Logic Programming
 Unification

Temur Kutsia
Research Institute for Symbolic Computation Johannes Kepler University, Linz, Austria kutsia@risc.jku.at

Unification

Solving term equations:
Given: Two terms s and t.
Find: A substitution σ such that $\sigma(s)=\sigma(t)$.

Substitutions

- A $T(\mathcal{F}, \mathcal{V})$-substitution: A function $\sigma: \mathcal{V} \rightarrow T(\mathcal{F}, \mathcal{V})$, whose domain

$$
\mathcal{D o m}(\sigma):=\{x \mid \sigma(x) \neq x\}
$$

is finite.

Substitutions

- A $T(\mathcal{F}, \mathcal{V})$-substitution: A function $\sigma: \mathcal{V} \rightarrow T(\mathcal{F}, \mathcal{V})$, whose domain

$$
\mathcal{D o m}(\sigma):=\{x \mid \sigma(x) \neq x\}
$$

is finite.

- Range of a substitution σ :

$$
\mathcal{R} a n(\sigma):=\{\sigma(x) \mid x \in \mathcal{D} o m(\sigma)\}
$$

Substitutions

- A $T(\mathcal{F}, \mathcal{V})$-substitution: A function $\sigma: \mathcal{V} \rightarrow T(\mathcal{F}, \mathcal{V})$, whose domain

$$
\mathcal{D o m}(\sigma):=\{x \mid \sigma(x) \neq x\}
$$

is finite.

- Range of a substitution σ :

$$
\mathcal{R} a n(\sigma):=\{\sigma(x) \mid x \in \mathcal{D} o m(\sigma)\} .
$$

- Variable range of a substitution σ :

$$
\mathcal{V} \mathcal{R} a n(\sigma):=\mathcal{V} \operatorname{ar}(\mathcal{R} \operatorname{an}(\sigma)) .
$$

Substitutions

- A $T(\mathcal{F}, \mathcal{V})$-substitution: A function $\sigma: \mathcal{V} \rightarrow T(\mathcal{F}, \mathcal{V})$, whose domain

$$
\mathcal{D o m}(\sigma):=\{x \mid \sigma(x) \neq x\}
$$

is finite.

- Range of a substitution σ :

$$
\mathcal{R} a n(\sigma):=\{\sigma(x) \mid x \in \mathcal{D} o m(\sigma)\} .
$$

- Variable range of a substitution σ :

$$
\mathcal{V} \mathcal{R} a n(\sigma):=\mathcal{V} \operatorname{ar}(\mathcal{R} \operatorname{an}(\sigma)) .
$$

- Notation: lower case Greek letters $\sigma, \vartheta, \varphi, \psi, \ldots$ Identity substitution: ε.

Substitutions

- Notation: If $\operatorname{Dom}(\sigma)=\left\{x_{1}, \ldots, x_{n}\right\}$, then σ can be written as the set

$$
\left\{x_{1} \mapsto \sigma\left(x_{1}\right), \ldots, x_{n} \mapsto \sigma\left(x_{n}\right)\right\}
$$

- Example:

$$
\{x \mapsto i(y), y \mapsto e\} .
$$

Substitutions

- The substitution σ can be extended to a mapping

$$
\sigma: T(\mathcal{F}, \mathcal{V}) \rightarrow T(\mathcal{F}, \mathcal{V})
$$

by induction:

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)
$$

Substitutions

- The substitution σ can be extended to a mapping

$$
\sigma: T(\mathcal{F}, \mathcal{V}) \rightarrow T(\mathcal{F}, \mathcal{V})
$$

by induction:

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)
$$

- Example:

$$
\begin{aligned}
\sigma & =\{x \mapsto i(y), y \mapsto e\} . \\
t & =f(y, f(x, y)) \\
\sigma(t) & =f(e, f(i(y), e))
\end{aligned}
$$

Substitutions

- The substitution σ can be extended to a mapping

$$
\sigma: T(\mathcal{F}, \mathcal{V}) \rightarrow T(\mathcal{F}, \mathcal{V})
$$

by induction:

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)
$$

- Example:

$$
\begin{aligned}
\sigma & =\{x \mapsto i(y), y \mapsto e\} . \\
t & =f(y, f(x, y)) \\
\sigma(t) & =f(e, f(i(y), e))
\end{aligned}
$$

- Sub: The set of substitutions.

