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Proving Propositions

Motivation

Definition: a proof is a structured argument that a proposition is true.

• You claim that a formula is a (true) proposition.
– You believe that it is true.

• You want to convince yourself about this.
– You want to make sure that it is true.

• You want to convince someone else about this.
– You want to make a skeptic opponent admit that it is true.

Proving is the art of (scientifically) arguing.
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Proving Propositions

Proof Rules

• Collection of proof rules.
– Based on the syntactic structure of formulas.

– Can decide whether application is correct by looking at syntax.

• Inventing a proof.
– Creative (non-algorithmic) activity.

– Proof rules provide a mental skeleton and give some guidelines.

– Ultimately, some insight is required.

• Checking a proof.
– Mechanical (algorithmic) activity.

– Proof rules determine the framework.

– Everyone is able to read and check a proof.

Every scientist and engineer should understand these rules.
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Proving Propositions

Proof Levels

A proof can be given on various levels of detail.

• Lowest level (most details).
– Very small reasoning steps.

– Correctness can be checked by computer program.

– Proofs become very large.

• Higher level (fewer details).
– Larger reasoning steps.

– Proof becomes shorter and manageable by humans.

– Each step can be decomposed into finer steps.

A high-level proof is a map of a (more detailed but larger) low-level
proof; it can be refined on demand.
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Proving Propositions

Knowledge

A proof is relative to given knowledge.

• Axioms (characterization of the considered domain),

•Definitions (a “harmless” extension of the domain),

• Tautologies (true propositions in every domain),

• Propositions (formulas that have been previously proved),

• Assumptions (knowledge gradually added in a proof).
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Proving Propositions

Proof Situations

Definition: a proof situation consists of available knowledge K (a set
of formulas assumed true) and the goal G (a formula to be proved).

K
G

“We (have to) prove G with knowledge K.”

• The knowledge available in a particular situation is typically not
explicitly written down.

• Knowledge at the beginning of the proof extended by all definitions
and assumptions in the proof branch that led to the situation.
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Proving Propositions

Proof Rule

Definition: a proof rule reduces a proof situation to one or more other
situations.

K0
G0
 

K1
G1

“In order to prove G0 with knowledge K0 it suffices to prove G1 with
knowledge K1”.

Definition: a proof is the reduction of the start situation to other
situations that are again reduced to other situations until we have
only situations in which nothing is left to be proved.
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Proving Propositions

Proof Tree

K

G
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Proving Propositions

Proof Completion

Proposition: For proving with knowledge K∪{G} the goal G, nothing
has to be done any more.

K ∪ {G}
G

 
K ∪ {G}

The only rule to terminate a proof branch.
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Proving Propositions

General Strategies

•Direct proofs
– Try to prove the goal.

– Try to prove the negation of the goal.

• Indirect proofs.
– Assume the goal does not hold and derive a contradiction.

– Assume the goal does hold and derive a contradiction.

Two basic approaches in two variants.
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Proving Propositions

Direct Proof

Given some knowledge K and a goal G.

1. We try
K
G

. If we are successful, then G holds.

2. We try
K
¬G . If we are successful, then ¬G holds.

We do not know in advance whether G is true!
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Proving Propositions

Contradictions

Proposition: For proving with knowledge K the goal G, it suffices to
prove F(alse) with additional knowledge ¬G.

K
G
 

K ∪ {¬G}
F(alse)

“We assume ¬G and show a contradiction”.

Try to derive a contradiction.
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Proving Propositions

Contradiction

A contradiction is usually derived by establishing a proof situation

K ∪ {G,¬G}
F(alse)

because we then immediately have

K ∪ {G,¬G}
F(alse)

 
K ∪ {F(alse)}

F(alse)
 

K ∪ {F(alse)}
.

Try to prove a formula that contradicts some given knowledge.
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Proving Propositions

Example

We show

∀x ∈ Q : x ∗ x 6= 2.

Take arbitrary x ∈ Q. We assume (1) x ∗ x = 2 and show a contradiction.

From the construction of Q, we know x = a
b for some a ∈ Z and b ∈ Z>0 such that (2) N(a) and

N(b) are relatively prime. We have a ∗
Z
a

b ∗
Z
b = 2 and thus (from now on we operate in Z and drop the

corresponding subscripts):

(3) a ∗ a = 2 ∗ b ∗ b.
From (3) we know N(2)|N(a ∗ a) and thus also (4) N(2)|N(a) (a proposition that has to be proved

extra). Therefore there exists some c ∈ Z such that

(5) a = 2 ∗ c.

