

Induction

Induction
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

Induction

Overview

• Inductive Definitions

• Induction Proofs

• Application: Verifications

• Induction on Sets

Wolfgang Schreiner 1

Induction

Inductive Definitions

Wolfgang Schreiner 2

Induction

Situation

• Recursive definitions on N:

∗ : N× N→ N

x ∗ y := if y = 0 then 0 else x + (x ∗ y−)

• Proposition:

x ∗ 0 = 0,
x ∗ y′ = x + (x ∗ y).

Recursive function definition implies pair of equations.

Wolfgang Schreiner 3

Induction

Idea

Also converse is true:

• For each a ∗ b, left hand side of only one equation “matches”:
– Either b = 0 or b = y′ for some y.

– Consequence of first Peano axiom.

• Equality b = y′ determines unique y.
– (b = y0

′ ∧ b = y1
′)⇒ y0 = y1 for all y0 and y1.

– Consequence of second Peano axiom.

Pair of equations uniquely determines a function.

Wolfgang Schreiner 4

Induction

Alternative Definition Format

Definition by pair of equations (“induction on second argument”):

∗ : N× N→ N

x ∗ 0 := 0,
x ∗ (y + 1) := x + (x ∗ y).

By syntactic restriction of the equations, the function is well defined.

Wolfgang Schreiner 5

Induction

Inductive Function Definitions

Definition: An inductive definition over N of an n-ary function f :

f (x0, . . . , 0, . . . , xn−1) := Tb,
f (x0, . . . , xi + 1, . . . , xn−1) := Tr

• f does not occur in base term Tb.

• Every application of f in recursion term Tr has form

f (T0, . . . , xi, . . . , Tn−1)

• Free variables of terms must occur in definiendum.

Induction runs over xi.

Wolfgang Schreiner 6

Induction

Inductively Defined Function

Let A0, . . . , Ai−1, Ai+1, . . . , An−1, B such that we have

Tb ∈ B ∧ Tr ∈ B
for all x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈
An−1. Then the definition introduces the unique function

f : A0 × . . .× Ai−1 × N× Ai+1 × . . .× An−1→ B

that satisfies

f (x0, . . . , 0, . . . , xn−1) = Tb ∧
f (x0, . . . , xi + 1, . . . , xn−1) = Tr

for all x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈
An−1.

Wolfgang Schreiner 7

Induction

Induction with Larger Decrements

Example: Fibonacci Numbers

fib(0) := 1,
fib(1) := 1,

fib(x + 2) := fib(x) + fib(x + 1)

fib = [1, 1, 2, 3, 5, 8, 13, 21, . . .]

All base cases must be covered!

Wolfgang Schreiner 8

Induction

Induction over Multiple Arguments

Examples:

f (0, 0) := 0,
f (x + 1, 0) := 1 + f (x, 0),
f (x, y + 1) := 1 + f (x, y).

f (0, 0) := 0,
f (x + 1, 0) := 1 + f (x, 0),
f (0, y + 1) := 1 + f (0, y),

f (x + 1, y + 1) := 2 + f (x, y),

All possible base cases must be covered!

Wolfgang Schreiner 9

Induction

Inductive Predicate Definitions

Definition: An inductive definition over N of an n-ary predicate p:

p(x0, . . . , 0, . . . , xn−1) :⇔ Fb,
p(x0, . . . , xi + 1, . . . , xn−1) :⇔ Fr

• p does not occur in base formula Fb.

• Every application of p in recursion formula Fr has form

p(T0, . . . , xi, . . . , Tn−1)

• Free variables of terms must occur in definiendum.

Induction runs over xi.

Wolfgang Schreiner 10

Induction

Inductively Defined Predicate

Take sets A0, . . . , Ai−1, Ai+1, . . . , An−1.
The definition introduces the predicate

p ⊆ A0 × . . .× Ai−1 × N× Ai+1 × . . .× An−1

that satisfies

p(x0, . . . , 0, . . . , xn−1) ⇔ Tb ∧
p(x0, . . . , xi + 1, . . . , xn−1) ⇔ Tr

for all x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈
An−1.

Wolfgang Schreiner 11

Induction

Example

We can introduce the predicate iseven(x) :⇔ 2|x also as

iseven(0) :⇔ T,
iseven(x + 1) :⇔ ¬iseven(x).

or as

iseven(0) :⇔ T,
iseven(1) :⇔ F,
iseven(x + 2) :⇔ iseven(x).

iseven = [T,F,T,F,T, . . .]