More Notions about Substitutions

- Composition of ϑ and σ :

$$
\sigma \vartheta(x):=\sigma(\vartheta(x)) .
$$

- Composition of two substitutions is again a substitution.
- Composition is associative but not commutative.

More Notions about Substitutions

Algorithm for obtaining a set representation of a composition of two substitutions in a set form.

- Given:

$$
\begin{aligned}
\theta & =\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\} \\
\sigma & =\left\{y_{1} \mapsto s_{1}, \ldots, y_{m} \mapsto s_{m}\right\}
\end{aligned}
$$

the set representation of their composition $\sigma \theta$ is obtained from the set

$$
\left\{x_{1} \mapsto \sigma\left(t_{1}\right), \ldots, x_{n} \mapsto \sigma\left(t_{n}\right), y_{1} \mapsto s_{1}, \ldots, y_{m} \mapsto s_{m}\right\}
$$

by deleting

- all $y_{i} \mapsto s_{i}$'s with $y_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$,
- all $x_{i} \mapsto \sigma\left(t_{i}\right)$'s with $x_{i}=\sigma\left(t_{i}\right)$.

More Notions about Substitutions

Example 3.1 (Composition)

$$
\begin{aligned}
\theta & =\{x \mapsto f(y), y \mapsto z\} . \\
\sigma & =\{x \mapsto a, y \mapsto b, z \mapsto y\} . \\
\sigma \theta & =\{x \mapsto f(b), z \mapsto y\} .
\end{aligned}
$$

More Notions about Substitutions

- t is an instance of s iff there exists a σ such that

$$
\sigma(s)=t
$$

- Notation: $t \gtrsim s$ (or $s \lesssim t$).
- Reads: t is more specific than s, or s is more general than t.
- \gtrsim is a quasi-order.
- Strict part: >.

More Notions about Substitutions

- t is an instance of s iff there exists a σ such that

$$
\sigma(s)=t
$$

- Notation: $t \gtrsim s($ or $s \lesssim t)$.
- Reads: t is more specific than s, or s is more general than t.
- \gtrsim is a quasi-order.
- Strict part: >.
- Example: $f(e, f(i(y), e)) \gtrsim f(y, f(x, y))$, because

$$
\sigma(f(y, f(x, y)))=f(e, f(i(y), e)
$$

for $\sigma=\{x \mapsto i(y), y \mapsto e\}$

Unification

Syntactic unification:
Given: Two terms s and t.
Find: A substitution σ such that $\sigma(s)=\sigma(t)$.

- σ : a unifier of s and t.
- σ : a solution of the equation $s={ }^{?} t$.

Examples

$$
\begin{aligned}
f(x)=? f(a): & \text { exactly one unifier }\{x \mapsto a\} \\
x=? f(y): & \text { infinitely many unifiers } \\
& \{x \mapsto f(y)\},\{x \mapsto f(a), y \mapsto a\}, \ldots
\end{aligned}
$$

$f(x)=? g(y)$: no unifiers
$x=? f(x)$: no unifiers

Examples

$x={ }^{?} f(y):$ infinitely many unifiers

$$
\{x \mapsto f(y)\},\{x \mapsto f(a), y \mapsto a\}, \ldots
$$

- Some solutions are better than the others: $\{x \mapsto f(y)\}$ is more general than $\{x \mapsto f(a), y \mapsto a\}$

Substitutions

Instantiation Quasi-Ordering

- A substitution σ is more general than ϑ, written $\sigma \lesssim \vartheta$, if there exists η such that $\eta \sigma=\vartheta$.
- ϑ is called an instance of σ.
- The relation \lesssim is quasi-ordering (reflexive and transitive binary relation), called instantiation quasi-ordering.
- \sim is the equivalence relation corresponding to \lesssim, i.e., the relation $\lesssim \cap \gtrsim$.

Example 3.2

Let $\sigma=\{x \mapsto y\}, \rho=\{x \mapsto a, y \mapsto a\}, \vartheta=\{y \mapsto x\}$.

- $\sigma \lesssim \rho$, because $\{y \mapsto a\} \sigma=\rho$.
- $\sigma \lesssim \vartheta$, because $\{y \mapsto x\} \sigma=\vartheta$.
- $\vartheta \lesssim \sigma$, because $\{x \mapsto y\} \vartheta=\sigma$.
- $\sigma \sim \vartheta$.