From (3) and (5) we have 2 ∗ c ∗ 2 ∗ c = 2 ∗ b ∗ b, i.e., 2 ∗ c ∗ c = b ∗ b, thus (6) N(2)|N(b ∗ b) and

therefore (7) N(2)|N(b). (4) and (7) contradict (2).
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Proving Propositions

Indirect Proof

Given some knowledge K and a goal G.

1. We try
K ∪ {¬G}

F(alse)
. If we are successful, then G holds.

2. We try
K ∪ {G}

F(alse)
. If we are successful, then ¬G holds.

We will see some examples for special situations.
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Proving Propositions

Proof Directions

1. Top-Down: decomposing the goal into simpler formulas with cor-
responding subproofs.

K
G
 

K0
G0

. . .
Kn−1
Gn−1

2. Bottom-Up: deriving new knowledge from the given knowledge
such that the goal ultimately becomes part of the knowledge.

K
G
 

K ∪ {F}
G

We usually begin with the top-down strategy.
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Proving Propositions

Decomposing the Goal
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Proving Propositions

Decomposing the Goal

•Decomposition of universally quantified formulas,

•Decomposition of existentially quantified formulas,

•Decomposition of equivalences,

•Decomposition of implications,

•Decomposition of conjunctions,

•Decomposition of disjunctions.

• Inserting predicate and function definitions.

Decompositon determined by outermost quantifier/connective.
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Proving Propositions

Decomposition of Universally Quantified Formulas

Proposition: For proving with knowledge K the goal ∀x : G, it suffices
to prove G[x← a] where a is an object constant that does not appear
in K and not in G.

K
∀x : G

 
K

G[x← a]
(a not in K ∪ {G})

“We prove (∀x : G). We take an arbitrary (but fixed) constant a and
show G[x← a].”

No knowledge is available about constant yet.
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Proving Propositions

Typical Constant Names

• Choose a constant name that reflects the name of the variable.

“We prove (∀x : G). We take an arbitrary constant x0 and show G[x← x0].”

• Choose the variable name itself as the constant name.

“We prove (∀x : G). We take an arbitrary constant x and show G.”

“We prove (∀x : G). Take arbitrary x. Then . . . (proof of G).

Constant name must not yet appear in knowledge or goal!
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Proving Propositions

Example

We show
∀x ∈ Z, y ∈ Z : x + y = y + x.

Take arbitrary x0 ∈ Z, y0 ∈ Z. We have to show

x0 + y0 = y0 + x0.

We know

x0 + y0 = (definition of +)
I(x0 +

N
y0, x1 +

N
y1) = (commutativity of +

N
)

I(y0 +
N
x0, y1 +

N
x1) = (definition of +)

y0 + x0.
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Proving Propositions

Example

We show
∀x ∈ Z, y ∈ Z : x + y = y + x.

Take arbitrary x ∈ Z, y ∈ Z. We have

x + y = (definition of +)
I(x +

N
y, x +

N
y) = (commutativity of +

N
)

I(y +
N
x, y +

N
x) = (definition of +)

y + x.

More typical version.
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Proving Propositions

Indirect Method for Universal Formulas

Instead of proving (∀x : G) we assume (¬∀x : G), i.e., (∃x : ¬G)
and proceed to derive a contradiction:

K
∀x : G

 
K ∪ {∃x : ¬G}

F(alse)
( 

K ∪ {¬G[x← a]}
F(alse)

)

“We prove (∀x : G). Assume ¬G for some x. Then . . . (derivation
of a contradiction with additional knowledge ¬G).”

We will see later how to work with existential formulas in knowledge.
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Proving Propositions

Decomposition of Existential Quantifications

Proposition: For proving with knowledge K the goal ∃x : G, it suffices
to prove G[x← T ] for some term T .

K
∃x : G

 
K

G[x← T ]

“We have to prove (∃x : G). We prove G[x← T ]”.

We have to find a witness, i.e., a value for x that makes G true.
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Proving Propositions

Typical Use

• Introduce a new constant name

“We have to prove (∃x : G). Take a := T . We prove G[x← a]”.

• Use the variable name as the constant name

“We have to prove (∃x : G). Take x := T . We then have . . . (proof of G with additional

knowledge x = T ).”

