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Overview

• Further Notions

• Counting Set Elements

• Embedding Sets
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Further Notions
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Image

Definition: Let f : A→ B, A′ ⊆ A. The image of A′ at f is the set
of all values to which elements of A′ are mapped by f :

f (A′) := if A′ ⊆ domain(f ) then {f (x) : x ∈ A′}.

The inverse image of B′ at f is the set of all elements that are mapped
to some elements of B′ by f :

f−1(B′) := {x ∈ domain(f ) : f (x) ∈ B′}.

Function applied to set of arguments.
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Image

f−1(f(A′)) = A′
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Function Properties

Definition: Let f : A →B. f is injective (one-to-one) if it does not
map different arguments to the same result:

f : A
injective−→ B :⇔

f : A→ B ∧ (∀x0 ∈ A, x1 ∈ A : f (x0) = f (x1)⇒ x0 = x1).

f is surjective (onto) if every element of B is hit by some argument:

f : A
surjective−→ B :⇔ f : A→ B ∧ (∀y ∈ B : ∃x ∈ A : f (x) = y).

f is bijective if it is injective and surjective:

f : A
bijective−→ B :⇔ f : A

injective−→ B ∧ f : A
surjective−→ B.
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Illustration
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Example

• The identity function f (x) := x is bijective:

• The square function f (x) := x2 is neither injective nor surjective:

• The function f (x) := x3 − x is surjective but not injective:
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Function Composition

Proposition: The composition of two bijective functions is bijective:

∀A,B,C, f : A
bijective−→ B, g : B

bijective−→ C :

f ◦ g : A
bijective−→ C.

Proof: Take arbitrary f : A
bijective−→ B, g : B

bijective−→ C.

• We show f ◦ g is injective. Take arbitrary x0 ∈ A and x1 ∈ A with (f ◦ g)(x0) = (f ◦ g)(x1).

We have to show x0 = x1.

We know, by definition of ◦, that g(f(x0)) = g(f(x1)) and thus, because g is injective, f(x0) =

f (x1). Since f is injective, we then have x0 = x1.

• We show f◦g is surjective. Take arbitrary z ∈ C; we have to find some x such that (f◦g)(x) = z.

Since g is surjective, we have some y ∈ B such that g(y) = z. Since f is surjective, we have

some x ∈ A such that f (x) = y. Thus (f ◦ g)(x) = g(f (x)) = g(y) = z.
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Function Inversion

Proposition: If a function is injective, its inverse is also a function:

∀A,B, f : A
injective−→ B : :f−1 : B → A.

Proof: Take arbitrary f : A
injective−→ B. We have to show f−1 : B → A.

We have f−1 ⊆ B × A. Thus it remains to be shown

(∀x, y0, y1 : (〈x, y0〉 ∈ f−1 ∧ 〈x, y1〉 ∈ f−1)⇒ y0 = y1).

Take arbitrary x, y0, and y1 and assume

(1) 〈x, y0〉 ∈ f−1 ∧ 〈x, y1〉 ∈ f−1.

We have to show (2) y0 = y1. From (1) and the definition of inverse, we know

(3) 〈y0, x〉 ∈ f ∧ 〈y1, x〉 ∈ f,

i.e., f(y0) = x and f(y1) = x. Since f is injective, we thus know (2).
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Inverse Function Properties

1A : A→ A, 1A(x) := x

Proposition: For every A,B, f : A→ B, we have

f ◦ 1B = f
1A ◦ f = f.

If f is injective, then we have

f ◦ f−1 = 1A

If f is also surjective (i.e., bijective), then we have

f−1 ◦ f = 1B.
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Counting Set Elements
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Number of Set Elements

Definition: A set S is finite if it is empty or there is a bijection to Nn
for some n > 0. We then call 0 resp. n the size or cardinality of S:

S is finite :⇔ S = ∅ ∨
(∃n ∈ N>0, f : f : Nn

bijective−→ S);

|S| := if S = ∅ then 0 else

(such n ∈ N>0 : ∃f : f : Nn
bijective−→ S).

A set is infinite if is not finite:

S is infinite :⇔ ¬S is finite.

Wolfgang Schreiner 12



More on Functions 1

Unicity of Bijection

Proposition: If S is not empty and both f : Nn→ S and g : Nm→ S
are bijections, then n = m:

(∀S 6= ∅, n ∈ N,m ∈ N, f : Nn
bijective−→ S, g : Nm

bijective−→ S :
m = n).

Proof: see lecture notes.

