
More on Functions 1

More on Functions 1
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

More on Functions 1

Overview

• Further Notions

• Counting Set Elements

• Embedding Sets

Wolfgang Schreiner 1

More on Functions 1

Further Notions

Wolfgang Schreiner 2

More on Functions 1

Image

Definition: Let f : A→ B, A′ ⊆ A. The image of A′ at f is the set
of all values to which elements of A′ are mapped by f :

f (A′) := if A′ ⊆ domain(f) then {f (x) : x ∈ A′}.

The inverse image of B′ at f is the set of all elements that are mapped
to some elements of B′ by f :

f−1(B′) := {x ∈ domain(f) : f (x) ∈ B′}.

Function applied to set of arguments.

Wolfgang Schreiner 3

More on Functions 1

Image

f−1(f(A′)) = A′

Wolfgang Schreiner 4

More on Functions 1

Function Properties

Definition: Let f : A →B. f is injective (one-to-one) if it does not
map different arguments to the same result:

f : A
injective−→ B :⇔

f : A→ B ∧ (∀x0 ∈ A, x1 ∈ A : f (x0) = f (x1)⇒ x0 = x1).

f is surjective (onto) if every element of B is hit by some argument:

f : A
surjective−→ B :⇔ f : A→ B ∧ (∀y ∈ B : ∃x ∈ A : f (x) = y).

f is bijective if it is injective and surjective:

f : A
bijective−→ B :⇔ f : A

injective−→ B ∧ f : A
surjective−→ B.

Wolfgang Schreiner 5

More on Functions 1

Illustration

Wolfgang Schreiner 6

More on Functions 1

Example

• The identity function f (x) := x is bijective:

• The square function f (x) := x2 is neither injective nor surjective:

• The function f (x) := x3 − x is surjective but not injective:

Wolfgang Schreiner 7

More on Functions 1

Function Composition

Proposition: The composition of two bijective functions is bijective:

∀A,B,C, f : A
bijective−→ B, g : B

bijective−→ C :

f ◦ g : A
bijective−→ C.

Proof: Take arbitrary f : A
bijective−→ B, g : B

bijective−→ C.

• We show f ◦ g is injective. Take arbitrary x0 ∈ A and x1 ∈ A with (f ◦ g)(x0) = (f ◦ g)(x1).

We have to show x0 = x1.

We know, by definition of ◦, that g(f(x0)) = g(f(x1)) and thus, because g is injective, f(x0) =

f (x1). Since f is injective, we then have x0 = x1.

• We show f◦g is surjective. Take arbitrary z ∈ C; we have to find some x such that (f◦g)(x) = z.

Since g is surjective, we have some y ∈ B such that g(y) = z. Since f is surjective, we have

some x ∈ A such that f (x) = y. Thus (f ◦ g)(x) = g(f (x)) = g(y) = z.

Wolfgang Schreiner 8

More on Functions 1

Function Inversion

Proposition: If a function is injective, its inverse is also a function:

∀A,B, f : A
injective−→ B : :f−1 : B → A.

Proof: Take arbitrary f : A
injective−→ B. We have to show f−1 : B → A.

We have f−1 ⊆ B × A. Thus it remains to be shown

(∀x, y0, y1 : (〈x, y0〉 ∈ f−1 ∧ 〈x, y1〉 ∈ f−1)⇒ y0 = y1).

Take arbitrary x, y0, and y1 and assume

(1) 〈x, y0〉 ∈ f−1 ∧ 〈x, y1〉 ∈ f−1.

We have to show (2) y0 = y1. From (1) and the definition of inverse, we know

(3) 〈y0, x〉 ∈ f ∧ 〈y1, x〉 ∈ f,

i.e., f(y0) = x and f(y1) = x. Since f is injective, we thus know (2).

Wolfgang Schreiner 9

More on Functions 1

Inverse Function Properties

1A : A→ A, 1A(x) := x

Proposition: For every A,B, f : A→ B, we have

f ◦ 1B = f
1A ◦ f = f.

If f is injective, then we have

f ◦ f−1 = 1A

If f is also surjective (i.e., bijective), then we have

f−1 ◦ f = 1B.