Constant name must not yet appear in knowledge or goal!
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Proving Propositions

Example

Proposition: Between any two rational numbers, there is another ra-
tional number:

∀x ∈ Q, y ∈ Q : x < y ⇒ ∃z ∈ Q : x < z < y.

Proof: Take arbitrary x ∈ Q and y ∈ Q with x < y. Then x <
(x + y)/2 < y because . . .

Proof: Take arbitrary x ∈ Q and y ∈ Q with x < y. Let a :=
(x + y)/2. Then x < a < y because . . .

Proof: Take arbitrary x ∈ Q and y ∈ Q with x < y. Let z :=
(x + y)/2. Then x < z < y because . . .
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Proving Propositions

Indirect Method for Existential Formulas

Instead of proving (∃x : G), we assume (¬∃x : G), i.e., (∀x : ¬G)
and deriving a contradiction:

K
∃x : G

 
K ∪ {∀x : ¬G}

F(alse)
.

“We prove (∃x : G). Assume (∀x : ¬G). Then . . . (derivation of a
contradiction with additional knowledge (∀x : ¬G)).”

We will see later how to work with universal formulas in knowledge.
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Proving Propositions

Decomposition of Equivalences

Proposition: For proving with knowledge K the goal G0 ⇔ G1, it
suffices to prove both G0⇒ G1 and G1⇒ G0:

K
G0⇔ G1

 
K

G0⇒ G1

K
G1⇒ G0

An equivalence is shown by proving the implication “from left to right”
and “from right to left”
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Proving Propositions

Typical Use

We prove G0⇔ G1:

•⇒: . . . (proof of G0⇒ G1).

•⇐: . . . (proof of G1⇒ G0).

We prove G0⇔ G1⇔ G2, i.e., (G0⇔ G1) ∧ (G1⇔ G2):

•G0⇒ G1,

•G1⇒ G2,

•G2⇒ G0.

Traverse the “implication circle”!
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Proving Propositions

Example

Proposition: For every x and y, we have

x = y ⇔ (x ⊆ y ∧ y ⊆ x).

Proof: Take arbitrary x and y. We prove x = y ⇔ (x ⊆ y∧y ⊆ x).

•We prove x = y ⇒ (x ⊆ y ∧ y ⊆ x). . . .

•We prove (x ⊆ y ∧ y ⊆ x)⇒ x = y. . . .
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Proving Propositions

Decomposition of Implications

For proving with knowledge K the goal G0⇒ G1, it suffices to prove
G1 with additional knowledge G0:

K
G0⇒ G1

 
K ∪ {G0}

G1

“We show G0 ⇒ G1. Assume G0. Then . . . (proof of G1 with
additional knowledge G0).”

Add the hypothesis to the knowledge and prove the conclusion.
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Proving Propositions

Example

Proposition: For every x and y, we have

x = y ⇔ (x ⊆ y ∧ y ⊆ x).

Proof: Take arbitrary x and y. We prove x = y ⇔ (x ⊆ y∧y ⊆ x).

•We prove x = y ⇒ (x ⊆ y ∧ y ⊆ x). Assume x = y, i.e., by
definition of ‘=’,

(1) ∀z : z ∈ x⇔ z ∈ y.
We prove x ⊆ y ∧ y ⊆ x. . . .

• . . .
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Proving Propositions

Alternative

Because of (G0⇒ G1) iff (¬G1⇒ ¬G0), it suffices to prove

K
G0⇒ G1

 
K ∪ {¬G1}
¬G0

“We show G0 ⇒ G1. Assume ¬G1. Then . . . (proof of ¬G0 with
additional knowledge ¬G1).”

Reverse the direction of the implication.
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Proving Propositions

Indirect Method for Implications

Because of ¬(G0⇒ G1) iff (G0 ∧ ¬G1), it suffices to prove

K
G0⇒ G1

 
K ∪ {G0 ∧ ¬G1}

F(alse)

“We have to show G0⇒ G1. Assume G0 ∧ ¬G1. Then we have . . .
(derivation of a contradiction)”.

Add the hypothesis and the negation of the conclusion to the knowl-
edge and derive a contradiction.
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Proving Propositions

Decomposition of Conjunctions

Proposition: For proving with knowledge K the goal G0 ∧ G1, it
suffices to prove both G0 and G1:

K
G0 ∧G1

 
K
G0

K
G1

We have to show G0 ∧G1.

1. . . . (proof of G0).

2. . . . (proof of G1).