Substitutions

Definition 3.2 (Variable Renaming)
A substitution $\sigma=\left\{x_{1} \mapsto y_{1}, x_{2} \mapsto y_{2}, \ldots, x_{n} \mapsto y_{n}\right\}$ is called variable renaming iff $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
(Permuting the domain variables.)
Example 3.3

- $\{x \mapsto y, y \mapsto z, z \mapsto x\}$ is a variable renaming.
- $\{x \mapsto a\},\{x \mapsto y\}$, and $\{x \mapsto z, y \mapsto z, z \mapsto x\}$ are not.

Substitutions

Definition 3.3 (Idempotent Substitution)

A substitution σ is idempotent iff $\sigma \sigma=\sigma$.
Example 3.4
Let $\sigma=\{x \mapsto f(z), y \mapsto z\}, \vartheta=\{x \mapsto f(y), y \mapsto z\}$.

- σ is idempotent.
- ϑ is not: $\vartheta \vartheta=\sigma \neq \vartheta$.

Substitutions

Lemma 3.2
$\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho \sigma=\vartheta$.
Proof.
Exercise.

Substitutions

Lemma 3.2
$\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho \sigma=\vartheta$.
Proof.
Exercise.
Example 3.5

- $\sigma=\{x \mapsto y\}$.
- $\vartheta=\{y \mapsto x\}$.
- $\sigma \sim \vartheta$.
- $\{x \mapsto y, y \mapsto x\} \sigma=\vartheta$.

Substitutions

Theorem 3.4
σ is idempotent iff $\mathcal{D o m}(\sigma) \cap \mathcal{V} \mathcal{R} a n(\sigma)=\emptyset$.
Proof.
Exercise.

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma=\left\{s_{1}={ }^{?} t_{1}, \ldots, s_{n}={ }^{?} t_{n}\right\}$.

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma=\left\{s_{1}={ }^{?} t_{1}, \ldots, s_{n}={ }^{?} t_{n}\right\}$.
- Unifier or solution of Γ : A substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for all $1 \leq i \leq n$.

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma=\left\{s_{1}={ }^{?} t_{1}, \ldots, s_{n}={ }^{?} t_{n}\right\}$.
- Unifier or solution of Γ : A substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for all $1 \leq i \leq n$.
- $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ. Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \emptyset$.

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma=\left\{s_{1}={ }^{?} t_{1}, \ldots, s_{n}={ }^{?} t_{n}\right\}$.
- Unifier or solution of Γ : A substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for all $1 \leq i \leq n$.
- $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ. Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \emptyset$.
- σ is a most general unifier (mgu) of Γ iff it is a least element of $\mathcal{U}(\Gamma)$:
- $\sigma \in \mathcal{U}(\Gamma)$, and
- $\sigma \lesssim \vartheta$ for every $\vartheta \in \mathcal{U}(\Gamma)$.

Unifiers

Example 3.6
$\sigma:=\{x \mapsto y\}$ is an mgu of $x=?$
For any other unifier ϑ of $x=? ~ y, \sigma \lesssim \vartheta$ because

- $\vartheta(x)=\vartheta(y)=\vartheta \sigma(x)$.
- $\vartheta(y)=\vartheta \sigma(y)$.
- $\vartheta(z)=\vartheta \sigma(z)$ for any other variable z.

Unifiers

Example 3.6
$\sigma:=\{x \mapsto y\}$ is an mgu of $x=?$
For any other unifier ϑ of $x=?$

- $\vartheta(x)=\vartheta(y)=\vartheta \sigma(x)$.
- $\vartheta(y)=\vartheta \sigma(y)$.
- $\vartheta(z)=\vartheta \sigma(z)$ for any other variable z.
$\sigma^{\prime}:=\{x \mapsto z, y \mapsto z\}$ is a unifier but not an mgu of $x=?$
- $\sigma^{\prime}=\{y \mapsto z\} \sigma$.
- $\{z \mapsto y\} \sigma^{\prime}=\{x \mapsto y, z \mapsto y\} \neq \sigma$.