Wolfgang Schreiner 10

More on Functions 1

Counting Set Elements

Wolfgang Schreiner 11

More on Functions 1

Number of Set Elements

Definition: A set S is finite if it is empty or there is a bijection to Nn
for some n > 0. We then call 0 resp. n the size or cardinality of S:

S is finite :⇔ S = ∅ ∨
(∃n ∈ N>0, f : f : Nn

bijective−→ S);

|S| := if S = ∅ then 0 else

(such n ∈ N>0 : ∃f : f : Nn
bijective−→ S).

A set is infinite if is not finite:

S is infinite :⇔ ¬S is finite.

Wolfgang Schreiner 12

More on Functions 1

Unicity of Bijection

Proposition: If S is not empty and both f : Nn→ S and g : Nm→ S
are bijections, then n = m:

(∀S 6= ∅, n ∈ N,m ∈ N, f : Nn
bijective−→ S, g : Nm

bijective−→ S :
m = n).

Proof: see lecture notes.

The size of a set is uniquely defined.

Wolfgang Schreiner 13

More on Functions 1

Example

• The set S := {0, 2, 4} is finite; its size is 3 because we can define

a function f : N3
bijective−→ S as

f (0) := 0
f (1) := 2
f (2) := 4

i.e., f = [0, 2, 4]. The length of f is the same as the length of
[0, 4, 2], [4, 2, 0] or of any other bijection to S.

• The set N is infinite. If it were finite, we had some n ∈ N and

some f : Nn
bijective−→ N. Take k := 1 + max{f (i) : i ∈ Nn}. Then

k ∈ N but ∀i ∈ Nn : f(i) 6= k, i.e., f is not surjective on N.

Wolfgang Schreiner 14

More on Functions 1

Number Quantifier

Definition: For every variable x and formula F , the phrase

#x : F

is a term where x is bound and whose value equals

|{x : F}|.

The term value is only well defined if the base formula is true for a
finite number of assignments for the bound variable.

Wolfgang Schreiner 15

More on Functions 1

Set Sizes

Proposition: If A and B are disjoint with sizes m and n, respectively,
then the size of their union is m + n:

∀A,B,m ∈ N, n ∈ N :
(A ∩B = ∅ ∧ |A| = m ∧ |B| = n)⇒ |A ∪B| = m + n.

The size of the Cartesian product of two sets is the product of their
sizes:

∀A,B,m ∈ N, n ∈ N :
(|A| = m ∧ |B| = n)⇒ |A×B| = m ∗ n.

Wolfgang Schreiner 16

More on Functions 1

Set Sizes (Continued)

Proposition: If A and B have size m and n, respectively, then the
size of the set of functions from A to B is nm:

∀A,B,m ∈ N, n ∈ N :
(|A| = m ∧ |B| = n)⇒ |A→ B| = nm.

If A is of size n, then A has 2n subsets:

∀A, n ∈ N :
|A| = n⇒ |P(A)| = 2n.

Wolfgang Schreiner 17

More on Functions 1

Countable Sets

Definition: A set is countable if it has an enumeration, i.e., a bijective
mapping from N:

S is countable :⇔ ∃f : f : N
bijective−→ S.

A criterium to distinguish “degrees of infinity”.

Wolfgang Schreiner 18

More on Functions 1

Example

Z is infinite but it is countable because we can define

f : N
bijective−→ Z

f (x) := if x is even then − x/2 else (x + 1)/2

i.e.,
f = [0, 1,−1, 2,−2, 3,−3, . . .].

While Z is infinite, we can enumerate all its elements.

Wolfgang Schreiner 19

More on Functions 1

Example

The set Q is infinite but countable: we can list all positive rationals
in an infinite matrix that holds at position 〈i, j〉 the rational i+1

j+1:

1
1

1
2

1
3

1
4 . . .

↙ ↙ ↙
2
1

2
2

2
3

↙ ↙
3
1

3
2

↙
4
1

.

We can enumerate all elements in this matrix in a sequence f .