A conjunction is shown by showing both conjuncts in turn.
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Proving Propositions

Example

Proposition: For every x and y, we have

x = y ⇔ (x ⊆ y ∧ y ⊆ x).

Proof: Take arbitrary x and y. We prove x = y ⇔ (x ⊆ y∧y ⊆ x).

•We prove x = y ⇒ (x ⊆ y ∧ y ⊆ x). Assume x = y. We have to
prove x ⊆ y ∧ y ⊆ x.
– We prove x ⊆ y. . . .

– We prove y ⊆ x. . . .

• . . .
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Proving Propositions

Indirect Method for Conjunctions

Because of ¬(G0 ∧G1) iff ¬G0 ∨¬G1, the indirect method leads to

K
G0 ∧G1

 
K ∪ {¬G0 ∨ ¬G1}

F(alse)
 

K ∪ {¬G0}
F(alse)

K ∪ {¬G1}
F(alse)

We have to prove G0 ∧G1.

• Assume ¬G0. Then . . . (derivation of a contradiction.)

• Assume ¬G1. Then . . . (derivation of a contradiction.)

We will see later this technique of “case distinction”.
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Proving Propositions

Decomposition of Disjunctions

Proposition: For proving with knowledge K the goal G0 ∨ G1, it
suffices to prove G1 with additional knowledge ¬G0:

K
G0 ∨G1

 
K ∪ {¬G0}

G1

“We have to show G0 ∨G1. Assume ¬G0. Then . . . (proof of G1).”

• Consequence of “(G0 ∨G1) iff (¬G0⇒ G1)”.

• Roles of G0 and G1 can be inverted.

Same techniques as for decomposition of implications.
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Proving Propositions

Explicitly Defined Predicates

Proposition: For proving an atomic formula p(a0, . . . , an−1) with

p(x0, . . . , xn−1) :⇔ G,

it suffices to prove G[x0← a0, . . . , xn−1← an−1]:

K ∪ {∀x0, . . . , xn−1 : p(x0, . . . , xn−1)⇔ G}
p(a0, . . . , an−1)

 

K ∪ {∀x0, . . . , xn−1 : p(x0, . . . , xn−1)⇔ G}
G[x0← a0, . . . , xn−1← an−1]

Insert the definition of the predicate!
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Proving Propositions

Example

Proposition: For every x and y, we have

x = y ⇔ (x ⊆ y ∧ y ⊆ x).

Proof: Take arbitrary x and y. We prove x = y ⇔ (x ⊆ y∧y ⊆ x).

•We prove x = y ⇒ (x ⊆ y ∧ y ⊆ x). Assume x = y. We have to
prove x ⊆ y ∧ y ⊆ x.
– We prove x ⊆ y, i.e., by definition of ‘⊆’, ∀z ∈ x : z ∈ y. . . .

– . . .

• . . .
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Proving Propositions

Explicitly Defined Functions

Proposition: For proving the goal G[x← F (a0, . . . , an−1)] with

F (x0, . . . , xn−1) := T,

it suffices to prove G[x← T [x0← a0, . . . , xn−1← an−1]]:

K ∪ {∀x0, . . . , xn−1 : F (x0, . . . , xn−1) = T}
G[x← F (a0, . . . , an−1)]

 

K ∪ {∀x0, . . . , xn−1 : F (x0, . . . , xn−1) = T}
G[x← T [x0← a0, . . . , xn−1← an−1]]

Insert the definition of the function!
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Proving Propositions

Example

We prove
∀x : x′ 6= 0.

Take arbitrary x. By definition of 0 and ′, it suffices to prove

x ∪ {x} 6= ∅
which is true because x ∈ (x ∪ {x}) but x 6= ∅.
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Proving Propositions

Deriving New Knowledge
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Proving Propositions

Proof by Case Distinction

Proposition: For proving with knowledge K the goal G, it suffices to
prove G with additional knowledge F and to prove G with additional
knowledge ¬F (for some formula F ).

K
G
 

K ∪ {F}
G

K ∪ {¬F}
G

We have to prove G.

1. Assume F . Then . . . (proof of G with additional knowledge F ).

2. Assume ¬F . Then . . . (proof of G with additional knowledge ¬F ).

Decompose the universe of situations by an assumption.
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Proving Propositions

Example

We prove ∀x ∈ R : x ∗ x 6= −1. Take arbitrary x ∈ R.

• If x ≥ 0, then x ∗ x ≥ 0.

