previous up next
Go backward to Reachability
Go up to Top
Go forward to Transitive Closure
RISC-Linz logo

Reflexive Closure

Definition: Let R be a binary relation on S. The reflexive closure of R on S is the smallest relation that contains R and is reflexive on S:

reflexiveS(R) :=
   such R' subset S x S:
      R subset R' /\  R' is reflexive on S /\ 
      forall R": (R subset R" /\  R" is reflexive on S) => R' subset R".


forall S, R: R subset S x S => reflexiveS(R) = R union {<x, x>: x in S}.

Add reflexivity to relation.

Author: Wolfgang Schreiner
Last Modification: January 26, 2000

previous up next