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More on Functions 2


Overview


• Sequences and Series


• Special Functions


• Asymptotic Bounds
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Sequences and Series
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Sequence Quantor


Definition: For every variable i and term T , the phrase


[T ]i


is a term with bound variable i whose value is the sequence


[T ]i : N→ R


[T ]i(i) := T.


Example: [a2 + c]a = [0 + c, 1 + c, 4 + c, 9 + c, . . .].
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Monotonicity


Definition: Let f be an infinite sequence over R. f is monotonically
increasing if every element of f is less than or equal the next element:


f is monotonically increasing :⇔
f : N→ R ∧ ∀i ∈ N : fi ≤ fi+1.


f is strictly monotonically increasing if every element of f is less than
the next element:


f is strictly monotonically increasing :⇔
f : N→ R ∧ ∀i ∈ N : fi < fi+1.
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Monontonicity (Continued)


Definition: f is monotonically decreasing if every element of f is
greater than or equal the next element:


f is monotonically decreasing :⇔
f : N→ R ∧ ∀i ∈ N : fi ≥ fi+1.


f is strictly monotonically decreasing if every element of f is greater
than the next element:


f is strictly monotonically decreasing :⇔
f : N→ R ∧ ∀i ∈ N : fi > fi+1.
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Illustration


Sequence is (not strictly) monotonically decreasing.
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Example


• [ 1
i+1]i is strictly monotonically decreasing:


[
1


i + 1
]i = [1,


1


2
,
1


3
,
1


4
, . . .]


• [i div 2]i is monotonically increasing:


[i div 2]i = [0, 0, 1, 1, 2, 2, . . .]


• [(−1)i]i is neither monotonically increasing nor decreasing:


[(−1)i]i = [1,−1, 1,−1, . . .]
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Bounds


Definition: Let f be an infinite sequence over R.


f has upper bound U , if every element of f is less than or equal U :


U is upper bound of f :⇔
f : N→ R ∧ ∀i ∈ N : fi ≤ U.


f has lower bound L, if every elem. of f is greater than or equal L:


L is lower bound of f :⇔
f : N→ R ∧ ∀i ∈ N : fi ≥ L.
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Supremum and Infimum


Definition: The supremum of f is the smallest upper bound of f :


sup(f ) := such S :
S is upper bound of f ∧
(∀S′ : S′ is upper bound of f ⇒ S ≤ S′).


The infimum of f is the greatest lower bound of f :


inf(f ) := such I :
I is lower bound of f ∧
(∀I ′ : I ′ is lower bound of f ⇒ I ≥ I ′).
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Illustration
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Unicity of Supremum


Proposition:


∀f, S0, S1 :
S0 is supremum of f ∧ S1 is supremum of f ⇒ S0 = S1.


where


S is supremum of f :⇔
S is upper bound of f ∧
(∀S′ : S′ is upper bound of f ⇒ S ≤ S′)


i.e., sup(f ) = such S : S is supremum of f .
Proof: Take arbitrary f and suprema S0 and S1 of f . Since S0 is a supremum and S1 is an upper


bound of f , we have S0 ≤ S1. Conversely, since S1 is a supremum and S0 is an upper bound of f ,


we have S1 ≤ S0. Since S0 ≤ S1 and S1 ≤ S0, we have S0 = S1.
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Example


• [i]i has infimum 0 but no upper bound.


• [1− i]i has supremum 1 but no lower bound.


• [ 1
i+1]i has supremum 1 and infimum 0.


• [i3 ∗ (−1)i]i has no upper bound and no lower bound.


Infimum and supremum need not exist.
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Illustration


Infimum and supremum need not be among sequence elements.
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Convergence and Limit


Definition: An infinite sequence s over R converges to limit a, if its
members approach a arbitrarily close:


s converges to a :⇔
∀ε > 0 : ∃n ∈ N : ∀i ≥ n : |si − a| < ε;


lim(s) :=
such a : s converges to a.


A non-convergent series is called divergent (divergent):


s is divergent :⇔ ¬∃a : s converges to a.
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Illustration


For every ε > 0, all members of a convergent sequence are eventually
in an “ε-tunnel” around limit a, i.e., in the interval ]a− ε, a + ε[.
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Example


Let s := [(−1)i ∗ 1
i ]i. We show that s converges to 0.