• If x < 0, then also x ∗ x ≥ 0.
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Proving Propositions

Typical Use

We have a formula (F0 ∨ . . . ∨ . . . Fn−1) in our knowledge:

K ∪ {F0 ∨ . . . ∨ Fn−1}
G

 
K ∪ {F0}

G
. . .

K ∪ {Fn−1}
G

We have to prove G. Since we know (F0 ∨ . . .∨Fn−1), it suffices to
consider the following cases:

• Case F0: . . . (proof of G with additional knowledge F0).

• . . .

• Case Fn−1: . . . (proof of G with additional knowledge Fn−1).
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Proving Propositions

Universal Quantification in Knowledge

Proposition: For proving with knowledge K ∪ {∀x : F} the goal G,
it suffices to prove G with additional knowledge F [x ← T ] for any
term T :

K ∪ {∀x : F}
G

 
K ∪ {∀x : F, F [x← T ]}

G

“We have to prove G. Since we know (∀x : F ), we have F [x ← T ]
and thus . . . (proof of G with additional knowledge F [x← T ]).”

A formula (∀x : F ) in the knowledge is a machine that takes any T
and produces additional knowledge F [x← T ].
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Proving Propositions

Example

Proposition: For every x and y, we have

x = y ⇔ (x ⊆ y ∧ y ⊆ x).

Proof: Take arbitrary x and y. We prove x = y ⇔ (x ⊆ y∧y ⊆ x).

•We prove x = y ⇒ (x ⊆ y ∧ y ⊆ x). Assume x = y, i.e.,

(1) ∀z : z ∈ x⇔ z ∈ y.
We have to prove x ⊆ y ∧ y ⊆ x.
– We prove x ⊆ y, i.e., by definition of ‘⊆’, ∀w ∈ x : w ∈ y. Take arbitrary w. We have to

prove w ∈ x⇒ w ∈ y. Assume (2) w ∈ x. We have to prove w ∈ y which is a consequence

of (1) (which gives us w ∈ x⇔ w ∈ y) and (2).

– . . .

Wolfgang Schreiner 50



Proving Propositions

Existential Quantification in Knowledge

Proposition: For proving with knowledge K ∪ {∃x : F} the goal G,
it suffices to prove G with additional knowledge F [x ← a] for some
object constant a that does not appear in K, G, or F :

K ∪ {∃x : F}
G

 
K ∪ {∃x : F, F [x← a]}

G
(a not in K,G, F )

“We prove G. Since we know (∃x : F ), we have have some a with
F [x← a]. Thus . . . (proof of G with new knowledge F [x← a]).”

A formula (∃x : F ) in the knowledge base is an “engine” which returns
a new constant a about which we know (only) F [x← a].
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Proving Propositions

Example

Take arbitrary A, B, C, f : A
partial−→ B, and g : B → C. We prove (1) (f ◦ g) : A

partial−→ C. i.e., by

definition of
partial−→ , that

(3) (f ◦ g) ⊆ A× C;

(4) ∀x, y0, y1 : (〈x, y0〉 ∈ (f ◦ g) ∧ 〈x, y1〉 ∈ (f ◦ g))⇒ y0 = y1.

We know (3) from the definition of ◦; we still have to show (4). Take arbitrary x, y0, y1 and assume

(5) 〈x, y0〉 ∈ (f ◦ g);

(6) 〈x, y1〉 ∈ (f ◦ g).

We have to show y0 = y1.

From (5), (6), and the definition of ◦, we know y0 ∈ C, y1 ∈ C, and

(7) ∃b ∈ B : 〈x, b〉 ∈ f ∧ 〈b, y0〉 ∈ g;

(8) ∃b ∈ B : 〈x, b〉 ∈ f ∧ 〈b, y1〉 ∈ g.

By (7), we have some b0 ∈ B such that 〈x, b0〉 ∈ f ∧ 〈b0, y0〉 ∈ g; by (8), we have some b1 ∈ B

such that 〈x, b1〉 ∈ f ∧ 〈b1, y0〉 ∈ g. . . .
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Proving Propositions

Additional Knowledge

Proposition: For proving with knowledge K the goal G, it suffices to
prove G with additional knowledge F , if F holds in every domain in
which (some of) the formulas in K holds.

K
G
 

K ∪ {F}
G

(F holds in every domain in which K holds).

