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Induction


Overview


• Inductive Definitions


• Induction Proofs


• Application: Verifications


• Induction on Sets
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Induction


Inductive Definitions
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Induction


Situation


• Recursive definitions on N:


∗ : N× N→ N


x ∗ y := if y = 0 then 0 else x + (x ∗ y−)


• Proposition:


x ∗ 0 = 0,
x ∗ y′ = x + (x ∗ y).


Recursive function definition implies pair of equations.
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Induction


Idea


Also converse is true:


• For each a ∗ b, left hand side of only one equation “matches”:
– Either b = 0 or b = y′ for some y.


– Consequence of first Peano axiom.


• Equality b = y′ determines unique y.
– (b = y0


′ ∧ b = y1
′)⇒ y0 = y1 for all y0 and y1.


– Consequence of second Peano axiom.


Pair of equations uniquely determines a function.
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Induction


Alternative Definition Format


Definition by pair of equations (“induction on second argument”):


∗ : N× N→ N


x ∗ 0 := 0,
x ∗ (y + 1) := x + (x ∗ y).


By syntactic restriction of the equations, the function is well defined.
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Induction


Inductive Function Definitions


Definition: An inductive definition over N of an n-ary function f :


f (x0, . . . , 0, . . . , xn−1) := Tb,
f (x0, . . . , xi + 1, . . . , xn−1) := Tr


• f does not occur in base term Tb.


• Every application of f in recursion term Tr has form


f (T0, . . . , xi, . . . , Tn−1)


• Free variables of terms must occur in definiendum.


Induction runs over xi.
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Induction


Inductively Defined Function


Let A0, . . . , Ai−1, Ai+1, . . . , An−1, B such that we have


Tb ∈ B ∧ Tr ∈ B
for all x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈
An−1. Then the definition introduces the unique function


f : A0 × . . .× Ai−1 × N× Ai+1 × . . .× An−1→ B


that satisfies


f (x0, . . . , 0, . . . , xn−1) = Tb ∧
f (x0, . . . , xi + 1, . . . , xn−1) = Tr


for all x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈
An−1.
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Induction


Induction with Larger Decrements


Example: Fibonacci Numbers


fib(0) := 1,
fib(1) := 1,


fib(x + 2) := fib(x) + fib(x + 1)


fib = [1, 1, 2, 3, 5, 8, 13, 21, . . .]


All base cases must be covered!
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Induction


Induction over Multiple Arguments


Examples:


f (0, 0) := 0,
f (x + 1, 0) := 1 + f (x, 0),
f (x, y + 1) := 1 + f (x, y).


f (0, 0) := 0,
f (x + 1, 0) := 1 + f (x, 0),
f (0, y + 1) := 1 + f (0, y),


f (x + 1, y + 1) := 2 + f (x, y),


All possible base cases must be covered!
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Induction


Inductive Predicate Definitions


Definition: An inductive definition over N of an n-ary predicate p:


p(x0, . . . , 0, . . . , xn−1) :⇔ Fb,
p(x0, . . . , xi + 1, . . . , xn−1) :⇔ Fr


• p does not occur in base formula Fb.


• Every application of p in recursion formula Fr has form


p(T0, . . . , xi, . . . , Tn−1)


• Free variables of terms must occur in definiendum.


Induction runs over xi.
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Induction


Inductively Defined Predicate


Take sets A0, . . . , Ai−1, Ai+1, . . . , An−1.
The definition introduces the predicate


p ⊆ A0 × . . .× Ai−1 × N× Ai+1 × . . .× An−1


that satisfies


p(x0, . . . , 0, . . . , xn−1) ⇔ Tb ∧
p(x0, . . . , xi + 1, . . . , xn−1) ⇔ Tr


for all x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈
An−1.
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Induction


Example


We can introduce the predicate iseven(x) :⇔ 2|x also as


iseven(0) :⇔ T,
iseven(x + 1) :⇔ ¬iseven(x).


or as


iseven(0) :⇔ T,
iseven(1) :⇔ F,
iseven(x + 2) :⇔ iseven(x).


iseven = [T,F,T,F,T, . . .]
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Induction Proofs
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Induction


Mathematical Induction


Third Peano Axiom:


(F [x← 0] ∧ (∀x ∈ N : F ⇒ F [x← x + 1]))⇒ ∀x ∈ N : F.