The size of a set is uniquely defined.
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Example

• The set S := {0, 2, 4} is finite; its size is 3 because we can define

a function f : N3
bijective−→ S as

f (0) := 0
f (1) := 2
f (2) := 4

i.e., f = [0, 2, 4]. The length of f is the same as the length of
[0, 4, 2], [4, 2, 0] or of any other bijection to S.

• The set N is infinite. If it were finite, we had some n ∈ N and

some f : Nn
bijective−→ N. Take k := 1 + max{f (i) : i ∈ Nn}. Then

k ∈ N but ∀i ∈ Nn : f(i) 6= k, i.e., f is not surjective on N.
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Number Quantifier

Definition: For every variable x and formula F , the phrase

#x : F

is a term where x is bound and whose value equals

|{x : F}|.

The term value is only well defined if the base formula is true for a
finite number of assignments for the bound variable.
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Set Sizes

Proposition: If A and B are disjoint with sizes m and n, respectively,
then the size of their union is m + n:

∀A,B,m ∈ N, n ∈ N :
(A ∩B = ∅ ∧ |A| = m ∧ |B| = n)⇒ |A ∪B| = m + n.

The size of the Cartesian product of two sets is the product of their
sizes:

∀A,B,m ∈ N, n ∈ N :
(|A| = m ∧ |B| = n)⇒ |A×B| = m ∗ n.
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Set Sizes (Continued)

Proposition: If A and B have size m and n, respectively, then the
size of the set of functions from A to B is nm:

∀A,B,m ∈ N, n ∈ N :
(|A| = m ∧ |B| = n)⇒ |A→ B| = nm.

If A is of size n, then A has 2n subsets:

∀A, n ∈ N :
|A| = n⇒ |P(A)| = 2n.
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Countable Sets

Definition: A set is countable if it has an enumeration, i.e., a bijective
mapping from N:

S is countable :⇔ ∃f : f : N
bijective−→ S.

A criterium to distinguish “degrees of infinity”.
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Example

Z is infinite but it is countable because we can define

f : N
bijective−→ Z

f (x) := if x is even then − x/2 else (x + 1)/2

i.e.,
f = [0, 1,−1, 2,−2, 3,−3, . . .].

While Z is infinite, we can enumerate all its elements.
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Example

The set Q is infinite but countable: we can list all positive rationals
in an infinite matrix that holds at position 〈i, j〉 the rational i+1

j+1:

1
1

1
2

1
3

1
4 . . .

↙ ↙ ↙
2
1

2
2

2
3 . . . . . .

↙ ↙
3
1

3
2 . . . . . . . . .

↙
4
1 . . . . . . . . . . . .

. . . . . . . . . . . . . . .

We can enumerate all elements in this matrix in a sequence f .
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Example (Continued)

From f , we remove all “doubles” constructing a sequence f ′ : N→ Q

that contains each positive rational number in exactly one position.
Finally we can define an enumeration of all rationals

g : N
bijective−→ Q

g(x) :=

if x = 0 then 0

else if x is even

then − f ′(x/2)

else f ′((x− 1)/2)

g = [0, 1,−1,
1

2
,−1

2
,
2

1
,−2

1
,
1

3
,−1

3
,
3

1
,−3

1
, . . .].
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Example

The set of all infinite sequences over {0, 1} is not countable.

If it were, we had an f : N
bijective−→ (N→ {0, 1}). Let s : N→ {0, 1}
s(i) := f (i)i

where d := 1− d. Then s differs from f (i) in the i-th digit (for every
i ∈ N), thus s is not contained in f .

f (0) =

f (1) =

f (2) =

f (3) =

s :=

[f(0)0 f (0)1 f(0)2 f (0)3 . . . ]

[f (1)0 f(1)1 f(1)2 f (1)3 . . . ]

[f (2)0 f (2)1 f(2)2 f (2)3 . . . ]

[f (3)0 f (3)1 f(3)2 f(3)3 . . . ]

. . . . . . . . . . . . . . .

[f (0)0, f (1)1 f(2)2 f (3)3, . . . ]
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Example

The set R is not countable.
Every infinite sequence d of decimal digits represents a real number

0.d0d1d2 . . . .

Since the set of all infinite sequences is not countable (and every real
number is represented by a countable set of such sequences), also R
is not countable.

Not all number domains are countable.
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Set Cardinalities

Proposition: Two sets have same size, if there is a bijection between:

A and B are of same size :⇔ ∃f : f : A
bijective−→ B.

One set is not larger than another set, if there exists an injection from
the first set into the second set:

A is not larger than B :⇔ ∃f : f : A
injective−→ B.

One set is smaller than another set, if they are not of same size and
the second one is not larger than the first one.