Derive new knowledge F from (a subset of) K.
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Proving Propositions

Infering Additional Knowledge

This rule is a “placeholder” for a number of ways to infer
K
F

:

1. This has been shown in a previous proof or is shown as a subproof.

2. This holds because F is a propositional consequence of K, i.e., the
conclusion holds independently of the truth values of the atomic
formulas and quantified formulas contained in K and F .

3. This is an instance of some quantifier consequence wich give true
conclusions in every domain.

4. This is derived by applying substitution rules from known equalities
and equivalences.
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Proving Propositions

Propositional Consequences

The following conclusions are propositional consequences for every
formula A and B:

Negation

¬¬A
A

A
¬¬A

And Introduction and Or Elimination

A ∧B
A

A
A ∨B
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Proving Propositions

Propositional Consequences (Continued)

De Morgan

¬(A ∧B)
¬A ∨ ¬B

¬(A ∨B)
¬A ∧ ¬B

¬A ∨ ¬B
¬(A ∧B)

¬A ∧ ¬B
¬(A ∨B)

Modus Ponens

A,A⇒ B
B

Contraposition

A⇒ B
¬B ⇒ ¬A

¬A⇒ ¬B
B ⇒ A

A⇔ B
¬A⇔ ¬B

¬A⇔ ¬B
A⇔ B
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Proving Propositions

Tautologies

Definition: A propositional formula with variables as subformulas is
a (propositional) tautology if it is true for every assignment of truth
values to the variables.

Example: A ∨ ¬A is a tautology.

Consequence: A general strategy to show that
A
B

is a propositional

consequence is to show that A⇒ B is a propositional tautology.
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Proving Propositions

Example

We show that the following is a tautology:

((A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C))⇒ C.

We assume that its truth value is false and then derive a contradiction:
false

true

(
true

(A ∨B) ∧

true

(
false

A⇒
false

C ) ∧

true

(
false

B⇒
false

C ))⇒
false

C

Because the implication is false, C is false and the conjuncts are
true. Thus A and B must be false. Therefore A ∨ B is false, which
contradicts above derivation.
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Proving Propositions

Quantifier Consequences

For every formula A and B, the following conclusions hold:

Universal Quantification and Conjunction

(∀x : A ∧B)
(∀x : A) ∧ (∀x : B)

(∀x : A) ∧ (∀x : B)
(∀x : A ∧B)

Existential Quantification and Disjunction

(∃x : A ∨B)
(∃x : A) ∨ (∃x : B)

(∃x : A) ∨ (∃x : B)
(∃x : A ∨B)
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Proving Propositions

Quantifier Consequences (Continued)

Universal and Disjunction, Existential and Conjunction

(∀x : A) ∨ (∀x : B)
(∀x : A ∨B)

(∃x : A ∧B)
(∃x : A) ∧ (∃x : B)

Universal and Existential Quantification

∃x : ∀y : A
∀y : ∃x : A
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Proving Propositions

Quantifier Consequences (Continued)

De Morgan Laws

¬∀x : A
∃x : ¬A

∃x : ¬A
¬∀x : A

¬∃x : A
∀x : ¬A

∀x : ¬A
¬∃x : A

Such Quantifier

∃x : A
A[x← such x : A]

(∀y0, y1 : (A[x← y0] ∧ A[x← y1])⇒ y0 = y1)
(∀x : A⇒ x = such x : A)
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Proving Propositions

Example

We show for arbitrary formula A

(¬∀x : A)⇒ (∃x : ¬A)

by showing (contraposition)

(¬∃x : ¬A)⇒ (¬¬∀x : A)

i.e. (propositional consequence and substitution, see next subsection)

(¬∃x : ¬A)⇒ (∀x : A).

We assume (∗) ¬∃x : ¬A and show ∀x : A. Take arbitrary and
assume ¬A. Then we have (∃x : ¬A) which contradicts (*).
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Proving Propositions

Substitutions

For all terms S and T , formulas A and B, variables x and formula
patterns C with variable F , the following holds:

Equality Subsitutions

S = T ∧ A[x← S]
A[x← T ]

Equivalence Substitutions

A⇔ B ∧ C[F ← A]
C[F ← B]

Replace “equal things by equal things”, e.g., insert definitions.
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Proving Propositions

Summary

• Proving versus disproving.

•Direct method versus indirect method.
• Top-down decomposition.

– Outermost quantifier/connective.

– Inserting definitions.

•Deriving new knowledge.
– Case distinctions.

– Application of universally/existentially formulas in knowledge.

– Propositional tautologies.

– Quantifier consequences.

– Substitutions.
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