Proposition: In order to prove


∀x ∈ N : F,


it suffices to prove


1. F [x ←0],


2. (∀x ∈ N : F ⇒ F [x← x + 1]).
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Induction


Typical Format


We want to prove
∀x ∈ N : F.


1. Induction Base: We show F [x← 0].


2. Induction Hypothesis: We take arbitrary x ∈ N and assume F .


3. Induction Step: We show F [x← x + 1].


Proof strategy for formulas that are universally quantified over N.
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Induction


Example


We prove by induction on n


∀n ∈ N : n < 2n.


The induction base holds because 0 < 1 = 20.


Now we take arbitrary n ∈ N and assume (induction hypothesis)


(1) n < 2n.


We have to show (induction step)


(2) n + 1 < 2n+1.


By (1) we have


(3) n + 1 < 2n + 1


and therefore


(4) n + 1 < 2n + 1 ≤ 2n + 2n = 2 ∗ 2n = 2n+1


which implies (2).
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Induction


Example


We prove by induction on n


∀n ∈ N : 3|n3 + 2n


The induction base holds because 3|0 and 0 = 03 + 2 ∗ 0.


We take arbitrary n ∈ N and assume


(1) 3|n3 + 2n.


We have to show


(2) 3|(n + 1)3 + 2(n + 1).
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Example (Continued)


By (1) and definition of | we have some a ∈ N such that


(3) 3a = n3 + 2n.


We therefore have
(n + 1)3 + 2(n + 1) =


(n3 + 3n2 + 3n + 1) + (2n + 2) =


(n3 + 2n) + (3n2 + 3n + 3) = (3)


3a + 3(n2 + n + 1) =


3(a + n2 + n + 1)


which implies (2) by definition of |.
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Induction


Example


We prove by induction on n


∀n ∈ N :
∑


1≤i≤n
i =


(n + 1)n


2


The induction base holds because ∑
1≤i≤0


i = 0 =
(0 + 1) ∗ 0


2
.


We take arbitrary n ∈ N and assume


(1)
∑


1≤i≤n
i =


(n + 1)n


2
.


We have to show


(2)
∑


1≤i≤n+1


i =
((n + 1) + 1)(n + 1)


2
.
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Induction


Example (Continued)


We have ∑
1≤i≤n+1 i = (definition


∑
)∑


1≤i≤n i + (n + 1) = (1)
(n+1)n


2 + (n + 1) =
(n+1)n+2(n+1)


2 =
(n+1)(n+2)


2 =
(n+1)((n+1)+1)


2 .


which implies (2).
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Induction


Example


We can prove by induction the “computing laws” in N:


We prove


∀x ∈ N, y ∈ N, z ∈ N : x + (y + z) = (x + y) + z.


We take arbitrary x ∈ N and y ∈ N and prove by induction on z.


∀z ∈ N : x + (y + z) = (x + y) + z


We have to show


x + (y + 0) = (x + y) + 0.


. . .


See lecture notes.
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Induction


Complete Induction


Generalization of the induction principle:


Proposition: In order to prove


∀x ∈ N : F


it suffices to prove


(∀x ∈ N : (∀n < x : F [x← n])⇒ F ).


1. Induction Hypothesis. We take arbitrary x ∈ N and assume


∀n < x : F [x← n].


2. Induction Step: We show F .
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Induction


Example


We prove that every natural number greater than 1 can be factorized into a sequence of prime


numbers, i.e.,


∀n ∈ N : n > 1⇒
(∃k ∈ N, f : Nk → N : n =


∏
0≤i<k f (i) ∧ ∀i ∈ Nk : f(i) is prime).


We proceed by complete induction over n.


We take arbitrary n ∈ N and assume


(1) ∀m < n : m > 1⇒
(∃k ∈ N, f : Nk → N : m =


∏
0≤i<k f (i) ∧ ∀i ∈ Nk : f (i) is prime).


We have to show


n > 1⇒
(∃k ∈ N, f : Nk → N : n =


∏
0≤i<k f (i) ∧ ∀i ∈ Nk : f(i) is prime).