Wolfgang Schreiner 12

Induction

Induction Proofs

Wolfgang Schreiner 13

Induction

Mathematical Induction

Third Peano Axiom:

(F [x← 0] ∧ (∀x ∈ N : F ⇒ F [x← x + 1]))⇒ ∀x ∈ N : F.

Proposition: In order to prove

∀x ∈ N : F,

it suffices to prove

1. F [x ←0],

2. (∀x ∈ N : F ⇒ F [x← x + 1]).

Wolfgang Schreiner 14

Induction

Typical Format

We want to prove
∀x ∈ N : F.

1. Induction Base: We show F [x← 0].

2. Induction Hypothesis: We take arbitrary x ∈ N and assume F .

3. Induction Step: We show F [x← x + 1].

Proof strategy for formulas that are universally quantified over N.

Wolfgang Schreiner 15

Induction

Example

We prove by induction on n

∀n ∈ N : n < 2n.

The induction base holds because 0 < 1 = 20.

Now we take arbitrary n ∈ N and assume (induction hypothesis)

(1) n < 2n.

We have to show (induction step)

(2) n + 1 < 2n+1.

By (1) we have

(3) n + 1 < 2n + 1

and therefore

(4) n + 1 < 2n + 1 ≤ 2n + 2n = 2 ∗ 2n = 2n+1

which implies (2).

Wolfgang Schreiner 16

Induction

Example

We prove by induction on n

∀n ∈ N : 3|n3 + 2n

The induction base holds because 3|0 and 0 = 03 + 2 ∗ 0.

We take arbitrary n ∈ N and assume

(1) 3|n3 + 2n.

We have to show

(2) 3|(n + 1)3 + 2(n + 1).

Wolfgang Schreiner 17

Induction

Example (Continued)

By (1) and definition of | we have some a ∈ N such that

(3) 3a = n3 + 2n.

We therefore have
(n + 1)3 + 2(n + 1) =

(n3 + 3n2 + 3n + 1) + (2n + 2) =

(n3 + 2n) + (3n2 + 3n + 3) = (3)

3a + 3(n2 + n + 1) =

3(a + n2 + n + 1)

which implies (2) by definition of |.

Wolfgang Schreiner 18

Induction

Example

We prove by induction on n

∀n ∈ N :
∑

1≤i≤n
i =

(n + 1)n

2

The induction base holds because ∑
1≤i≤0

i = 0 =
(0 + 1) ∗ 0

2
.

We take arbitrary n ∈ N and assume

(1)
∑

1≤i≤n
i =

(n + 1)n

2
.

We have to show

(2)
∑

1≤i≤n+1

i =
((n + 1) + 1)(n + 1)

2
.

Wolfgang Schreiner 19

Induction

Example (Continued)

We have ∑
1≤i≤n+1 i = (definition

∑
)∑

1≤i≤n i + (n + 1) = (1)
(n+1)n

2 + (n + 1) =
(n+1)n+2(n+1)

2 =
(n+1)(n+2)

2 =
(n+1)((n+1)+1)

2 .

which implies (2).

Wolfgang Schreiner 20

Induction

Example

We can prove by induction the “computing laws” in N:

We prove

∀x ∈ N, y ∈ N, z ∈ N : x + (y + z) = (x + y) + z.

We take arbitrary x ∈ N and y ∈ N and prove by induction on z.

∀z ∈ N : x + (y + z) = (x + y) + z

We have to show

x + (y + 0) = (x + y) + 0.

. . .

See lecture notes.

Wolfgang Schreiner 21

Induction

Complete Induction

Generalization of the induction principle:

Proposition: In order to prove

∀x ∈ N : F

it suffices to prove

(∀x ∈ N : (∀n < x : F [x← n])⇒ F).

1. Induction Hypothesis. We take arbitrary x ∈ N and assume

∀n < x : F [x← n].

2. Induction Step: We show F .

Wolfgang Schreiner 22

Induction

Example

We prove that every natural number greater than 1 can be factorized into a sequence of prime

numbers, i.e.,

∀n ∈ N : n > 1⇒
(∃k ∈ N, f : Nk → N : n =

∏
0≤i<k f (i) ∧ ∀i ∈ Nk : f(i) is prime).

We proceed by complete induction over n.

We take arbitrary n ∈ N and assume

(1) ∀m < n : m > 1⇒
(∃k ∈ N, f : Nk → N : m =

∏
0≤i<k f (i) ∧ ∀i ∈ Nk : f (i) is prime).

We have to show

n > 1⇒
(∃k ∈ N, f : Nk → N : n =

∏
0≤i<k f (i) ∧ ∀i ∈ Nk : f(i) is prime).

See lecture notes.