Unifiers

Example 3.6
$\sigma:=\{x \mapsto y\}$ is an mgu of $x=?$
For any other unifier ϑ of $x=?$

- $\vartheta(x)=\vartheta(y)=\vartheta \sigma(x)$.
- $\vartheta(y)=\vartheta \sigma(y)$.
- $\vartheta(z)=\vartheta \sigma(z)$ for any other variable z.
$\sigma^{\prime}:=\{x \mapsto z, y \mapsto z\}$ is a unifier but not an mgu of $x=? ~ y$.
- $\sigma^{\prime}=\{y \mapsto z\} \sigma$.
- $\{z \mapsto y\} \sigma^{\prime}=\{x \mapsto y, z \mapsto y\} \neq \sigma$.
$\sigma^{\prime \prime}=\left\{x \mapsto y, z_{1} \mapsto z_{2}, z_{2} \mapsto z_{1}\right\}$ is an mgu of $x={ }^{?} y$.
- $\sigma=\left\{z_{1} \mapsto z_{2}, z_{2} \mapsto z_{1}\right\} \sigma^{\prime \prime}$.
- $\sigma^{\prime \prime}$ is not idempotent.

Unification

Question: How to compute an mgu of an unification problem?

Rule-Based Formulation of Unification

- Unification algorithm in a rule-base way.
- Repeated transformation of a set of equations.
- The left-to-right search for disagreements: modeled by term decomposition.

The Inference System \mathfrak{U}

- A set of equations in solved form:

$$
\left\{x_{1} \approx t_{1}, \ldots, x_{n} \approx t_{n}\right\}
$$

where each x_{i} occurs exactly once.

- For each idempotent substitution there exists exactly one set of equations in solved form.
- Notation:
- $[\sigma]$ for the solved form set for an idempotent substitution σ.
- σ_{S} for the idempotent substitution corresponding to a solved form set S.

The Inference System \mathfrak{U}

- System: The symbol \perp or a pair $P ; S$ where
- P is a set of unification problems,
- S is a set of equations in solved form.
$-\perp$ represents failure.
- A unifier (or a solution) of a system $P ; S$: A substitution that unifies each of the equations in P and S.
- \perp has no unifiers.

The Inference System \mathfrak{U}

Example 3.7

- System: $\left\{g(a)={ }^{?} g(y), g(z)={ }^{?} g(g(x))\right\} ;\{x \approx g(y)\}$.
- Its unifier: $\{x \mapsto g(a), y \mapsto a, z \mapsto g(g(a))\}$.

The Inference System \mathfrak{U}

Six transformation rules on systems: ${ }^{1}$
Trivial:

$$
\{s=? s\} \uplus P^{\prime} ; S \Leftrightarrow P^{\prime} ; S
$$

Decomposition:

$$
\begin{aligned}
& \left\{f\left(s_{1}, \ldots, s_{n}\right)=?^{?} f\left(t_{1}, \ldots, t_{n}\right)\right\} \uplus P^{\prime} ; S \Leftrightarrow \\
& \quad\left\{s_{1}={ }^{?} t_{1}, \ldots, s_{n}={ }^{?} t_{n}\right\} \cup P^{\prime} ; S, \text { where } n \geq 0 .
\end{aligned}
$$

Symbol Clash:

$$
\left\{f\left(s_{1}, \ldots, s_{n}\right)=^{?} g\left(t_{1}, \ldots, t_{m}\right)\right\} \uplus P^{\prime} ; S \Leftrightarrow \perp, \text { if } f \neq g
$$

[^0]
The Inference System \mathfrak{U}

Orient:

$$
\{t=? x\} \uplus P^{\prime} ; S \Leftrightarrow\left\{x=^{?} t\right\} \cup P^{\prime} ; S \text {, if } t \notin \mathcal{V} \text {. }
$$

Occurs Check:

$$
\left\{x=^{?} t\right\} \uplus P^{\prime} ; S \Leftrightarrow \perp \text { if } x \in \mathcal{V} \operatorname{Var}(t) \text { but } x \neq t .
$$

Variable Elimination:

$$
\left\{x={ }^{?} t\right\} \uplus P^{\prime} ; S \Leftrightarrow\{x \mapsto t\}\left(P^{\prime}\right) ;\{x \mapsto t\}(S) \cup\{x \approx t\},
$$

if $x \notin \operatorname{V} \operatorname{ar}(t)$.

Unification with \mathfrak{U}

In order to unify s and t :

1. Create an initial system $\{s=?$
2. Apply successively rules from \mathfrak{U}.

The system \mathfrak{U} is essentially the Herbrand's Unification Algorithm.