See lecture notes.
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Induction over Term Values


Proposition: In order to prove F , it suffices to prove


(∀y ∈ N : y = T ⇒ F )


where y does not occur freely in T or F .


Consequence: in order to prove


∀x0, . . . , xn−1 : F


we may prove


(∀x0, . . . , xn−1, y ∈ N : y = T ⇒ F )


where T is a term with free variables x0, . . . , xn−1.


We introduce a variable over N to proceed by induction.
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Application: Verification
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Induction


Specifications


Definition: For every function f : A → B, a relation I ⊆ A and a
relation O ⊆ A×B, we call the formula


∀x : I(x)⇒ O(x, f(x))


a specification of f with input condition I and output condition O.


If the formula is true, then f implements the specification.


We want to verify whether a function implements a specification.
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Induction


Example


Exponentiation function:


x0 := 1,


xn+1 := x ∗ xn.


We want to verify that the function implements the specification


∀x, n ∈ N : xn =
∏


1≤i≤n
x.
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Example (Continued)


Take arbitrary x; we proceed by induction over n.


We have x0 = 1 =
∏


1≤i≤0 x and thus the induction base holds.


We take arbitrary n ∈ N and assume


(1) xn =
∏


1≤i≤n
x.


We have to prove


(2) xn+1 =
∏


1≤i≤n+1


x.


We know
xn+1 = (definition exponentiation)


x ∗ xn = (1)


x ∗
∏


1≤i≤n x = (definition
∏


)∏
1≤i≤n+1 x


which implies (2).
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Purpose of Verification


• Given: input condition I and output condition O.
– Abstract definition of a function (“what is to be done”).


– May be inconstructive (does not immediately yield an algorithm).


– Even if constructive, the corresponding algorithm may be too inefficient.


• Given: definition of a function f .
– Concrete definition of a function (“how is it done”).


– Intended to yield (efficient) algorithm.


• Verification: show that f implements corresponding specification.


Definition of such a function and its verification needs more knowledge;
more knowledge gives better algorithms.
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Induction


Example: Greatest Common Divisor


gcd(x, y) := such z ∈ N : z|x∧z|y∧(∀w : (w|x ∧ w|y)⇒ w ≤ z).


fun gcd(x, y) =


let(m = if(=(x, N0), y, x):


such(z in nat(N0, m):


and(divides(z, x), divides(z, y),


forall(w in nat(+N(z, N1), m):


or(not(divides(w, x)), not(divides(w, y))))),


z));


Extremely inefficient way to compute the greatest common divisor.
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Induction


Specification


We can show that


∀z ∈ N : ∃w : w|0 ∧ w > z


i.e., gcd(0, 0) is undefined, but that, if x 6= 0 ∨ y 6= 0,


∃z ∈ N : z|x ∧ z|y ∧ (∀w : (w|x ∧ w|y)⇒ w ≤ z).


i.e., gcd(x, y) is well defined.


Thus our problem is to find some f that implements the specification


∀m ∈ N, n ∈ N : (m 6= 0 ∨ n 6= 0)⇒ f(m,n) = gcd(m,n).


in a more efficient way than gcd does.
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Euclid’s Algorithm


New knowledge:


(0) ∀m ∈ N, n ≤ m : gcd(m,n) = gcd(m− n, n).


Idea for recursive function definition (termination term m + n):


Euclid(m,n) :=
if m = 0 then n
else if n = 0 then m
else if n ≤ m then Euclid(m− n, n)
else Euclid(m,n−m).
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Induction


Verification


∀m ∈ N, n ∈ N : (m 6= 0 ∨ n 6= 0)⇒ Euclid(m,n) = gcd(m,n).


Proof by complete induction on term m + n.


We take arbitrary m ∈ N and n ∈ N and assume


(1) ∀x ∈ N, y ∈ N : x + y < m + n⇒
(x 6= 0 ∨ y 6= 0)⇒ Euclid(x, y) = gcd(x, y).


We have to prove


(2) (m 6= 0 ∨ n 6= 0)⇒ Euclid(m,n) = gcd(m,n).


We assume (3) (m 6= 0 ∨ n 6= 0) and prove (4) Euclid(m,n) =
gcd(m,n).
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Verification (Continued)


By function definition, we have four cases:


•m = 0.