Wolfgang Schreiner 20

More on Functions 1

Example (Continued)

From f , we remove all “doubles” constructing a sequence f ′ : N→ Q

that contains each positive rational number in exactly one position.
Finally we can define an enumeration of all rationals

g : N
bijective−→ Q

g(x) :=

if x = 0 then 0

else if x is even

then − f ′(x/2)

else f ′((x− 1)/2)

g = [0, 1,−1,
1

2
,−1

2
,
2

1
,−2

1
,
1

3
,−1

3
,
3

1
,−3

1
, . . .].

Wolfgang Schreiner 21

More on Functions 1

Example

The set of all infinite sequences over {0, 1} is not countable.

If it were, we had an f : N
bijective−→ (N→ {0, 1}). Let s : N→ {0, 1}
s(i) := f (i)i

where d := 1− d. Then s differs from f (i) in the i-th digit (for every
i ∈ N), thus s is not contained in f .

f (0) =

f (1) =

f (2) =

f (3) =

s :=

[f(0)0 f (0)1 f(0)2 f (0)3 . . .]

[f (1)0 f(1)1 f(1)2 f (1)3 . . .]

[f (2)0 f (2)1 f(2)2 f (2)3 . . .]

[f (3)0 f (3)1 f(3)2 f(3)3 . . .]

.

[f (0)0, f (1)1 f(2)2 f (3)3, . . .]

Wolfgang Schreiner 22

More on Functions 1

Example

The set R is not countable.
Every infinite sequence d of decimal digits represents a real number

0.d0d1d2

Since the set of all infinite sequences is not countable (and every real
number is represented by a countable set of such sequences), also R
is not countable.

Not all number domains are countable.

Wolfgang Schreiner 23

More on Functions 1

Set Cardinalities

Proposition: Two sets have same size, if there is a bijection between:

A and B are of same size :⇔ ∃f : f : A
bijective−→ B.

One set is not larger than another set, if there exists an injection from
the first set into the second set:

A is not larger than B :⇔ ∃f : f : A
injective−→ B.

One set is smaller than another set, if they are not of same size and
the second one is not larger than the first one.

A is smaller than B :⇔
(A is not larger than B) ∧ ¬(A and B have same size).

Wolfgang Schreiner 24

More on Functions 1

Finite Sets

Proposition: For all finite sets A and B, the following holds:

|A| = |B| ⇔ A and B have same size;
|A| ≤ |B| ⇔ A is not larger than B;
|A| < |B| ⇔ A is smaller than B.

For finite sets, the new notions coincide with the old ones.

Wolfgang Schreiner 25

More on Functions 1

Infinite Sets

We can now also compare the size of infinite sets:

•N has the same size as Z.

• Z has the same size as Q.

•Q is smaller than R.

•R has the same size as C.

The first results were just shown above.

Wolfgang Schreiner 26

More on Functions 1

Size of Powersets

Proposition: Every set is smaller than its powerset:

∀S : S is smaller than P(S).

Proof: Take arbitrary S. S is not larger than P(S) because we can define

f : S
injective−→ P(S)

f(x) := {x}.

Assume that S and P(S) are of the same size, i.e., there exists some f : S
bijective−→ P(S). We show

a contradiction.

Take A := {x ∈ S : x 6∈ f(x)}. Since f is surjective and A ⊆ S, i.e., A ∈ P(S), we have some

a ∈ S with f (a) = A. But then we know a ∈ A⇔ a 6∈ f (a)⇔ a 6∈ A.

Wolfgang Schreiner 27

More on Functions 1

Permutations

Definition: A permutation of length n is a bijection from Nn to Nn:

p is permutation of length n :⇔ p : Nn
bijective−→ Nn.

Example: Take the sequence s = [a, b, c, d, e] and the permutation
p = [1, 0, 4, 3, 2]. Then we have

p ◦ s = [b, a, e, d, c].

Further results: see lecture notes.

Wolfgang Schreiner 28

More on Functions 1

Example: Sorting Problem

• Input:
– n ∈ N . . . the length of the sequence,

– s : Nn → R . . . a sequence of length n on R.

•Output: t : Nn→ R such that
– t is permutation of s,

– t is sorted with respect to ≤.

t is permutation of s :⇔
let n = length(t) :

n = length(s) ∧
∃p : p is permutation of length n ∧ p ◦ s = t;

t is sorted with respect to ≤ :⇔
∀0 ≤ i < length(t)− 1 : ti ≤ ti+1.