Wolfgang Schreiner 23

Induction

Induction over Term Values

Proposition: In order to prove F , it suffices to prove

(∀y ∈ N : y = T ⇒ F)

where y does not occur freely in T or F .

Consequence: in order to prove

∀x0, . . . , xn−1 : F

we may prove

(∀x0, . . . , xn−1, y ∈ N : y = T ⇒ F)

where T is a term with free variables x0, . . . , xn−1.

We introduce a variable over N to proceed by induction.

Wolfgang Schreiner 24

Induction

Application: Verification

Wolfgang Schreiner 25

Induction

Specifications

Definition: For every function f : A → B, a relation I ⊆ A and a
relation O ⊆ A×B, we call the formula

∀x : I(x)⇒ O(x, f(x))

a specification of f with input condition I and output condition O.

If the formula is true, then f implements the specification.

We want to verify whether a function implements a specification.

Wolfgang Schreiner 26

Induction

Example

Exponentiation function:

x0 := 1,

xn+1 := x ∗ xn.

We want to verify that the function implements the specification

∀x, n ∈ N : xn =
∏

1≤i≤n
x.

Wolfgang Schreiner 27

Induction

Example (Continued)

Take arbitrary x; we proceed by induction over n.

We have x0 = 1 =
∏

1≤i≤0 x and thus the induction base holds.

We take arbitrary n ∈ N and assume

(1) xn =
∏

1≤i≤n
x.

We have to prove

(2) xn+1 =
∏

1≤i≤n+1

x.

We know
xn+1 = (definition exponentiation)

x ∗ xn = (1)

x ∗
∏

1≤i≤n x = (definition
∏

)∏
1≤i≤n+1 x

which implies (2).

Wolfgang Schreiner 28

Induction

Purpose of Verification

• Given: input condition I and output condition O.
– Abstract definition of a function (“what is to be done”).

– May be inconstructive (does not immediately yield an algorithm).

– Even if constructive, the corresponding algorithm may be too inefficient.

• Given: definition of a function f .
– Concrete definition of a function (“how is it done”).

– Intended to yield (efficient) algorithm.

• Verification: show that f implements corresponding specification.

Definition of such a function and its verification needs more knowledge;
more knowledge gives better algorithms.

Wolfgang Schreiner 29

Induction

Example: Greatest Common Divisor

gcd(x, y) := such z ∈ N : z|x∧z|y∧(∀w : (w|x ∧ w|y)⇒ w ≤ z).

fun gcd(x, y) =

let(m = if(=(x, N0), y, x):

such(z in nat(N0, m):

and(divides(z, x), divides(z, y),

forall(w in nat(+N(z, N1), m):

or(not(divides(w, x)), not(divides(w, y))))),

z));

Extremely inefficient way to compute the greatest common divisor.

Wolfgang Schreiner 30

Induction

Specification

We can show that

∀z ∈ N : ∃w : w|0 ∧ w > z

i.e., gcd(0, 0) is undefined, but that, if x 6= 0 ∨ y 6= 0,

∃z ∈ N : z|x ∧ z|y ∧ (∀w : (w|x ∧ w|y)⇒ w ≤ z).

i.e., gcd(x, y) is well defined.

Thus our problem is to find some f that implements the specification

∀m ∈ N, n ∈ N : (m 6= 0 ∨ n 6= 0)⇒ f(m,n) = gcd(m,n).

in a more efficient way than gcd does.

Wolfgang Schreiner 31

Induction

Euclid’s Algorithm

New knowledge:

(0) ∀m ∈ N, n ≤ m : gcd(m,n) = gcd(m− n, n).

Idea for recursive function definition (termination term m + n):

Euclid(m,n) :=
if m = 0 then n
else if n = 0 then m
else if n ≤ m then Euclid(m− n, n)
else Euclid(m,n−m).

Wolfgang Schreiner 32

Induction

Verification

∀m ∈ N, n ∈ N : (m 6= 0 ∨ n 6= 0)⇒ Euclid(m,n) = gcd(m,n).

Proof by complete induction on term m + n.

We take arbitrary m ∈ N and n ∈ N and assume

(1) ∀x ∈ N, y ∈ N : x + y < m + n⇒
(x 6= 0 ∨ y 6= 0)⇒ Euclid(x, y) = gcd(x, y).

We have to prove

(2) (m 6= 0 ∨ n 6= 0)⇒ Euclid(m,n) = gcd(m,n).

We assume (3) (m 6= 0 ∨ n 6= 0) and prove (4) Euclid(m,n) =
gcd(m,n).

Wolfgang Schreiner 33

Induction

Verification (Continued)

By function definition, we have four cases:

•m = 0.