By (3), we have n 6= 0 and, by definition of gcd and Euclid,


gcd(m,n) = n = Euclid(m,n)


which implies (4).


•m 6= 0 ∧ n = 0.


We have, by definition of gcd and Euclid,


gcd(m,n) = m = Euclid(m,n)


which implies (4).
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Induction


Verification (Continued)


•m 6= 0 ∧ n 6= 0 ∧ n ≤ m.


We know


gcd(m,n) = (0)
gcd(m− n, n) = (1)


Euclid(m− n, n) = (definition Euclid)
Euclid(m,n)


which implies (4).


•m 6= 0 ∧ n 6= 0 ∧ n 6≤ m.


The proof is analogous to the previous case.
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Improvements


More knowledge:


(0′) ∀m ∈ N, n 6= 0 : gcd(m,n) = gcd(m,m mod n)


Function definition (with recursion term m + n):


Euclid′(m,n) :=
if m = 0 then n
else if n = 0 then m
else if n ≤ m then Euclid′(m mod n, n)
else Euclid′(m,n mod m)
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Induction


Logic Evaluator


fun Euclid(m: N, n: N) recursive +(m, n) =


if(=(m, 0), n,


if(=(n, 0), m,


if(<=(m, n), Euclid(m, -(n, m)),


Euclid(-(m, n), n))));


fun Euclid’(m: N, n: N) recursive +(m, n) =


if(=(m, 0), n,


if(=(n, 0), m,


if(<=(m, n), Euclid’(m, modN(n, m)),


Euclid’(modN(m, n), n))));


Much faster than gcd!
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Induction


Induction on Sets
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Induction


Inductive Set Definition


Definition: An inductive definition of a set S is a collection of formulas


(∀x1, . . . , xm1, y1 ∈ S, . . . , yn1 ∈ S :
f1(x1, . . . , xm1, y1, . . . , yn1) ∈ S)


, . . . ,
(∀x1, . . . , xmc, y1 ∈ S, . . . , ync ∈ S :
fc(x1, . . . , xmc, y1, . . . , ync) ∈ S)


where we call the function constants f1, . . . , fc the constructors of S.
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Induction


Defined Set


S is the smallest set on which the conjunction of these formulas holds,
i.e., every element of S is described by a constructor term


fi(T1, . . . , Tmi, S1, . . . , Sni)


for some terms T1, . . . , Tmi, S1, . . . , Sni where the S1, . . . , Sni are
also such constructor terms.
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Induction


Example


The set N is inductively defined by


0 ∈ N,
∀x ∈ N : x′ ∈ N


with constructors 0 and ’.


Every element of N is of the form


0′...′,


e.g. the number 4 in N is denoted by 0′′′′.
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Induction


Example


For every set T , the set List(T ) is defined by


nil ∈ List(T ),
∀e ∈ T, l ∈ List(T ) : cons(e, l) ∈ List(T ).


with constructors nil and cons.


Every element of List(T ) is of the form


cons(e0, . . . , cons(en−1, nil)),


e.g. the list [2, 3] in List(N) is denoted by cons(2, cons(3, nil)).
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Induction


Example


For every set T , the set Tree(T ) is defined by


empty ∈ Tree(T ),
∀e ∈ T, l ∈ Tree(T ), r ∈ List(T ) : node(e, l, r) ∈ Tree(T ).


with constructors empty and node.
Every element of Tree(T ) is of the form


node(n0, node(n11, . . .), node(n21, . . .)),


1


2 5


3 4


node(1, node(2, node(3, empty, empty), node(4, empty, empty)), node(5, empty, empty))
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Induction


Term


The set Term is defined by


0 ∈ Term,
1 ∈ Term,
∀x ∈ Term : −x ∈ Term,
∀x ∈ Term, y ∈ Term : x + y ∈ Term,
∀x ∈ Term, y ∈ Term : x ∗ y ∈ Term


with constructors 0, 1,−,+, ∗.


An element of Term is 1 + (1 + 0) ∗ 1.
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Induction


Formula


The set Formula is defined by


T ∈ Formula
∀x ∈ Formula : not(x) ∈ Formula,
∀x ∈ Formula, y ∈ Formula : and(x, y) ∈ Formula,
∀x ∈ Variable, y ∈ Formula : forall(x, y) ∈ Formula


with constructors “T”, “not”, “and”, “forall”.