A is smaller than B :⇔
(A is not larger than B) ∧ ¬(A and B have same size).
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Finite Sets

Proposition: For all finite sets A and B, the following holds:

|A| = |B| ⇔ A and B have same size;
|A| ≤ |B| ⇔ A is not larger than B;
|A| < |B| ⇔ A is smaller than B.

For finite sets, the new notions coincide with the old ones.
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Infinite Sets

We can now also compare the size of infinite sets:

•N has the same size as Z.

• Z has the same size as Q.

•Q is smaller than R.

•R has the same size as C.

The first results were just shown above.
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Size of Powersets

Proposition: Every set is smaller than its powerset:

∀S : S is smaller than P(S).

Proof: Take arbitrary S. S is not larger than P(S) because we can define

f : S
injective−→ P(S)

f(x) := {x}.

Assume that S and P(S) are of the same size, i.e., there exists some f : S
bijective−→ P(S). We show

a contradiction.

Take A := {x ∈ S : x 6∈ f(x)}. Since f is surjective and A ⊆ S, i.e., A ∈ P(S), we have some

a ∈ S with f (a) = A. But then we know a ∈ A⇔ a 6∈ f (a)⇔ a 6∈ A.
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Permutations

Definition: A permutation of length n is a bijection from Nn to Nn:

p is permutation of length n :⇔ p : Nn
bijective−→ Nn.

Example: Take the sequence s = [a, b, c, d, e] and the permutation
p = [1, 0, 4, 3, 2]. Then we have

p ◦ s = [b, a, e, d, c].

Further results: see lecture notes.
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Example: Sorting Problem

• Input:
– n ∈ N . . . the length of the sequence,

– s : Nn → R . . . a sequence of length n on R.

•Output: t : Nn→ R such that
– t is permutation of s,

– t is sorted with respect to ≤.

t is permutation of s :⇔
let n = length(t) :

n = length(s) ∧
∃p : p is permutation of length n ∧ p ◦ s = t;

t is sorted with respect to ≤ :⇔
∀0 ≤ i < length(t)− 1 : ti ≤ ti+1.
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Embedding Sets

Wolfgang Schreiner 30



More on Functions 1

Homomorphism

Definition: Let f : An → A and f ′ : Bn → B. We call h a
homomorphism from A to B (with respect to f and f ′) if we have:

h : A
hom(f,f ′)
−→ B :⇔

h : A→ B ∧
(∃n ∈ N :
f : An→ A ∧ f ′ : Bn→ B ∧
(∀x ∈ An : h(f (x0, . . . , xn−1)) = f ′(h(x0), . . . , h(xn−1)))).

An isomorphism is a bijective homomorphism.

h : A
iso(f,f ′)
−→ B :⇔ h : A

hom(f,f ′)
−→ B ∧ h : A

bijective−→ B.
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Illustration

We may compute with f in A or with f ’ in B.
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Example

Take h : N→ Z defined as

h(x) := 〈x, 0〉.

Then we have, for all x ∈ N and y ∈ N,

h(x +
N
y) = h(x) +

Z
h(y);

h(x ∗
N
y) = h(x) ∗

Z
h(y)

i.e., h is a homomorphism from N to Z (for the operations + and ∗).
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Example

Take h : Z→ Q defined as

h(x) :=
x

1
Z

.

Then we have, for all x ∈ Z and y ∈ Z,

h(x +
Z
y) = h(x) +

Q
h(y);

h(x−
Z
y) = h(x)−

Q
h(y);

h(x ∗
Z
y) = h(x) ∗

Q
h(y)

i.e., h is a homomorphism from Z to Q (for operations +, −, ∗).
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Example

Take the domain “List(T )” with functions “length” and “append”.

We have for all x ∈ List(T ) and y ∈ List(T )

length(append(x, y)) = length(x) + length(y)

i.e., “length” is a homomorphism from “List(T )” to N with respect
to “append” and +.
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Example

Take the set of polynomials Poly.

We have, for all polynomials x and y and a ∈ R,

(x + y)[a] = x[a] +
R
y[a]

(x− y)[a] = x[a]−
R
y[a]

(−x)[a] = −
R
x[a]

(x ∗ y)[a] = x[a] ∗
R
y[a]

i.e., polynomial evaluation is a homomorphism from Poly to R (for
operations +, −, ∗).
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Example

N ⊆′ Z ⊆′ Q ⊆′ R ⊆′ C
where

A ⊆′ B :⇔ ∃h,B′ ⊆ B : h : A
iso(OA,O

′
B)

−→ B′.

and OA denotes the considered operations on A, O′B denotes the

corresponding operations on B’ and h : A
iso(OA,O

′
B)

−→ B′ states that
h is an isomorphism between A and B for each operation pair.

