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Unification

Solving term equations:

Given: Two terms s and t.

Find: A substitution σ such that σ(s) = σ(t).



Substitutions

I A T (F ,V)-substitution: A function σ : V → T (F ,V), whose
domain

Dom(σ) := {x | σ(x) 6= x}

is finite.

I Range of a substitution σ:

Ran(σ) := {σ(x) | x ∈ Dom(σ)}.

I Variable range of a substitution σ:

VRan(σ) := Var(Ran(σ)).

I Notation: lower case Greek letters σ, ϑ, ϕ, ψ, . . ..
Identity substitution: ε.
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Substitutions

I Notation: If Dom(σ) = {x1, . . . , xn}, then σ can be written
as the set

{x1 7→ σ(x1), . . . , xn 7→ σ(xn)}.

I Example:

{x 7→ i(y), y 7→ e}.



Substitutions

I The substitution σ can be extended to a mapping

σ : T (F ,V)→ T (F ,V)

by induction:

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

I Example:

σ = {x 7→ i(y), y 7→ e}.
t = f(y, f(x, y))

σ(t) = f(e, f(i(y), e))

I Sub : The set of substitutions.
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More Notions about Substitutions

I Composition of ϑ and σ:

σϑ(x) := σ(ϑ(x)).

I Composition of two substitutions is again a substitution.

I Composition is associative but not commutative.



More Notions about Substitutions

Algorithm for obtaining a set representation of a composition of
two substitutions in a set form.

I Given:

θ = {x1 7→ t1, . . . , xn 7→ tn}
σ = {y1 7→ s1, . . . , ym 7→ sm},

the set representation of their composition σθ is obtained
from the set

{x1 7→ σ(t1), . . . , xn 7→ σ(tn), y1 7→ s1, . . . , ym 7→ sm}

by deleting
I all yi 7→ si’s with yi ∈ {x1, . . . , xn},
I all xi 7→ σ(ti)’s with xi = σ(ti).



More Notions about Substitutions

Example 3.1 (Composition)

θ = {x 7→ f(y), y 7→ z}.
σ = {x 7→ a, y 7→ b, z 7→ y}.
σθ = {x 7→ f(b), z 7→ y}.



More Notions about Substitutions

I t is an instance of s iff there exists a σ such that

σ(s) = t.

I Notation: t & s (or s . t).

I Reads: t is more specific than s, or s is more general than t.

I & is a quasi-order.

I Strict part: >.

I Example: f(e, f(i(y), e)) & f(y, f(x, y)), because

σ(f(y, f(x, y))) = f(e, f(i(y), e)

for σ = {x 7→ i(y), y 7→ e}
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Unification

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that σ(s) = σ(t).

I σ: a unifier of s and t.

I σ: a solution of the equation s =? t.



Examples

f(x) =? f(a) : exactly one unifier {x 7→ a}
x =? f(y) : infinitely many unifiers

{x 7→ f(y)}, {x 7→ f(a), y 7→ a}, . . .
f(x) =? g(y) : no unifiers

x =? f(x) : no unifiers



Examples

x =? f(y) : infinitely many unifiers

{x 7→ f(y)}, {x 7→ f(a), y 7→ a}, . . .

I Some solutions are better than the others: {x 7→ f(y)} is
more general than {x 7→ f(a), y 7→ a}



Substitutions

Instantiation Quasi-Ordering

I A substitution σ is more general than ϑ, written σ . ϑ, if
there exists η such that ησ = ϑ.

I ϑ is called an instance of σ.

I The relation . is quasi-ordering (reflexive and transitive
binary relation), called instantiation quasi-ordering.

I ∼ is the equivalence relation corresponding to ., i.e., the
relation . ∩ &.

Example 3.2

Let σ = {x 7→ y}, ρ = {x 7→ a, y 7→ a}, ϑ = {y 7→ x}.
I σ . ρ, because {y 7→ a}σ = ρ.

I σ . ϑ, because {y 7→ x}σ = ϑ.

I ϑ . σ, because {x 7→ y}ϑ = σ.

I σ ∼ ϑ.



Substitutions

Definition 3.2 (Variable Renaming)

A substitution σ = {x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn} is called
variable renaming iff {x1, . . . , xn} = {y1, . . . , yn}.
(Permuting the domain variables.)

Example 3.3

I {x 7→ y, y 7→ z, z 7→ x} is a variable renaming.

I {x 7→ a}, {x 7→ y}, and {x 7→ z, y 7→ z, z 7→ x} are not.



Substitutions

Definition 3.3 (Idempotent Substitution)

A substitution σ is idempotent iff σσ = σ.

Example 3.4

Let σ = {x 7→ f(z), y 7→ z}, ϑ = {x 7→ f(y), y 7→ z}.
I σ is idempotent.

I ϑ is not: ϑϑ = σ 6= ϑ.



Substitutions

Lemma 3.2
σ ∼ ϑ iff there exists a variable renaming ρ such that ρσ = ϑ.

Proof.
Exercise.

