previous up next
Go backward to Example
Go up to Top
Go forward to Order Laws
RISC-Linz logo

Infimum and Supremum

A value x is a infimum of S, if it is the greatest lower bound of S:

x is infimum of S w.r.t. <= : <=>
   x is lower bound of S w.r.t. <= /\ 
   forall y: y is lower bound of S w.r.t. <= => y <= x.

A value x is a supremum of S, if it is the least upper bound of S:

x is supremum of S w.r.t. <= : <=>
   x is upper bound of S w.r.t. <= /\ 
   forall y: y is upper bound of S w.r.t. <= => x <= y.

Infimum respectively supremum of a set S need not be element of S.

Author: Wolfgang Schreiner
Last Modification: January 18, 2000

previous up next