Logic Programming

Unification

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University, Linz, Austria
kutsia@risc. jku.at

1/42

Unification

Solving term equations:
Given: Two terms s and t.
Find: A substitution o such that o(s) = o(t).

2/42

Substitutions

» A T(F,V)-substitution: A function o : V — T(F,V), whose

domain

Dom(o) :={x | o(x) # =}

is finite.

» Range of a substitution o:
Ran(o) :={o(x) | x € Dom(o)}.
» Variable range of a substitution o:
VRan(o) := Var(Ran(o)).

» Notation: lower case Greek letters o, v, p, 1, ...
|dentity substitution: «¢.

3/42

Substitutions
» Notation: If Dom(c) = {z1,...,x,}, then o can be written
as the set
{551 = 0(371)7 I U(xn)}
» Example:

{z —i(y),y — e}.

4/42

Substitutions

» The substitution o can be extended to a mapping

o:T(F,V)—T(F,V)

by induction:

o(F(tr,. ..) = f(o(tr),. ..

» Example:

o={z—i(y),y — e}
t=fy f(z,y))
o(t) = fle f(i(y),e))

» Sub : The set of substitutions.

More Notions about Substitutions

» Composition of ¥ and o:

o (x) := o(d(x)).

» Composition of two substitutions is again a substitution.

» Composition is associative but not commutative.

5/42

6/42

More Notions about Substitutions

Algorithm for obtaining a set representation of a composition of
two substitutions in a set form.

» Given:
912:{$1+—>th...,$nl—%tn}
o — {yl '_>817"'7ym'_>3m}7

the set representation of their composition o6 is obtained
from the set

{x1—o(t1),....,xn— 0(tn),y1 > S1,- -+, Ym > Sm}
by deleting
> all y; — s;'s with y; € {x1,...,2,},

> all T; = a(ti)'s with xT; = O'(tz)

More Notions about Substitutions

Example 3.1 (Composition)

0={z— f(y),y— 2}
oc={x—a,y— b z— y}
o0 = {z— f(b),z— y}.

7/42

8 /42

More Notions about Substitutions

» ¢ is an instance of s iff there exists a o such that
o(s) =t.

» Notation: t = s (or s < t).

» Reads: t is more specific than s, or s is more general than ¢.
» > is a quasi-order.

» Strict part: >.

> Example: f(e, f(i(y),e)) 2 f(y, f(z,y)), because

o(f(y, f(z,y))) = fle, [(i(y),e)

foro={x—i(y),y— e}

9/42

Unification

Syntactic unification:
Given: Two terms s and t.
Find: A substitution o such that o(s) = o(¢).

» o: a unifier of s and ¢.

» o: a solution of the equation s =" t.

10/ 42

Examples

f(z) =" f(a) :
z="f(y)
flz) =" g(y)
z="f(z)
Examples
z="f(y):

» Some solutions are better than the others: {z — f(y)} is

exactly one unifier {z — a}

infinitely many unifiers

{z = fW)} Az = fla),y—a},...

no unifiers

no unifiers

infinitely many unifiers

{z—=fytAz— fla),y—a}, ...

more general than {z — f(a),y — a}

11/42

12/42

Substitutions

Instantiation Quasi-Ordering

» A substitution o is more general than ¥, written o < ¢, if
there exists 1 such that no = 1.

» 1 is called an instance of o.

» The relation < is quasi-ordering (reflexive and transitive
binary relation), called instantiation quasi-ordering.

» ~ is the equivalence relation corresponding to <, i.e., the
relation <N 2.

Example 3.2

Let o ={x—y}, p={x— a,y—a}, ¥V ={y— z}.
» 0 < p, because {y — a}o = p.
» o <1, because {y — z}o = 1.
» 9 < o, because {x — y}¥ =o0.

> g ~ 1.
13 /42

Substitutions

Definition 3.2 (Variable Renaming)

A substitution 0 = {z1 — y1,x2 > Yo,..., Ty — yYp} is called
variable renaming iff {z1,...,z,} ={y1,...,Yn}
(Permuting the domain variables.)

Example 3.3

» {x — y,y+— 2,z x} is a variable renaming.

» {x —a}, {z— vy}, and {z— 2,y — 2,2 — x} are not.

14/ 42

Substitutions

Definition 3.3 (Idempotent Substitution)

A substitution ¢ is idempotent iff 0o = 0.

Example 3.4

Let o ={z— f(2),y— 2z}, 9 ={x— f(y),y— z}.
» o is idempotent.
> 9 is not: ¥ = o # 0.