Examples

Example 3.8 (Failure)

Unify $p(f(a), g(x))$ and $p(y, y)$.

$$
\begin{aligned}
\{p(f(a), g(x))=? p(y, y)\} ; \emptyset & \Longrightarrow \operatorname{Dec} \\
\left\{f(a)={ }^{?} y, g(x)={ }^{?} y\right\} ; \emptyset & \Longrightarrow \mathrm{Or} \\
\left\{y={ }^{?} f(a), g(x)={ }^{?} y\right\} ; \emptyset & \Longrightarrow \mathrm{VarEl} \\
\left\{g(x)=?{ }^{?} f(a)\right\} ;\{y \approx f(a)\} & \Longrightarrow \mathrm{SymCl} \\
& \perp
\end{aligned}
$$

Examples

Example 3.9 (Success)

Unify $p(a, x, h(g(z)))$ and $p(z, h(y), h(y))$.

$$
\begin{gathered}
\left\{p(a, x, h(g(z)))={ }^{?} p(z, h(y), h(y))\right\} ; \emptyset \Longrightarrow \text { Dec } \\
\left\{a={ }^{?} z, x={ }^{?} h(y), h(g(z))={ }^{?} h(y)\right\} ; \emptyset \Longrightarrow \text { Or } \\
\left\{z={ }^{?} a, x={ }^{?} h(y), h(g(z))=^{?} h(y)\right\} ; \emptyset \Longrightarrow \text { VarEI } \\
\left\{x={ }^{?} h(y), h(g(a))={ }^{?} h(y)\right\} ;\{z \approx a\} \Longrightarrow \text { VarEl } \\
\left\{h(g(a))={ }^{?} h(y)\right\} ;\{z \approx a, x \approx h(y)\} \Longrightarrow \text { Dec } \\
\{g(a)=? y\} ;\{z \approx a, x \approx h(y)\} \Longrightarrow \text { Or } \\
\left\{y={ }^{?} g(a)\right\} ;\{z \approx a, x \approx h(y)\} \Longrightarrow \text { VarEI } \\
\emptyset ;\{z \approx a, x \approx h(g(a)), y \approx g(a)\} .
\end{gathered}
$$

Answer: $\{z \mapsto a, x \mapsto h(g(a)), y \mapsto g(a)\}$

Examples

Example 3.10 (Failure)

Unify $p(x, x)$ and $p(y, f(y))$.

$$
\begin{gathered}
\{p(x, x)=? p(y, f(y))\} ; \emptyset \\
\left\{x={ }^{?} y, x=?\right. \text { Dec } \\
\{y=? f(y)\} ; \emptyset \\
\Longrightarrow \text { VarEl } \\
\{y ;\{x \approx y\} \\
\perp \text { OccCh } \\
\perp
\end{gathered}
$$

Properties of \mathfrak{U} : Termination

Lemma 3.3
For any finite set of equations P, every sequence of transformations in \mathfrak{U}

$$
P ; \emptyset \Leftrightarrow P_{1} ; S_{1} \Leftrightarrow P_{2} ; S_{2} \Leftrightarrow \cdots
$$

terminates either with \perp or with $\emptyset ; S$, with S in solved form.

Properties of \mathfrak{U} : Termination

Proof.

Complexity measure on the set P of equations: $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$, ordered lexicographically on triples of naturals, where $n_{1}=$ The number of distinct variables in P.
$n_{2}=$ The number of symbols in P.
$n_{3}=$ The number of equations in P of the form $t=? x$ where t is not a variable.

Properties of \mathfrak{U} : Termination

Proof [Cont.]

Each rule in \mathfrak{U} strictly reduces the complexity measure.

Rule	n_{1}	n_{2}	n_{3}
Trivial	\geq	$>$	
Decomposition	$=$	$>$	
Orient	$=$	$=$	$>$
Variable Elimination	$>$		

Properties of \mathfrak{U} : Termination

Proof [Cont.]

- A rule can always be applied to a system with non-empty P.
- The only systems to which no rule can be applied are \perp and $\emptyset ; S$.
- Whenever an equation is added to S, the variable on the left-hand side is eliminated from the rest of the system, i.e. S_{1}, S_{2}, \ldots are in solved form.

Corollary 3.1
If $P ; \emptyset \Leftrightarrow^{+} \emptyset ; S$ then σ_{S} is idempotent.

Properties of \mathfrak{U} : Correctness

Notation: Γ for systems.
Lemma 3.4
For any transformation $P ; S \Leftrightarrow \Gamma$, a substitution ϑ unifies $P ; S$ iff it unifies Γ.

Properties of \mathfrak{U} : Correctness

Proof.

Occurs Check: If $x \in \mathcal{V} \operatorname{ar}(t)$ and $x \neq t$, then

- x contains fewer symbols than t,
- $\vartheta(x)$ contains fewer symbols than $\vartheta(t)$ (for any ϑ).

