
Introduction to Logic Programming
Foundations, First-Order Language

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

kutsia@risc.jku.at

What is a Logic Program

Logic program is a set of certain formulas of a first-order
language.

In this lecture: syntax and semantics of a first-order language.

Introductory Examples

Representing “John loves Mary”: loves(John,Mary).

loves: a binary predicate (relation) symbol.

Intended meaning: The object in the first argument of loves
loves the object in its second argument.

John, Mary: constants.

Intended meaning: To denote persons John and Mary,
respectively.

Introductory Examples

father: A unary function symbol.

Intended meaning: The father of the object in its argument.

John’s father loves John: loves(father(John), John).

First-Order Language

Syntax

Semantics

Syntax

Alphabet

Terms

Formulas

Alphabet
A first-order alphabet consists of the following disjoint sets of
symbols:
I A countable set of variables V.
I For each n ≥ 0, a set of n-ary function symbols Fn.

Elements of F0 are called constants.
I For each n ≥ 0, a set of n-ary predicate symbols Pn.
I Logical connectives ¬, ∨, ∧,⇒,⇔.
I Quantifiers ∃, ∀.
I Parenthesis ‘(’, ‘)’, and comma ‘,’.

Notation:
I x, y, z for variables.
I f , g for function symbols.
I a, b, c for constants.
I p, q for predicate symbols.

Terms

Definition
I A variable is a term.
I If t1, . . . , tn are terms and f ∈ Fn, then f (t1, . . . , tn) is a term.
I Nothing else is a term.

Notation:
I s, t, r for terms.

Example

I plus(plus(x, 1), x) is a term, where plus is a binary function
symbol, 1 is a constant, x is a variable.

I father(father(John)) is a term, where father is a unary
function symbol and John is a constant.

Formulas

Definition
I If t1, . . . , tn are terms and p ∈ Pn, then p(t1, . . . , tn) is a

formula. It is called an atomic formula.
I If A is a formula, (¬A) is a formula.
I If A and B are formulas, then (A ∨ B), (A ∧ B), (A⇒ B), and

(A⇔ B) are formulas.
I If A is a formula, then (∃x.A) and (∀x.A) are formulas.
I Nothing else is a formula.

Notation:
I A,B for formulas.

Eliminating Parentheses

I Excessive use of parentheses often can be avoided by
introducing binding order.

I ¬, ∀, ∃ bind stronger than ∨.
I ∨ binds stronger than ∧.
I ∧ binds stronger than⇒ and⇔.
I Furthermore, omit the outer parentheses and associate
∨,∧,⇒,⇔ to the right.

Eliminating Parentheses

Example
The formula

(∀y.(∀x.((p(x)) ∧ (¬r(y)))⇒ ((¬q(x)) ∨ (A ∨ B)))))

due to binding order can be rewritten into

(∀y.(∀x.(p(x) ∧ ¬r(y)⇒ ¬q(x) ∨ (A ∨ B))))

which thanks to the convention of the association to the right
and omitting the outer parentheses further simplifies to

∀y.∀x.(p(x) ∧ ¬r(y)⇒ ¬q(x) ∨ A ∨ B).

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational(x)⇒ real(x))

2. There exists a number that is prime.
∃x. prime(x)

3. For every number x, there exists a number y such that
x < y.

∀x.∃y. x < y

Assume:
I rational, real, prime: unary predicate symbols.
I <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
1. Every rational number is a real number.

∀x.(rational(x)⇒ real(x))

2. There exists a number that is prime.
∃x. prime(x)

3. For every number x, there exists a number y such that
x < y.

∀x.∃y. x < y

Assume:
I rational, real, prime: unary predicate symbols.
I <: binary predicate symbol.

Example

Translating English sentences into first-order logic formulas:
For each natural number there exists exactly one immediate
successor natural number.

∀x.(∃y.succ(x, y) ∧ ∀z.(succ(x, z)⇒ y .
= z)))

Assume:
I succ: binary predicate symbol for immediate successor.
I

.
=: binary predicate symbol for equality.

Example

Translating English sentences into first-order logic formulas:

There is no natural number whose immediate successor is 0.

¬∃x. succ(x, zero)

Assume:
I zero: constant for 0.
I succ: binary predicate symbol for immediate successor.

Semantics

Meaning of a first-order language consists of an universe and
an appropriate meaning of each symbol.

This pair is called structure.

Structure fixes interpretation of function and predicate symbols.

Meaning of variables is determined by a variable assignment.

Interpretation of terms and formulas.

Structure

Structure: a pair (D, I).

D is a nonempty universe, the domain of interpretation.