Take arbitrary ε > 0. We have to find some n ∈ N such that ∀i ≥ n :
|(−1)i ∗ 1


i − 0| < ε which can be simplified to


∀i ≥ n :
1


i
< ε.


Take n := such n ∈ N : 1
ε < n. Because ε > 0, we know 1/ε ∈ R>0.


Because N is unbounded (i.e., ∀r ∈ R : ∃n ∈ N : r < n), we know
1
ε < n and thus n > 0. Take arbitrary i ≥ n. We know i > 0 and


1


i
≤ 1


n
<


1
1
ε


= ε.
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Example


We show that s := [(−1)i]i is divergent. Assume that s is convergent,
i.e., s converges to some limit a ∈ R. We show a contradiction.
Let ε := 1


2. There exists (by definition of convergence) some n ∈ N
such that ∀i ≥ n : |(−1)i − a| < 1


2. We thus have


|1− a| < 1
2 ∧ | − 1− a| < 1


2


We then have (using the absolute value laws)


1 = 1
2 + 1


2 > |1− a| + | − 1− a|
= |1− a| + |1 + a| ≥ |(1− a) + (1 + a)| = 2


which represents a contradiction.
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Limit Quantor


Definition: For every variable i and term T , the following phrase
represents a term with bound variable i:


limi→∞ T


The value of this term is that of the term


lim([T ]i).


Further Results: see lecture notes.


Wolfgang Schreiner 18







More on Functions 2


Series


Definition: Let a be an infinite sequence over R. The series corre-
sponding to a is the sequence where every element sn is the sum of
the first n + 1 elements of a:


series : (N→ R)→ (N→ R)
series(a)n :=


∑
0≤i≤n ai.


Consequence: If a = [T ]i, then series(a) = [
∑


0≤i≤n T ]n.


Sequence of (partial) sequence sums.
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Example


Let a = [i2]i:


a = [0, 1, 4, 9, 16, 25, . . .].


Then series(a) = [
∑


0≤i≤n i
2]n:


series(a) = [0, 1, 5, 14, 30, 55, . . .].
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Arithmetic Series


For every c ∈ R, the sequence [i∗ c]i is called an arithmetic sequence.
Correspondingly, series([i ∗ c]i) is called an arithmetic series.


We have, for every n ∈ N,


series([i ∗ c]i)n =
∑


0≤i≤n
i ∗ c = c ∗ n(n + 1)


2
.


(which can be proved by induction on n).


For instance, for c = 1, we have


[i]i = [0, 1, 2, 3, 4, 5, . . .],
series([i]i) = [0, 1, 3, 6, 10, 15, . . .].
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Geometric Series


For every q ∈ R, the sequence [qi]i is called a geometric sequence.
Correspondingly, series([qi]i) is called a geometric series.


We have, for every n ∈ N,


series([qi]i)n =
∑


0≤i≤n
qi =


qn − 1


q − 1
.


(which can be proved by induction on n).


For instance, for q = 2, we have


[2i]i = [1, 2, 4, 8, 16, . . .],


series([2i]i) = [1, 3, 7, 15, 31].
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Series Limit Quantor


Definition: For every variable i and term T , the following phrase
denotes a term with bound variable i:


∞∑
i=0


T


The value of this term is


limn→∞
∑


0≤i≤n
T.


∑∞
i=0 T is only well defined if [


∑
0≤i≤n T ]n is convergent.
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Limit of Geometric Serries


Proposition: For q ∈ R, |q| < 1, [
∑


0≤i≤n q
i]n converges to 1


1−q :


∀q ∈ R : |q| < 1⇒
∑∞
i=0 q


i = 1
1−q.


Proof: Take arbitrary q ∈ R with |q| < 1. We then have∑∞
i=0 q


i =


limn→∞
∑


0≤i≤n T =


limn→∞
qn−1
q−1 =


limn→∞ (qn−1)
limn→∞ (q−1) =


(limn→∞ qn)−(limn→∞ 1)
q−1 = (∗)


0−1
q−1 =
1


1−q .


(*) The fact limn→∞ qn = 0 has to be shown in a separate proof.