Therefore, $\vartheta(x)$ and $\vartheta(t)$ can not be unified.
Variable Elimination: From $\vartheta(x)=\vartheta(t)$, by structural induction on u :

$$
\vartheta(u)=\vartheta\{x \mapsto t\}(u)
$$

for any term, equation, or set of equations u. Then

$$
\vartheta\left(P^{\prime}\right)=\vartheta\{x \mapsto t\}\left(P^{\prime}\right), \quad \vartheta\left(S^{\prime}\right)=\vartheta\{x \mapsto t\}\left(S^{\prime}\right)
$$

Properties of \mathfrak{U} : Correctness

Theorem 3.5 (Soundness)
If $P ; \emptyset \Leftrightarrow^{+} \emptyset ; S$, then σ_{S} unifies any equation in P.

Properties of \mathfrak{U} : Correctness

Theorem 3.5 (Soundness)
If $P ; \emptyset \Leftrightarrow^{+} \emptyset ; S$, then σ_{S} unifies any equation in P.
Proof.
By induction on the length of derivation, using the previous lemma and the fact that σ_{S} unifies S.

Properties of \mathfrak{U} : Correctness

Theorem 3.6 (Completeness)
If ϑ unifies every equation in P, then any maximal sequence of transformations $P ; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset ; S$ such that $\sigma_{S} \lesssim \vartheta$.

Properties of \mathfrak{U} : Correctness

Theorem 3.6 (Completeness)
If ϑ unifies every equation in P, then any maximal sequence of transformations $P ; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset ; S$ such that $\sigma_{S} \lesssim \vartheta$.

Proof.

Such a sequence must end in $\emptyset ; S$ where ϑ unifies S (why?). For every binding $x \mapsto t$ in $\sigma_{S}, \vartheta \sigma_{S}(x)=\vartheta(t)=\vartheta(x)$ and for every $x \notin \mathcal{D o m}\left(\sigma_{S}\right), \vartheta \sigma_{S}(x)=\vartheta(x)$. Hence, $\vartheta=\vartheta \sigma_{S}$.

Properties of \mathfrak{U} : Correctness

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P ; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset ; S$ such that $\sigma_{S} \lesssim \vartheta$.

Proof.
Such a sequence must end in $\emptyset ; S$ where ϑ unifies S (why?). For every binding $x \mapsto t$ in $\sigma_{S}, \vartheta \sigma_{S}(x)=\vartheta(t)=\vartheta(x)$ and for every $x \notin \operatorname{Dom}\left(\sigma_{S}\right), \vartheta \sigma_{S}(x)=\vartheta(x)$. Hence, $\vartheta=\vartheta \sigma_{S}$.

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations from $P ; \emptyset$ must have the form $P ; \emptyset \Leftrightarrow \cdots \Leftrightarrow \perp$.

Observations

- \mathfrak{U} computes an idempotent mgu.
- The choice of rules in computations via \mathfrak{U} is "don't care" nondeterminism (the word "any" in Completeness Theorem).
- Any control strategy will result to an mgu for unifiable terms, and failure for non-unifiable terms.
- Any practical algorithm that proceeds by performing transformations of \mathfrak{U} in any order is
- sound and complete,
- generates mgus for unifiable terms.
- Not all transformation sequences have the same length.
- Not all transformation sequences end in exactly the same mgu.

Example 3.10 in Prolog

Recall: Unification algorithm fails for $p(x, x)={ }^{?} p(y, f(y))$ because of the occurrence check.

Example 3.10 in Prolog

Recall: Unification algorithm fails for $p(x, x)=? p(y, f(y))$ because of the occurrence check.

But Prolog behaves differently:
Example 3.11 (Infinite Terms)
?- $p(X, X)=p(Y, f(Y))$.
$X=f(* *), Y=f(* *)$.

In some versions of Prolog output looks like this:
X $=f(f(f(f(f(f(f(f(f(\ldots))))))))$
$Y=f(f(f(f(f(f(f(f(\ldots))))))))$

Occurrence Check

Prolog unification algorithm skips Occurrence Check.
Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.
Drawback: Sometimes might lead to unexpected answers.

Occurrence Check

Example 1
less (X,s(X)).
foo:-less(s(Y),Y).
?- foo.
Yes

[^0]: ${ }^{1} \uplus$ stands for disjoint union.