Wolfgang Schreiner 29

More on Functions 1

Embedding Sets

Wolfgang Schreiner 30

More on Functions 1

Homomorphism

Definition: Let f : An → A and f ′ : Bn → B. We call h a
homomorphism from A to B (with respect to f and f ′) if we have:

h : A
hom(f,f ′)
−→ B :⇔

h : A→ B ∧
(∃n ∈ N :
f : An→ A ∧ f ′ : Bn→ B ∧
(∀x ∈ An : h(f (x0, . . . , xn−1)) = f ′(h(x0), . . . , h(xn−1)))).

An isomorphism is a bijective homomorphism.

h : A
iso(f,f ′)
−→ B :⇔ h : A

hom(f,f ′)
−→ B ∧ h : A

bijective−→ B.

Wolfgang Schreiner 31

More on Functions 1

Illustration

We may compute with f in A or with f ’ in B.

Wolfgang Schreiner 32

More on Functions 1

Example

Take h : N→ Z defined as

h(x) := 〈x, 0〉.

Then we have, for all x ∈ N and y ∈ N,

h(x +
N
y) = h(x) +

Z
h(y);

h(x ∗
N
y) = h(x) ∗

Z
h(y)

i.e., h is a homomorphism from N to Z (for the operations + and ∗).

Wolfgang Schreiner 33

More on Functions 1

Example

Take h : Z→ Q defined as

h(x) :=
x

1
Z

.

Then we have, for all x ∈ Z and y ∈ Z,

h(x +
Z
y) = h(x) +

Q
h(y);

h(x−
Z
y) = h(x)−

Q
h(y);

h(x ∗
Z
y) = h(x) ∗

Q
h(y)

i.e., h is a homomorphism from Z to Q (for operations +, −, ∗).

Wolfgang Schreiner 34

More on Functions 1

Example

Take the domain “List(T)” with functions “length” and “append”.

We have for all x ∈ List(T) and y ∈ List(T)

length(append(x, y)) = length(x) + length(y)

i.e., “length” is a homomorphism from “List(T)” to N with respect
to “append” and +.

Wolfgang Schreiner 35

More on Functions 1

Example

Take the set of polynomials Poly.

We have, for all polynomials x and y and a ∈ R,

(x + y)[a] = x[a] +
R
y[a]

(x− y)[a] = x[a]−
R
y[a]

(−x)[a] = −
R
x[a]

(x ∗ y)[a] = x[a] ∗
R
y[a]

i.e., polynomial evaluation is a homomorphism from Poly to R (for
operations +, −, ∗).

Wolfgang Schreiner 36

More on Functions 1

Example

N ⊆′ Z ⊆′ Q ⊆′ R ⊆′ C
where

A ⊆′ B :⇔ ∃h,B′ ⊆ B : h : A
iso(OA,O

′
B)

−→ B′.

and OA denotes the considered operations on A, O′B denotes the

corresponding operations on B’ and h : A
iso(OA,O

′
B)

−→ B′ states that
h is an isomorphism between A and B for each operation pair.

Every number domain is isomorphic to some subset of its “successor”.

Wolfgang Schreiner 37

More on Functions 1

Complex Numbers

Cartesian Coordinates:

Complex number x+ yi represented by point with coordinates 〈x, y〉.

Wolfgang Schreiner 38

More on Functions 1

Complex Numbers

Polar Coordinates:

Complex number x+ yi represented by point with coordinates 〈r, α〉.

Wolfgang Schreiner 39

More on Functions 1

Polar Representation of Complex Numbers

Definition:

C
′ := (R>0 × [0, 2π[) ∪ {〈0, 3π/2〉}

• Angles expressed in “radians” (i.e., π = 180◦).

• Zero point is assigned unique (but arbitrary) angle 3π/2.

cartesian : C′→ C

cartesian(z) = z0 ∗ cos(z1) + z0 ∗ sin(z1)i.

Translation from new domain into original domain.