Wolfgang Schreiner 24







More on Functions 2


Special Functions
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Pointwise Function Definition


Definition: Let RealFun = R→ R.
. : R→ RealFun


c(x) := c;


+ : (RealFun× RealFun)→ RealFun


(f + g)(x) := f (x) + g(x);


(f − g)(x) := f(x)− g(x);


(f ∗ g)(x) := f (x) ∗ g(x);


(fg )(x) := f(x)
g(x) ;


.. : (RealFun× Z)→ (R
partial−→ R)


(fn)(x) := f (x)n;
√


: (Z× RealFun)→ (R
partial−→ R)


( n
√
f )(x) := n


√
f (x);
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Example


• Let f (x) := 2x2 and g(y) := y + 4. Then, for every x ∈ R,


(
√
f + g)(x) =


√
2x2 + x + 4.


• The function f (x) := 3x2 + x
√
x equals


3 ∗ g + h


where g(x) := x2 and h(x) = x
√
x.


• The function
1
R


2+
√


1
R


+1 equals f (x) :=
x2+
√
x


x+1 .


Composition of functions at each argument value.
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Floor and Ceiling


Definition: The floor of a real number x is the largest integer less than
or equal x.


bxc := max{y ∈ Z : y ≤ x}.


Analogously, the ceiling of x is the smallest integer greater than or
equal x:


dxe := min{y ∈ Z : y ≥ x}.


Functions mapping real numbers to integers.
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Illustration
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Floor and Ceiling Rules


Proposition: For every x ∈ R, we have:


x− 1 < bxc ≤ x ≤ dxe < x + 1,
bxc = x⇔ x ∈ Z⇔ dxe = x,
b−xc = −dxe, d−xe = −bxc.


1. Floor lies on or below the first diagonal; ceiling lies above diagonal;
if we shift diagonal down one unit, it lies completely below the floor;
if we shift it up one unit, it lies completely above the ceiling.


2. Floor and ceiling intersect each other at the diagonal.


3. Floor and ceiling are reflections of each other about both axes.
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Floor and Ceiling Rules


Proposition: For every x ∈ R and i ∈ Z, we have:


bx + ic = bxc + i,
dx + ie = dxe + i.


x < i ⇔ bxc < i,
i < x ⇔ i < dxe,
x ≤ i ⇔ dxe ≤ i,
i ≤ x ⇔ i ≤ bxc.


May shift integer terms out of a floor or ceiling; may get rid of floor
and ceiling under some assumptions.
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Truncation


Definition: The truncated part of a real number is the number without
its fractional part:


trunc(x) := if x < 0 then dxe else bxc.


Proposition: For every x ∈ R, the truncated part of the negation of
x is the negation of the truncated part of x:


∀x ∈ R : trunc(−x) = −trunc(x).


Not many nice other properties.
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Example


The graph of f (x) := x− bxc is depicted by


Many interesting functions can be defined by floor and ceiling.
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Periodic Functions


Definition: A function has period a, if the function values are repeated
in intervals of width a:


f has period a :⇔
f : R→ R ∧ a ∈ R ∧ ∀x ∈ R : f (x + a) = f (x).


A function is periodic if it has some period:


f is periodic :⇔ ∃a ∈ R : f has period a.


Example: f in previous example has period 1.
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Real Remainder


Definition:


mod : (R× R)→ R


x mod y := x− y ∗ bx/yc.


Proposition: We have, for every x ∈ R and y ∈ R with y 6= 0,


x = y ∗ bx/yc + x mod y.


Division and remainder on R.
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Example


Unwind a line of length x around a circle of circumference y.
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Remainder Laws


Proposition: For every x ∈ R and y ∈ R, we have


y > 0⇒ (0 ≤ x mod y < y),
y < 0⇒ (0 ≥ x mod y > y).


• b5.44/4c = 1; 5.44 mod 4 = 5.44− 4 ∗ 1 = 1.44.


• b−5.44/4c = −2; −5.44 mod 4 = −5.44− 4 ∗ (−2) = 2.56.


• b5.44/− 4c = −2; 5.44 mod − 4 = 5.44− (−4) ∗ (−2) = −2.56.


• b−5.44/− 4c = 1; −5.44 mod − 4 = −5.44− (−4) ∗ 1 = −1.44.
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More Real Functions


• Polynomial functions
p(x) :=


∑
0≤i≤n


aix
i


• Rational functions
r(x) :=


p(x)


q(x)


• Exponentiation and natural logarithm


exp(x) :=
∑∞


i=0
xi


i! ; ln(x) := exp−1(x).


