previous up next
Go backward to Existential Quantification in Knowledge
Go up to Top
Go forward to Additional Knowledge
RISC-Linz logo


Take arbitrary A, B, C, f: A ->partial B, and g: B -> C. We prove (1) (f o g): A ->partial C. i.e., by definition of ->partial , that

(3) (f o g) subset A ×C;
(4) forall x, y0, y1: (<x, y0> in (f o g) /\  <x, y1> in (f o g)) => y0=y1.
We know (3) from the definition of o ; we still have to show (4). Take arbitrary x, y0, y1 and assume
(5) <x, y0> in (f o g);
(6) <x, y1> in (f o g).
We have to show y0 = y1.

From (5), (6), and the definition of o , we know y0 in C, y1 in C, and

(7) exists b in B: <x, b> in f /\  <b, y0> in g;
(8) exists b in B: <x, b> in f /\  <b, y1> in g.
By (7), we have some b0 in B such that <x, b0> in f /\  <b0, y0> in g; by (8), we have some b1 in B such that <x, b1> in f /\  <b1, y0> in g. ...
Author: Wolfgang Schreiner
Last Modification: November 30, 1999

previous up next