Example 3.5

I σ = {x 7→ y}.
I ϑ = {y 7→ x}.
I σ ∼ ϑ.

I {x 7→ y, y 7→ x}σ = ϑ.



Substitutions

Lemma 3.2
σ ∼ ϑ iff there exists a variable renaming ρ such that ρσ = ϑ.

Proof.
Exercise.

Example 3.5

I σ = {x 7→ y}.
I ϑ = {y 7→ x}.
I σ ∼ ϑ.

I {x 7→ y, y 7→ x}σ = ϑ.



Substitutions

Theorem 3.4
σ is idempotent iff Dom(σ) ∩ VRan(σ) = ∅.

Proof.
Exercise.



Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

I Unification problem: A finite set of equations
Γ = {s1 =? t1, . . . , sn =? tn}.

I Unifier or solution of Γ: A substitution σ such that
σ(si) = σ(ti) for all 1 ≤ i ≤ n.

I U(Γ): The set of all unifiers of Γ. Γ is unifiable iff U(Γ) 6= ∅.
I σ is a most general unifier (mgu) of Γ iff it is a least element

of U(Γ):
I σ ∈ U(Γ), and
I σ . ϑ for every ϑ ∈ U(Γ).
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Unifiers

Example 3.6

σ := {x 7→ y} is an mgu of x =? y.
For any other unifier ϑ of x =? y, σ . ϑ because

I ϑ(x) = ϑ(y) = ϑσ(x).

I ϑ(y) = ϑσ(y).

I ϑ(z) = ϑσ(z) for any other variable z.

σ′ := {x 7→ z, y 7→ z} is a unifier but not an mgu of x =? y.

I σ′ = {y 7→ z}σ.

I {z 7→ y}σ′ = {x 7→ y, z 7→ y} 6= σ.

σ′′ = {x 7→ y, z1 7→ z2, z2 7→ z1} is an mgu of x =? y.

I σ = {z1 7→ z2, z2 7→ z1}σ′′.
I σ′′ is not idempotent.
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Unification

Question: How to compute an mgu of an unification problem?



Rule-Based Formulation of Unification

I Unification algorithm in a rule-base way.

I Repeated transformation of a set of equations.

I The left-to-right search for disagreements: modeled by term
decomposition.



The Inference System U

I A set of equations in solved form:

{x1 ≈ t1, . . . , xn ≈ tn}

where each xi occurs exactly once.

I For each idempotent substitution there exists exactly one set
of equations in solved form.

I Notation:
I [σ] for the solved form set for an idempotent substitution σ.
I σS for the idempotent substitution corresponding to a solved

form set S.



The Inference System U

I System: The symbol ⊥ or a pair P ;S where
I P is a set of unification problems,
I S is a set of equations in solved form.

I ⊥ represents failure.

I A unifier (or a solution) of a system P ;S: A substitution that
unifies each of the equations in P and S.

I ⊥ has no unifiers.



The Inference System U

Example 3.7

I System: {g(a) =? g(y), g(z) =? g(g(x))}; {x ≈ g(y)}.
I Its unifier: {x 7→ g(a), y 7→ a, z 7→ g(g(a))}.



The Inference System U

Six transformation rules on systems:1

Trivial:

{s =? s} ] P ′;S ⇔ P ′;S.

Decomposition:

{f(s1, . . . , sn) =? f(t1, . . . , tn)} ] P ′;S ⇔
{s1 =? t1, . . . , sn =? tn} ∪ P ′;S, where n ≥ 0.

Symbol Clash:

{f(s1, . . . , sn) =? g(t1, . . . , tm)} ] P ′;S ⇔ ⊥, if f 6= g.

1] stands for disjoint union.



The Inference System U

Orient:

{t =? x} ] P ′;S ⇔ {x =? t} ∪ P ′;S, if t /∈ V.
Occurs Check:

{x =? t} ] P ′;S ⇔ ⊥ if x ∈ Var(t) but x 6= t.

Variable Elimination:

{x =? t} ] P ′;S ⇔ {x 7→ t}(P ′); {x 7→ t}(S) ∪ {x ≈ t},
if x /∈ Var(t).



Unification with U

In order to unify s and t:

1. Create an initial system {s =? t}; ∅.
2. Apply successively rules from U.

The system U is essentially the Herbrand’s Unification Algorithm.



Examples

Example 3.8 (Failure)

Unify p(f(a), g(x)) and p(y, y).

{p(f(a), g(x)) =? p(y, y)}; ∅ =⇒Dec

{f(a) =? y, g(x) =? y}; ∅ =⇒Or

{y =? f(a), g(x) =? y}; ∅ =⇒VarEl

{g(x) =? f(a)}; {y ≈ f(a)} =⇒SymCl

⊥



Examples

Example 3.9 (Success)

Unify p(a, x, h(g(z))) and p(z, h(y), h(y)).