• Trigonometric functions


sin, cos, tan, cot.


See lecture notes.
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Asymptotic Bounds
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Motivation


•Detailed execution time of an algorithm for input size n.


7n2 + 3n + 19


• “Essential” growth of the execution time with increasing n.


n2


• Constant factors and smaller sums ignored.


Capture the “essential” growth of a function.
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Big O Quantor


Definition: For every variable n and terms S and T , the phrase


S = On(T )


is a proposition with bound variable n which is read as “S is big O of
T” or “T asymptotically dominates S”.


Its meaning is equivalent to the proposition


∃c ∈ R,m ∈ N : ∀n ≥ m : |S| ≤ c ∗ |T |.


Usually the subscript n is dropped and the bound variable has to be
deduced from the context.
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Illustration


From a certain point m on and scaled by some factor c, the absolute
value of T is at least as large as the absolute value of S.
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Usage


• Instead of saying that the execution time T of some algorithm A in
dependence on input size n is TA(n) = 7n2 + 3n+ 19, we may say


TA(n) = O(n2),


• The proposition
S0 = S1 + O(T )


is to be understood as S0 − S1 = O(T ).


We say by
f (n) = 5n3 + 2n2 + O(n)


that f (n) differs from 5n3 + 2n2 not more than by a linear factor.
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Example


We have 10n + 100 = O(n).


Proof: Let c := 110 and m := 1 and take arbitrary n ≥ m. We show


|10n + 100| ≤ c ∗ |n|.
We know


|10 ∗ n + 100| = 10 ∗ n + 100 ≤ 110n = 110|n| = c|n|.
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Example


We have not n2 = O(n).


Proof: We suppose n2 = O(n) and show a contradiction. By the
assumption, we have some c ∈ R and m ∈ N with


∀n ≥ m : |n2| ≤ c|n|.
If c < 0, let k := max(1,m); then we have k ≥ m but


|k2| > 0 > c|k|
If c ≥ 0, let k := max(m, dc + 2e). Then we have k ≥ m but


|k2| = k2 ≥ dc + 2e2 ≥ (c + 2)2 = c2 + 4c + 4


> c2 + 3c = c(c + 3) ≥ cdc + 2e ≥ ck = c|k|
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Example


We have n2 = O(2n):


Proof: We assume not n2 = O(2n) and show a contradiction. By
assumption, we have ¬∃c ∈ R,m ∈ N : ∀n ≥ m : |n2| ≤ c|2n|, i.e.,


∀c ∈ R,m ∈ N : ¬∀n ≥ m : |n2| ≤ c|2n|.


We prove
∀n ≥ 0 : n2 ≤ 2 ∗ 2n


by induction on n and thus have a contradiction.


See lecture notes.
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O Manipulation


See lecture notes.
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Asymptotic of Polynomial Sequences


Proposition: A polynomial sequence of degree n is dominated by [xn]x:


∀n ∈ N, a : Nn→ R :∑
0≤i≤n ax


i = On(xn).


Only the highest exponent matters.
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Asymptotic Classes


Proposition: For every variable n and terms S and T , the phrase


S ≺n T
is a proposition with bound variable n which is read as “S is strictly
dominated by T” and that is equivalent to


S = On(T ) ∧ T 6= On(S).


Means to compare the growth of classes of functions.
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Asymptotic Classes


Proposition: For every k ∈ N, c ∈ R, and a ∈ R>0, we have:


1 ≺n loga(n) ≺n n ≺n nloga(n) ≺n nk ≺n cn ≺n n!
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Comparison of Algorithms


Largest problem that can be solved in fixed time.


Execution Steps 1 second 1 minute 1 hour


log2(n) 2106
26∗107


236∗108


n 106 6 ∗ 107 3.6 ∗ 109


nlog2(n) 62746 2.8 ∗ 106 1.3 ∗ 108


n2 1000 7746 60000
2n 23 26 32
n! 9 11 12


Problems that can be solved only by exponential time algorithms are
intractable.
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Summary


• Sequences.
– Monotonicity, bounds, infimum, supremum.


– Convergence and limit.


– Series from sequence.


– Limit of series.


• Special functions.
– Pointwise function definition.


– Floor, ceiling, remainder.


– . . .


• Asymptotic function bounds.
– Big O quantor.


– Asymptotic classes.
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