By (3), we have n 6= 0 and, by definition of gcd and Euclid,

gcd(m,n) = n = Euclid(m,n)

which implies (4).

•m 6= 0 ∧ n = 0.

We have, by definition of gcd and Euclid,

gcd(m,n) = m = Euclid(m,n)

which implies (4).

Wolfgang Schreiner 34

Induction

Verification (Continued)

•m 6= 0 ∧ n 6= 0 ∧ n ≤ m.

We know

gcd(m,n) = (0)
gcd(m− n, n) = (1)

Euclid(m− n, n) = (definition Euclid)
Euclid(m,n)

which implies (4).

•m 6= 0 ∧ n 6= 0 ∧ n 6≤ m.

The proof is analogous to the previous case.

Wolfgang Schreiner 35

Induction

Improvements

More knowledge:

(0′) ∀m ∈ N, n 6= 0 : gcd(m,n) = gcd(m,m mod n)

Function definition (with recursion term m + n):

Euclid′(m,n) :=
if m = 0 then n
else if n = 0 then m
else if n ≤ m then Euclid′(m mod n, n)
else Euclid′(m,n mod m)

Wolfgang Schreiner 36

Induction

Logic Evaluator

fun Euclid(m: N, n: N) recursive +(m, n) =

if(=(m, 0), n,

if(=(n, 0), m,

if(<=(m, n), Euclid(m, -(n, m)),

Euclid(-(m, n), n))));

fun Euclid’(m: N, n: N) recursive +(m, n) =

if(=(m, 0), n,

if(=(n, 0), m,

if(<=(m, n), Euclid’(m, modN(n, m)),

Euclid’(modN(m, n), n))));

Much faster than gcd!

Wolfgang Schreiner 37

Induction

Induction on Sets

Wolfgang Schreiner 38

Induction

Inductive Set Definition

Definition: An inductive definition of a set S is a collection of formulas

(∀x1, . . . , xm1, y1 ∈ S, . . . , yn1 ∈ S :
f1(x1, . . . , xm1, y1, . . . , yn1) ∈ S)

, . . . ,
(∀x1, . . . , xmc, y1 ∈ S, . . . , ync ∈ S :
fc(x1, . . . , xmc, y1, . . . , ync) ∈ S)

where we call the function constants f1, . . . , fc the constructors of S.

Wolfgang Schreiner 39

Induction

Defined Set

S is the smallest set on which the conjunction of these formulas holds,
i.e., every element of S is described by a constructor term

fi(T1, . . . , Tmi, S1, . . . , Sni)

for some terms T1, . . . , Tmi, S1, . . . , Sni where the S1, . . . , Sni are
also such constructor terms.

Wolfgang Schreiner 40

Induction

Example

The set N is inductively defined by

0 ∈ N,
∀x ∈ N : x′ ∈ N

with constructors 0 and ’.

Every element of N is of the form

0′...′,

e.g. the number 4 in N is denoted by 0′′′′.

Wolfgang Schreiner 41

Induction

Example

For every set T , the set List(T) is defined by

nil ∈ List(T),
∀e ∈ T, l ∈ List(T) : cons(e, l) ∈ List(T).

with constructors nil and cons.

Every element of List(T) is of the form

cons(e0, . . . , cons(en−1, nil)),

e.g. the list [2, 3] in List(N) is denoted by cons(2, cons(3, nil)).

Wolfgang Schreiner 42

Induction

Example

For every set T , the set Tree(T) is defined by

empty ∈ Tree(T),
∀e ∈ T, l ∈ Tree(T), r ∈ List(T) : node(e, l, r) ∈ Tree(T).

with constructors empty and node.
Every element of Tree(T) is of the form

node(n0, node(n11, . . .), node(n21, . . .)),

1

2 5

3 4

node(1, node(2, node(3, empty, empty), node(4, empty, empty)), node(5, empty, empty))

Wolfgang Schreiner 43

Induction

Term

The set Term is defined by

0 ∈ Term,
1 ∈ Term,
∀x ∈ Term : −x ∈ Term,
∀x ∈ Term, y ∈ Term : x + y ∈ Term,
∀x ∈ Term, y ∈ Term : x ∗ y ∈ Term

with constructors 0, 1,−,+, ∗.

An element of Term is 1 + (1 + 0) ∗ 1.

Wolfgang Schreiner 44

Induction

Formula

The set Formula is defined by

T ∈ Formula
∀x ∈ Formula : not(x) ∈ Formula,
∀x ∈ Formula, y ∈ Formula : and(x, y) ∈ Formula,
∀x ∈ Variable, y ∈ Formula : forall(x, y) ∈ Formula

with constructors “T”, “not”, “and”, “forall”.

