Go backward to Go up to TopGo forward to Illustration |

*Definition:*
Let `f`: `A`^{n} -> `A` and `f`': `B`^{n} -> `B`. We call `h` a *homomorphism*
from `A` to
`B` (with respect to `f` and `f`') if we have:

An

h:A->^{hom(f,f')}B: <=>h:A->B/\( existsninN:f:A^{n}->A/\f':B^{n}->B/\( forallxinA^{n}:h(f(x_{0}, ...,x_{n-1})) =f'(h(x_{0}), ...,h(x_{n-1})))).

h:A->^{iso(f,f')}B: <=>h:A->^{hom(f,f')}B/\h:A->^{bijective}B.

Author: Wolfgang Schreiner

Last Modification: December 7, 1999