
4 false

Missing matrix elements are determined by symmetry.
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Example
Graph ({a,b,c}, F)
E= {<av a>7 <av b>7 <b7 a>}

a b

At

a b C
true true false
b false false
false

[ Mg

o
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Degree

Definition: In a directed graph, the indegree of x is the number of
edges whose terminal node is x:

indegg(z) =y € Vi (y,z) € B}
where VV = G(), B = Gl.

The outdegree of = is the number of edges whose initial node is x:

outdegg(z) .= [{y € V': (z,y) € B}
where V' = GQ, E = Gl.

The total degree of x is the sum of its indegree and its outdegree:

deg(x) := indeg(x) + outdeg(x).
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Example

e Indegree of node 1 is 4 and its outdegree is 2:

e Indegree and the outdegree of node c are both 0.

a b

(T.. .

Wolfgang Schreiner
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Graph Isomorphisms

Definition: Two graphs are isomorphic if there exists a bijection be-
tween the nodes of the two graphs that preserves the edge structure:

G and G’ are isomorphic &

G is directed graph A G is directed graph A

: /
A fov By

where V' = GQ, b= Gl, V/ — Glo, B = Gll.

Different graphs may have same structure.
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Example

The graphs

3 2

are isomorphic with isomorphism

f= {<Ov b>7 <17C>7 <27d>7 <3va>}'

Wolfgang Schreiner
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Example

The graphs

3 2 3 2

are isomorphic with isomorphism

f=1{(0,1),(1,2), (2,3),(3,0)}.

Wolfgang Schreiner
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Example

The graphs

are not isomorphic.
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Paths and Reachability
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Path

Definition: A path is a sequence of nodes connected by edges:

pis path in G &
(In € Nyg:p: Ny, =V A

Vie N, _1: <pz',p@'+1> c E) where V = G, E = G].

The length of a path is the number of edges it contains:
length(p) :==suchn e N: 3V :p N, 1 — V.
A path from x to y has initial node x and terminal node y

p is path from x to y &
po = = A pp = y where n = length(p).

Wolfgang Schreiner
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Path Properties

Definition: A path is simple if it does not contain any edge twice:

p is simple &
Vi € Np,j € Ny 0 (i, pit1) = (0j,pjg1) = 1=
where n = length(p).

A path is elementary if it does not contain any node twice:

p 1S elementary <

(Vi € Np,j € Ny :p; =p; = i = j) where n = 1 + length(p).

A path is a cycle or circuit if it terminates in its initial node:

p is cycle < dx : p is path from x to .

Wolfgang Schreiner
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Reachability

Definition: A node y is reachable from a node x in a graph G if there
is a path in G from z to y:

y is reachable from x in G &

Jp : pis path in G A p is path from x to y.

e For fixed &, “is reachable” is a binary relation on V.

e [/ is a binary relation on V.

We are going to construct the reachability relation from E.
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Reflexive Closure

Definition: Let R be a binary relation on S. The reflexive closure of
R on S is the smallest relation that contains R and is reflexive on S:

reflexiveg(R) :=
such ¥ C S xS :
R C R'A R is reflexive on S A
VR" : (R C R" AN R" is reflexive on S) = R' C R".

Proposition:

VS,R: RC S xS = reflexiveg(R) = RU{{(z,z) :x € S}.

Add reflexivity to relation.
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Transitive Closure

Definition: The transitive closure of R on S is the smallest relation
that contains X and is transitive on S

transitiveg(R) :=
such ¥ C S xS :
R C R' A R’ is transitive on S A
VR" : (R C R" AN R" is transitive on S) = R' C R".

Add transitivity to relation (how?).
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Reachability and Edge Relation

Proposition: We define the reachability relation

R = {{(z,y) € Gy x Gy : y is reachable from z in G}.

Then, for any directed graph (V, E), Ry ) is the reflexive and tran-
sitive closure of £ on V:

VV,E : (V, E) is directed graph =
Ry gy = reflexivey (transitivey (£)).

Problem reduced to computing the transitive closure of edge relation.
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Example

Graph (N5, F') where £ = {(0,1),(1,2),(1,3),(2,3),(3,4)}

reflexiven, (£) = E'U {(0,0),(1,1),(2,2), (3,3), (4,4)}
transitiven, (£) =
1(0,1),40,2),(0,3),(0,4),(1,2),(1,3), (1,4),(2,3),(2,4) }

Wolfgang Schreiner
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Exponentiation of Relations

Definition:

R) = {(zx,z) : z €8S}
Rgrl = RgoR.

o R% is the identity relation.
ORgBR.
e Ry =RoRoR.

Repeated composition of relation.

Wolfgang Schreiner
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Transitive Closure

Proposition:

VS,R:RCSxS=
transitiveg(R) = [J{R%s : 7 € N5}

Interpretation: Transitive closure is limit of

R RU(RoR),RU(RoR)U(RoRoR),...

Problem: cannot compute infinite sequence!