Every number domain is isomorphic to some subset of its “successor”.
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Complex Numbers

Cartesian Coordinates:

Complex number x+ yi represented by point with coordinates 〈x, y〉.
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Complex Numbers

Polar Coordinates:

Complex number x+ yi represented by point with coordinates 〈r, α〉.
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Polar Representation of Complex Numbers

Definition:

C
′ := (R>0 × [0, 2π[) ∪ {〈0, 3π/2〉}

• Angles expressed in “radians” (i.e., π = 180◦).

• Zero point is assigned unique (but arbitrary) angle 3π/2.

cartesian : C′→ C

cartesian(z) = z0 ∗ cos(z1) + z0 ∗ sin(z1)i.

Translation from new domain into original domain.
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Translation

polar : C→ C
′

polar(z) = (
√
z2

0 + z2
1, α)

where α =

if z0 = 0 then
if z1 > 0 then π/2 else 3π/2

else
let a = arctan(z1/z0) :

shift(if z0 ≥ 0 then a else π − a)

shift : R→ [0, 2π[

shift(a) := (such b : b ∈ [0, 2π[ ∧ ∃i ∈ Z : a− b = 2πi)

Translation from original domain into new domain.
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Relationship

Proposition: cartesian and polar are bijections.

cartesian ◦ polar = 1
C
,

polar ◦ cartesian = 1
C
′

Definition:
x ∗
C
′ y := 〈x0 ∗ y0, shift(x1 + y1)〉

Proposition: C and C’ are isomorphic with respect to multiplication.

polar : C
iso(∗

C
,∗
C
′)−→ C
′

cartesian : C′
iso(∗

C
′,∗C)

−→ C
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Proof

∀x ∈ C′, y ∈ C′ : cartesian(x ∗
C
′ y) = cartesian(x) ∗

C
cartesian(y).

Take arbitrary x ∈ C′ and y ∈ C′. We then have

cartesian(x ∗
C
′ y) =

cartesian(x0y0, shift(x1 + y1)) =
x0y0cos(shift(x1 + y1)) + (x0y0sin(shift(x1 + y1)))i = (∗)

x0y0cos(x1 + y1) + (x0y0sin(x1 + y1))i.

(*) holds because of the definition “shift” and for every x ∈ R,

sin(x + 2π) = sin(x),
cos(x + 2π) = cos(x)
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Proof (Continued)

We also have

cartesian(x) ∗
C

cartesian(y) =
(x0cos(x1) + x0sin(x1)i) ∗

C
(y0cos(y1) + y0sin(y1)i) =

(x0y0cos(x1)cos(y1)− x0y0sin(x1)sin(y1))+
(x0y0cos(x1)sin(y1) + x0y0sin(x1)cos(y1))i =

x0y0(cos(x1)cos(y1)− sin(x1)sin(y1))+
x0y0(cos(x1)sin(y1) + x0y0sin(x1)cos(y1))i

We assume the knowledge

cos(x1 + y1) = cos(x1)cos(y1)− sin(x1)sin(y1)
sin(x1 + y1) = cos(x1)sin(y1) + sin(x1)cos(y1)

as granted and are therefore done.
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Relationship

•C and C’ are isomorphic.
– +, ∗, −, /.

• Application for computing.
– Operate in one domain.

– Translate results into other domain.

An operation is typically easier to compute in one of the domains.
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Complex Root

Definition: √
: (N× C′)→ C

′
n
√
z := 〈 n√z0, z1/n〉.

Proposition: For every n ∈ N>0 and z ∈ C′, the n-th roots of z are
n
√
z and the n-1 values that have the same distance from the origin

and their angle shifted by multiples of 2π/n:

∀n ∈ N>0, z ∈ C′ :
let r = n

√
z :

(∀s ∈ C′ : z = sn⇔ ∃i ∈ N : s = 〈r0, shift(r1 + 2πi/n)〉).
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Illustration

All roots are on same circle and have equal distance.
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Translation

Definition: √
: (N>0 × C)→ C

n
√
z := cartesian( n

√
polar(z)).

+
C
′ : (C′ × C′)→ C

′

x +
C
′ y := polar(cartesian(x) +

C
cartesian(y));

−
C
′ : (C′ × C′)→ C

′

x−
C
′ y := polar(cartesian(x) +

C
cartesian(y)).

Compute
√

in C’, but + and − in C.
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Summary

• Function notions:
– Image, injective, surjective, bijective.

– Properties.

• Counting set elements:
– Size of a finite set.

– Countable sets, enumerations.

– Comparing infinite sets.

– Permutations.

• Embedding sets:
– Homomorphisms, isomorphisms.

– Examples, application for computing.
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