previous up next
Go backward to 2.2 Propositional Logic
Go up to 2 The Language of Logic
Go forward to 2.4 Example
RISC-Linz logo

2.3 Predicate Logic

Propositional logic is just concerned about the composition of formulas; it does not investigate the properties described by these formulas. We now enter the realm of predicate logic that is able to describe objects and properties of a domain, i.e., of some abstract model of the real world.

A Domain

Definition 11 (Domain) A  domain (Bereich) or  structure (Struktur) consists of
  1. A collection of  values (Werte) or  objects (Gegenstände); the number of objects may be finite or infinite (but not zero).
  2. A collection of  functions (Funktionen), also called  mappings (Abbildungen, Zuordnungen); each function takes a certain number of values, the  arguments (Argumente), and returns a value, the  result (Resultat, Ergebnis). The number of arguments is the arity of the function.

    A function with arity 0 is also called a  constant (Konstante).

  3. A collection of  predicates (Prädikate), also called  relations (Relationen, Beziehungen),  properties (Eigenschaften),  attributes (Attribute); each predicate takes a certain number of values, the predicate arguments, and returns a truth value.

    If the predicate returns true, it is said to be true, to  hold (halten), or to be  valid (gültig) for these values. 

Example  Various examples of domains are

Predicate logic can be considered an extension of propositional logic, i.e., all propositional logic formulas are also predicate logic formulas and all properties derived for propositional logic also hold (in a generalized form) in predicate logic. While in propositional logic the only elementary formulas are the logical constants `T' and `F', predicate logic allows elementary formulas that express properties of objects. For this purpose, predicate logic introduces means to denote objects in a given domain.

  • 2.3.1 Terms
  • 2.3.2 Atomic Formulas
  • 2.3.3 Equality
  • 2.3.4 Quantified Formulas
  • 2.3.5 Local Definitions

  • Author: Wolfgang Schreiner
    Last Modification: October 4, 1999

    previous up next