{p(a, x, h(g(z))) =? p(z, h(y), h(y))}; ∅ =⇒Dec

{a =? z, x =? h(y), h(g(z)) =? h(y)}; ∅ =⇒Or

{z =? a, x =? h(y), h(g(z)) =? h(y)}; ∅ =⇒VarEl

{x =? h(y), h(g(a)) =? h(y)}; {z ≈ a} =⇒VarEl

{h(g(a)) =? h(y)}; {z ≈ a, x ≈ h(y)} =⇒Dec

{g(a) =? y}; {z ≈ a, x ≈ h(y)} =⇒Or

{y =? g(a)}; {z ≈ a, x ≈ h(y)} =⇒VarEl

∅; {z ≈ a, x ≈ h(g(a)), y ≈ g(a)}.

Answer: {z 7→ a, x 7→ h(g(a)), y 7→ g(a)}



Examples

Example 3.10 (Failure)

Unify p(x, x) and p(y, f(y)).

{p(x, x) =? p(y, f(y))}; ∅ =⇒Dec

{x =? y, x =? f(y)}; ∅ =⇒VarEl

{y =? f(y)}; {x ≈ y} =⇒OccCh

⊥



Properties of U: Termination

Lemma 3.3
For any finite set of equations P , every sequence of
transformations in U

P ; ∅ ⇔ P1;S1 ⇔ P2;S2 ⇔ · · ·

terminates either with ⊥ or with ∅;S, with S in solved form.



Properties of U: Termination

Proof.
Complexity measure on the set P of equations: 〈n1, n2, n3〉,
ordered lexicographically on triples of naturals, where

n1 = The number of distinct variables in P .

n2 = The number of symbols in P .

n3 = The number of equations in P of the form t =? x where
t is not a variable.



Properties of U: Termination

Proof [Cont.]

Each rule in U strictly reduces the complexity measure.

Rule n1 n2 n3
Trivial ≥ >
Decomposition = >
Orient = = >
Variable Elimination >



Properties of U: Termination

Proof [Cont.]

I A rule can always be applied to a system with non-empty P .

I The only systems to which no rule can be applied are ⊥ and
∅;S.

I Whenever an equation is added to S, the variable on the
left-hand side is eliminated from the rest of the system, i.e.
S1, S2, . . . are in solved form.

Corollary 3.1

If P ; ∅ ⇔+ ∅;S then σS is idempotent.



Properties of U: Correctness

Notation: Γ for systems.

Lemma 3.4
For any transformation P ;S ⇔ Γ, a substitution ϑ unifies P ;S iff
it unifies Γ.



Properties of U: Correctness

Proof.
Occurs Check: If x ∈ Var(t) and x 6= t, then

I x contains fewer symbols than t,

I ϑ(x) contains fewer symbols than ϑ(t) (for any ϑ).

Therefore, ϑ(x) and ϑ(t) can not be unified.

Variable Elimination: From ϑ(x) = ϑ(t), by structural induction
on u:

ϑ(u) = ϑ{x 7→ t}(u)

for any term, equation, or set of equations u. Then

ϑ(P ′) = ϑ{x 7→ t}(P ′), ϑ(S′) = ϑ{x 7→ t}(S′).



Properties of U: Correctness

Theorem 3.5 (Soundness)

If P ; ∅ ⇔+ ∅;S, then σS unifies any equation in P .

Proof.
By induction on the length of derivation, using the previous lemma
and the fact that σS unifies S.
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Proof.
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Properties of U: Correctness

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P , then any maximal sequence of
transformations P ; ∅ ⇔ · · · ends in a system ∅;S such that
σS . ϑ.

Proof.
Such a sequence must end in ∅;S where ϑ unifies S (why?).
For every binding x 7→ t in σS , ϑσS(x) = ϑ(t) = ϑ(x) and for
every x /∈ Dom(σS), ϑσS(x) = ϑ(x). Hence, ϑ = ϑσS .

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations
from P ; ∅ must have the form P ; ∅ ⇔ · · · ⇔ ⊥.
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Observations

I U computes an idempotent mgu.

I The choice of rules in computations via U is “don’t care”
nondeterminism (the word “any” in Completeness Theorem).

I Any control strategy will result to an mgu for unifiable terms,
and failure for non-unifiable terms.

I Any practical algorithm that proceeds by performing
transformations of U in any order is

I sound and complete,
I generates mgus for unifiable terms.

I Not all transformation sequences have the same length.

I Not all transformation sequences end in exactly the same mgu.



Example 3.10 in Prolog

Recall: Unification algorithm fails for p(x, x) =? p(y, f(y)) because
of the occurrence check.

But Prolog behaves differently:

Example 3.11 (Infinite Terms)

?- p(X,X)=p(Y,f(Y)).

X = f(**), Y = f(**).

In some versions of Prolog output looks like this:
X = f(f(f(f(f(f(f(f(f(f(...))))))))))

Y = f(f(f(f(f(f(f(f(f(f(...))))))))))
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Occurrence Check

Prolog unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.

Justification: Most of the time this rule is not needed.

Drawback: Sometimes might lead to unexpected answers.



Occurrence Check

Example 1

less(X,s(X)).

foo:-less(s(Y),Y).

?- foo.

Yes


	*