An element of Formula is forall(X, and(T, or(T,F))) (assuming X ∈
Variable).

Wolfgang Schreiner 45

Induction

Term Algebra

An inductively defined set is a term algebra if we have for every con-
structor f of this set

∀x, y : f (x) = f (y)⇒ x = y

i.e., different arguments are mapped to different results.

Furthermore, for all constructors f and g

∀x, y : f(x) 6= g(y)

i.e., different constructors yield different results.

Wolfgang Schreiner 46

Induction

Consequence

• Every element of a term algebra is denoted by one and only one
constructor term

fi(T1, . . . , Tmi, S1, . . . , Sni)

for some terms T1, . . . , Tmi, S1, . . . , Sni where the S1, . . . , Sni are
also constructor terms.

•One to one correspondence between terms and set elements.

We may define functions and predicates in term algebras inductively .

Wolfgang Schreiner 47

Induction

Example

Take the set List(T) defined in the previous example and assume that
it is a term algebra. We define the length of a list as

length : List(T)→ N

length(nil) := 0
length(cons(e, l)) := 1 + length(l).

Then we have length(cons(1, cons(2, nil))) = 2.

Wolfgang Schreiner 48

Induction

Example

Take the set Term defined in the previous example and assume that
it is a term algebra. We define the value of a term as

value : Term→ N

value(0) := 0
N

value(1) := 1
N

value(−x) := −
N

value(x)
value(x + y) := value(x) +

N
value(y)

value(x ∗ y) := value(x) ∗
N

value(y)

Then we have value(1 + (1 + 0) ∗ 1) = 2.

Wolfgang Schreiner 49

Induction

Generalized Induction Principle

We want to prove
∀x ∈ S : F.

Idea: exery element x in S is denoted by some term

fi(x1, . . . , xmi, y1, . . . , yni).

Let the induction run over the structure of every such term:

• assume that F holds for every “S-component” yj of x, and

• show that F is propagated to x itself.

Wolfgang Schreiner 50

Induction

Structural Induction

Proposition: In order to prove a property

∀x ∈ S : F

for an inductively defined set S, it suffices to prove

∀x1, . . . , xmi, y1 ∈ S, . . . , yni ∈ S :
(F [x := y1] ∧ . . . ∧ F [x := yni])⇒
F [x := fi(x1, . . . , xmi, y1, . . . , yni)]

for every constructor fi of S.

Wolfgang Schreiner 51

Induction

Example

Take the set List(T) defined inductively as

nil ∈ List(T),
∀e ∈ T, l ∈ List(T) : cons(e, l) ∈ List(T).

We define

append : List(T)× List(T)→ List(T)
append(nil, y) := y
append(cons(e, x), y) := cons(e, append(x, y))

and claim that the following holds:

∀x ∈ List(T), y ∈ List(T) :
length(append(x, y)) = length(x) + length(y).

Wolfgang Schreiner 52

Induction

Example (Continued)

We proceed by structural induction on x:

Case x = nil: We have to show

∀y ∈ List(T) :
length(append(nil, y)) = length(nil) + length(y).

Take arbitrary y ∈ List(T). We have

length(append(nil, y)) = (definition append)
length(y) =

0 + length(y) = (definition length)
length(nil) + length(y).

Wolfgang Schreiner 53

Induction

Example (Continued)

Case x = cons(e, l): Take arbitrary e ∈ T and l ∈ List(T).

We assume (induction hypothesis)

∀y ∈ List(T) :
length(append(l, y)) = length(l) + length(y)

and have to show

∀y ∈ List(T) :
length(append(cons(e, l), y)) = length(cons(e, l)) + length(y).

Wolfgang Schreiner 54

Induction

Example (Continued)

Take arbitrary y ∈ List(T). We have

length(append(cons(e, l), y)) = (definition append)
length(cons(e, append(l, y))) = (definition length)

1 + length(append(l, y)) = (induction hypothesis)
1 + (length(l) + length(y)) =
(1 + length(l)) + length(y) = (definition length)

length(cons(e, l)) + length(y).

Wolfgang Schreiner 55

Induction

Summary

• Inductive definitions on N.
– Single induction parameter.

– Multiple base cases.

– Multiple induction parameters.

• Induction proofs on N.
– Mathematical induction.

– Complete induction.

– Induction over term values.

• Induction on sets.
– Inductive set definitions.

– Inductive function/predicate definitions on term algebras.

– Induction proofs on inductively defined sets.

Wolfgang Schreiner 56

