Go backward to Limit QuantorGo up to TopGo forward to Example |

*Definition:*
Let `a` be an infinite sequence over **R**. The *series*
corresponding to `a` is the
sequence where every element `s`_{n} is the sum of the first
`n`+1 elements of `a`:

series: ( N->R) -> (N->R)series( a)_{n}:= (sum_{0 <= i <= n}a_{i}).

*Consequence:*
If `a` = [`T`]_{i}, then series(`a`) =
[(**sum**_{0 <= i <= n} `T`)]_{n}.

*Sequence of (partial) sequence sums*.

Author: Wolfgang Schreiner

Last Modification: December 14, 1999