Wolfgang Schreiner
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Transitive Closure

Proposition: Let R be a binary relation on .S where S has n elements.

Then | J;<;<,, g is the transitive closure of R:

VSSR:RCSxS = |
transitiveg () = U <;<,, Ry
where n = |5|.

Interpretation: Transitive closure is limit of

RRRURoR),..., RU(RoR)U...UR"|

Constructive method for computing transitive closure.

Wolfgang Schreiner
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Reachability

Algorithm:

Can compute reachability relation from edge relation.

reachability (V) E) :
n=|V|
R ={{z,z): 2z €V}
for(i = 0;7 < n;i++)
R = R'U(R' o E)
return R"

Wolfgang Schreiner
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Composition of Relations
Let R and S be binary relations on N,, for some n € N.

The composition of R and S is

RoS={(a,c) :a e N, ANc e N, A
(Fb: (a,b) € RA(b,c) € 5)}.

For the corresponding adjacency matrix, we thus have
Vie N, 7 €Ny,
adjacency((Np, R o S)); ; = true <
Jk € Ny @ A; ), = true A By, ; = true

where A = adjacency((N,, R)), B = adjacency((Ny, S)).

Wolfgang Schreiner
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Composition of Relations

Written as a Java method, the composition of two adjacency matrices
A and B giving a result matrix C' resembles matrix multiplication:

void compose(int n, boolean[][] A, boolean[][] B, boolean[][] C)
{
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
{
Cli] [j] = false;
for (int k=0; k<n; k++)
CLil[j1 = C[il[j] Il (A[il[k] && B[k][jl1);
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Trees

Wolfgang Schreiner
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Tree

Definition: A tree is a directed graph such that there is exactly one
node, the root, that has indegree zero, every other node has indegree
one, and every node can be reached from the root.

1" 1s tree &
T 1s directed graph A
(3r € V @ indeg(r) =0 A
VeeV —{r}:
indeg(x) =1 A
r is reachable from r in T) where V' =T,
root(T") := (such r € V : indeg(r) = 0) where V = Tj,.
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Example

e T he following diagrams depict trees with root 7:
e The following directed graphs are not trees:

O A L

Wolfgang Schreiner
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Example

e The term —b + 2a:

e A file system with directories

/, /bin, /etc, /usr, /usr/bin, /usr/bin/X11, /usr/etc

/

Wolfgang Schreiner
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Trees and Cycles

Proposition: A tree has only cycles of length 0:

VI :T is tree =
—(dp : pis path in T Alength(p) > 0 A p is cycle).

No (non-trivial) path in a tree is a cycle.

Wolfgang Schreiner

35




More on Relations 3

Parents and Children

Definition: Let 1" be a tree. A node y is called a child of x if there is

an edge from x to y in T

y is child of z in T &
(x,y) € E where £ =T}.

x is then called the parent of y:

parentp(y) :=such z € V : (x,y) € F
where V' = T(), b= Tl-

Every node (apart from the root) has a unique parent.

Wolfgang Schreiner
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Other Tree Relations

Definition: A node x is a leaf, if it does not have children:

risleaf inT & x €V A—-dy:yischildof zin T
where V' = TO-

A node x is an ancestor of y if there is a path from x to y in T":

x is ancestor of y in 1" &
dp : p is path in T" A p is path from x to y.

y is then called a descendant of x:

y is descendant of x in T ;< x is ancestor of y in 7.

Wolfgang Schreiner

37




More on Relations 3

Example

a is the parent of b and an ancestor of leaf c.

Wolfgang Schreiner
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Levels and Heights

Definition: The level of a node x in a tree is the length of the path
from the root of the tree to z:

levelp(x) := length(p) where p =
such p : p is path in T' A p is path from root(T) to x.

The height of a tree is the maximum level of its nodes:

height(T') := max{levelp(x) : x € V} where V =T,

Root has level 0; level of every other node is one plus the parent level.
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Example

a has level 1, b has level 2, ¢ has level 3. The height of the tree is 3.
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Binary Trees

Proposition: Let I' be a tree of height h where every node has an
outdegree of at most 2. The number of tree nodes is less than oht1.

VT : (T is tree AVx € V :outdeg(x) < 2) = |V]| < oh+1
where V = T{j, h = height(T).

Proof: Let T' be a such a tree. We proceed by complete induction on the height of 7.
1. Assume the height is h = 0. Then |V| =1 < 2 = 21,

2. Assume the height is h > 0. Consequently the root of T" has a child that is the root of a tree of
height i — 1 and possibly a second child that is the root of a tree of height less than or equal
h — 1. By the induction hypothesis, we thus have

VI<14+@2"—1)+ 2" —1)=2"1 — 1 < 2L
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Summary

e Directed graphs

— Pair of node set and edge relation.
— Adjacency matrix.

— Degree.
e Paths and reachability

— Closure of relations.

— Reachability is closure of edge relation.
e [rees

— Root, parent, children.

— Levels and heights.
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