I is an interpretation function defined on D that fixes the
meaning of each symbol associating
I to each f ∈ Fn an n-ary function fI : Dn → D,

(in particular, cI ∈ D for each constant c)
I to each p ∈ Pn different from .

=, an n-ary relation pI on D.

Variable Assignment

A structure S = (D, I) is given.

Variable assignment σS maps each x ∈ V into an element of D:
σS(x) ∈ D.

Given a variable x, an assignment ϑS is called an x-variant of
σS iff ϑS(y) = σS(y) for all y 6= x.

Interpretation of Terms

A structure S = (D, I) and a variable assignment σS are given.

Value of a term t under S and σS , ValS,σS (t):
I ValS,σS (x) = σS(x).
I ValS,σS (f (t1, . . . , tn)) = fI(ValS,σS (t1), . . . ,ValS,σS (tn)).

Interpretation of Formulas

A structure S = (D, I) and a variable assignment σS are given.

Value of an atomic formula under S and σS is one of true, false:
I ValS,σS (s

.
= t) = true iff ValS,σS (s) = ValS,σS (t).

I ValS,σS (p(t1, . . . , tn)) = true iff
(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI.

Interpretation of Formulas
A structure S = (D, I) and a variable assignment σS are given.

Values of compound formulas under S and σS are also either
true or false:
I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x.A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x.A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .

Interpretation of Formulas

A structure S = (D, I) is given.

The value of a formula A under S is either true or false:
I ValS(A) = true iff ValS , σS(A) = true for all σS .

S is called a model of A iff ValS(A) = true.

Written �S A.

Example

Formula: ∀x.(p(x)⇒ q(f (x), a)).

Define S = (D, I) as
I D = {1, 2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1, 1), (1, 2), (2, 2)}.

If σS(x) = 1, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.

If σS(x) = 2, then ValS,σS(∀x.(p(x)⇒ q(f (x), a))) = true.

Hence, �S A.

Validity, Unsatisfiability

A formula A is valid, if �S A for all S.

Written � A.

A formula A is unsatisfiable, if �S A for no S.

If A is valid, then ¬A is unsatisfiable and vice versa.

The notions extend to (multi)sets of formulas.

For {A1, . . . ,An}, just formulate them for A1 ∧ · · · ∧ An.

Valid
Non-valid

sat Unsat

Validity, Unsatisfiability

Valid
Non-valid

sat Unsat

I ∀x.p(x)⇒ ∃y.p(y) is valid.
I p(a)⇒ ¬∃x.p(x) is satisfiable non-valid.
I ∀x.p(x) ∧ ∃y.¬p(y) is unsatisfiable.

Logical Consequence

Definition
A formula A is a logical consequence of the formulas B1, . . . ,Bn,
if every model of B1 ∧ · · · ∧ Bn is a model of A.

Example

I mortal(socrates) is a logical consequence of
∀x.(person(x)⇒ mortal(x)) and person(socrates).

I cooked(apple) is a logical consequence of
∀x.(¬cooked(x)⇒ tasty(x)) and ¬tasty(apple).

I genius(einstein) is not a logical consequence of
∃x.person(x) ∧ genius(x) and person(einstein).

Logic Programs

Logic programs: finite non-empty sets of formulas of a special
form, called program clauses.

Program clause: ∀x1. . . .∀xk.B1 ∧ · · · ∧ Bn ⇒ A, where
I k, n ≥ 0,
I A and the B’s are atomic formulas,
I x1, . . . , xk are all the variables which occur in A,B1, . . . ,Bn.

Usually written in the inverse implication form without
quantifiers and conjunctions:

A⇐ B1, . . . ,Bn

Goal

Goals or queries of logic programs: formulas of the form

∃x1. . . .∃xk.B1 ∧ · · · ∧ Bn,

where
I k, n ≥ 0,
I the B’s are atomic formulas,
I x1, . . . , xk are all the variables which occur in B1, . . . ,Bn.

Usually written without quantifiers and conjunction:

B1, . . . ,Bn

The problem is to find out whether a goal is a logical
consequence of the given logic program or not.

The Problem and the Idea

Let P be a program and G be a goal.

Problem: Is G a logical consequence of P?

Idea: Try to show that the set of formulas P ∪ {¬G} is
inconsistent.

How? This we will learn in this course.

Example

Let P consist of the two clauses:
I ∀x.mortal(x)⇐ person(x).
I person(socrates).

Goal: G = ∃x.mortal(x).

¬G is equivalent to ∀x.¬mortal(x).

The set

{∀x.mortal(x)⇐ person(x), person(socrates), ∀x.¬mortal(x)}

is inconsistent.

Hence, G is a logical consequence of P.

We can even compute the witness term for the goal:
x = socrates.

How? This we will learn in this lecture.