An element of Formula is forall(X, and(T, or(T,F))) (assuming X ∈
Variable).
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Term Algebra


An inductively defined set is a term algebra if we have for every con-
structor f of this set


∀x, y : f (x) = f (y)⇒ x = y


i.e., different arguments are mapped to different results.


Furthermore, for all constructors f and g


∀x, y : f(x) 6= g(y)


i.e., different constructors yield different results.
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Induction


Consequence


• Every element of a term algebra is denoted by one and only one
constructor term


fi(T1, . . . , Tmi, S1, . . . , Sni)


for some terms T1, . . . , Tmi, S1, . . . , Sni where the S1, . . . , Sni are
also constructor terms.


•One to one correspondence between terms and set elements.


We may define functions and predicates in term algebras inductively .
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Example


Take the set List(T ) defined in the previous example and assume that
it is a term algebra. We define the length of a list as


length : List(T )→ N


length(nil) := 0
length(cons(e, l)) := 1 + length(l).


Then we have length(cons(1, cons(2, nil))) = 2.
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Induction


Example


Take the set Term defined in the previous example and assume that
it is a term algebra. We define the value of a term as


value : Term→ N


value(0) := 0
N


value(1) := 1
N


value(−x) := −
N


value(x)
value(x + y) := value(x) +


N
value(y)


value(x ∗ y) := value(x) ∗
N


value(y)


Then we have value(1 + (1 + 0) ∗ 1) = 2.
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Generalized Induction Principle


We want to prove
∀x ∈ S : F.


Idea: exery element x in S is denoted by some term


fi(x1, . . . , xmi, y1, . . . , yni).


Let the induction run over the structure of every such term:


• assume that F holds for every “S-component” yj of x, and


• show that F is propagated to x itself.
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Induction


Structural Induction


Proposition: In order to prove a property


∀x ∈ S : F


for an inductively defined set S, it suffices to prove


∀x1, . . . , xmi, y1 ∈ S, . . . , yni ∈ S :
(F [x := y1] ∧ . . . ∧ F [x := yni])⇒
F [x := fi(x1, . . . , xmi, y1, . . . , yni)]


for every constructor fi of S.
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Induction


Example


Take the set List(T ) defined inductively as


nil ∈ List(T ),
∀e ∈ T, l ∈ List(T ) : cons(e, l) ∈ List(T ).


We define


append : List(T )× List(T )→ List(T )
append(nil, y) := y
append(cons(e, x), y) := cons(e, append(x, y))


and claim that the following holds:


∀x ∈ List(T ), y ∈ List(T ) :
length(append(x, y)) = length(x) + length(y).
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Induction


Example (Continued)


We proceed by structural induction on x:


Case x = nil: We have to show


∀y ∈ List(T ) :
length(append(nil, y)) = length(nil) + length(y).


Take arbitrary y ∈ List(T ). We have


length(append(nil, y)) = (definition append)
length(y) =


0 + length(y) = (definition length)
length(nil) + length(y).
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Induction


Example (Continued)


Case x = cons(e, l): Take arbitrary e ∈ T and l ∈ List(T ).


We assume (induction hypothesis)


∀y ∈ List(T ) :
length(append(l, y)) = length(l) + length(y)


and have to show


∀y ∈ List(T ) :
length(append(cons(e, l), y)) = length(cons(e, l)) + length(y).
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Induction


Example (Continued)


Take arbitrary y ∈ List(T ). We have


length(append(cons(e, l), y)) = (definition append)
length(cons(e, append(l, y))) = (definition length)


1 + length(append(l, y)) = (induction hypothesis)
1 + (length(l) + length(y)) =
(1 + length(l)) + length(y) = (definition length)


length(cons(e, l)) + length(y).
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Induction


Summary


• Inductive definitions on N.
– Single induction parameter.


– Multiple base cases.


– Multiple induction parameters.


• Induction proofs on N.
– Mathematical induction.


– Complete induction.


– Induction over term values.


• Induction on sets.
– Inductive set definitions.


– Inductive function/predicate definitions on term algebras.


– Induction proofs on inductively defined sets.
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