Wolfgang Schreiner 40

More on Functions 1

Translation

polar : C→ C
′

polar(z) = (
√
z2

0 + z2
1, α)

where α =

if z0 = 0 then
if z1 > 0 then π/2 else 3π/2

else
let a = arctan(z1/z0) :

shift(if z0 ≥ 0 then a else π − a)

shift : R→ [0, 2π[

shift(a) := (such b : b ∈ [0, 2π[∧ ∃i ∈ Z : a− b = 2πi)

Translation from original domain into new domain.

Wolfgang Schreiner 41

More on Functions 1

Relationship

Proposition: cartesian and polar are bijections.

cartesian ◦ polar = 1
C
,

polar ◦ cartesian = 1
C
′

Definition:
x ∗
C
′ y := 〈x0 ∗ y0, shift(x1 + y1)〉

Proposition: C and C’ are isomorphic with respect to multiplication.

polar : C
iso(∗

C
,∗
C
′)−→ C
′

cartesian : C′
iso(∗

C
′,∗C)

−→ C

Wolfgang Schreiner 42

More on Functions 1

Proof

∀x ∈ C′, y ∈ C′ : cartesian(x ∗
C
′ y) = cartesian(x) ∗

C
cartesian(y).

Take arbitrary x ∈ C′ and y ∈ C′. We then have

cartesian(x ∗
C
′ y) =

cartesian(x0y0, shift(x1 + y1)) =
x0y0cos(shift(x1 + y1)) + (x0y0sin(shift(x1 + y1)))i = (∗)

x0y0cos(x1 + y1) + (x0y0sin(x1 + y1))i.

(*) holds because of the definition “shift” and for every x ∈ R,

sin(x + 2π) = sin(x),
cos(x + 2π) = cos(x)

Wolfgang Schreiner 43

More on Functions 1

Proof (Continued)

We also have

cartesian(x) ∗
C

cartesian(y) =
(x0cos(x1) + x0sin(x1)i) ∗

C
(y0cos(y1) + y0sin(y1)i) =

(x0y0cos(x1)cos(y1)− x0y0sin(x1)sin(y1))+
(x0y0cos(x1)sin(y1) + x0y0sin(x1)cos(y1))i =

x0y0(cos(x1)cos(y1)− sin(x1)sin(y1))+
x0y0(cos(x1)sin(y1) + x0y0sin(x1)cos(y1))i

We assume the knowledge

cos(x1 + y1) = cos(x1)cos(y1)− sin(x1)sin(y1)
sin(x1 + y1) = cos(x1)sin(y1) + sin(x1)cos(y1)

as granted and are therefore done.

Wolfgang Schreiner 44

More on Functions 1

Relationship

•C and C’ are isomorphic.
– +, ∗, −, /.

• Application for computing.
– Operate in one domain.

– Translate results into other domain.

An operation is typically easier to compute in one of the domains.

Wolfgang Schreiner 45

More on Functions 1

Complex Root

Definition: √
: (N× C′)→ C

′
n
√
z := 〈 n√z0, z1/n〉.

Proposition: For every n ∈ N>0 and z ∈ C′, the n-th roots of z are
n
√
z and the n-1 values that have the same distance from the origin

and their angle shifted by multiples of 2π/n:

∀n ∈ N>0, z ∈ C′ :
let r = n

√
z :

(∀s ∈ C′ : z = sn⇔ ∃i ∈ N : s = 〈r0, shift(r1 + 2πi/n)〉).

Wolfgang Schreiner 46

More on Functions 1

Illustration

All roots are on same circle and have equal distance.

Wolfgang Schreiner 47

More on Functions 1

Translation

Definition: √
: (N>0 × C)→ C

n
√
z := cartesian(n

√
polar(z)).

+
C
′ : (C′ × C′)→ C

′

x +
C
′ y := polar(cartesian(x) +

C
cartesian(y));

−
C
′ : (C′ × C′)→ C

′

x−
C
′ y := polar(cartesian(x) +

C
cartesian(y)).

Compute
√

in C’, but + and − in C.

Wolfgang Schreiner 48

More on Functions 1

Summary

• Function notions:
– Image, injective, surjective, bijective.

– Properties.

• Counting set elements:
– Size of a finite set.

– Countable sets, enumerations.

– Comparing infinite sets.

– Permutations.

• Embedding sets:
– Homomorphisms, isomorphisms.

– Examples, application for computing.

Wolfgang Schreiner 49