15 /42

Substitutions

Lemma 3.2
o ~ 1 iff there exists a variable renaming p such that po = v.

Proof.

Exercise. L]
Example 3.5

» o ={x— y}.
» ¥ ={y— x}.
> 0~ 1.

» {x = y,y—xto =10.

16/ 42

Substitutions

Theorem 3.4
o is idempotent iff Dom(c) N VRan(o) = 0.

Proof.

Exercise. []

17 /42

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

» Unification problem: A finite set of equations
I'= {81 =’ tl,...,Sn =’ tn}.
» Unifier or solution of I': A substitution ¢ such that
o(s;) =o(t;) forall 1 <i<n.
» U(T"): The set of all unifiers of T". T is unifiable iff 4(T") # 0.
» o is a most general unifier (mgu) of I" iff it is a least element
of U(T):
» 0 € U(T), and
» o S U for every 9 € U(T).

18 /42

Unifiers

Example 3.6

o :={x+— y}isan mguof x =7 y.

For any other unifier ¥ of =7 y, o < ¥ because
» I(x) =d(y) = do(x).
> I(y) = Jo(y).
» J(z) = Jo(z) for any other variable z.

o' :={x +— z,y — 2} is a unifier but not an mgu of z =" .
» o' ={y— z}o.
» {z—ylo'={z—y,z—y}t#o.

o ={x > y, 21 > 29,29 — 21} is an mgu of x =7 y.
> o ={z1 > 29,20 — 21 }0".

11

» ¢ is not idempotent.

19/42

Unification

Question: How to compute an mgu of an unification problem?

20 /42

Rule-Based Formulation of Unification

» Unification algorithm in a rule-base way.
» Repeated transformation of a set of equations.

» The left-to-right search for disagreements: modeled by term
decomposition.

21 /42

The Inference System U

» A set of equations in solved form:
{:Cl %tl,...,xn %tn}

where each x; occurs exactly once.

» For each idempotent substitution there exists exactly one set
of equations in solved form.

» Notation:

» [o] for the solved form set for an idempotent substitution o.
» og for the idempotent substitution corresponding to a solved
form set S.

22 /42

The Inference System U

» System: The symbol L or a pair P;.5 where

» P is a set of unification problems,
» S is a set of equations in solved form.

» | represents failure.

> A unifier (or a solution) of a system P;S: A substitution that
unifies each of the equations in P and S.

» | has no unifiers.

23 /42

The Inference System U

Example 3.7

> System: {g(a) =" g(y), 9(2) =" g(g(z))}; {z = g(y)}.
> Its unifier: {x — g(a),y — a,z+— g(g(a))}.

24 /42

The Inference System U

Six transformation rules on systems:!

Trivial:
{s="slwP;S< P8
Decomposition:
{f(s1,...,8n) = f(t1,...,tp)} W P8 <
{s1="t1,...,80 = t,} UP"; S, where n>0.
Symbol Clash:
{f(s1,...,8n) =7 glty, ..., tm) WP S < L, if f+#g.

'y stands for disjoint union.
25 /42

The Inference System U

Orient:
{t="z}wP;S<{x="t}UP;S, ift¢V.
Occurs Check:
{z="t}w P S LifxeVar(t) but z #t.
Variable Elimination:
{z ="t} W PSS < {z—tWP);{zr— t}(S)U{x ~t},
if z ¢ Var(t).

26 / 42

Unification with

In order to unify s and ¢:
1. Create an initial system {s =" t};0.

2. Apply successively rules from il

The system U is essentially the Herbrand's Unification Algorithm.

Examples

Example 3.8 (Failure)
Unify p(f(a), g(x)) and p(y,y).

27 /42

28 /42

Examples

Example 3.9 (Success)
Unify p(a, z, h(g(2))) and p(z, h(y), h(y)).

{p(a,z,h(g9(2))) =" p(2,h(y),h(y))};) =Dec
{a="22="h(y),h(g(z)) =" h(y)}; 0 =>o
{z="a,2="h(y),hg(2)) =" h(y)}; 0 =>vae

{h(g(a)) =" h(y)}; {z = a,z = h(y)} = Dec
{9(a) =" y}; {z~a,z =~ h(y)} =0
{y="9g(a)}; {z~a,z~h(y)} =vae

0; {z ~a,x ~ h(g(a)),y = g(a)}.

Answer: {z — a,x — h(g(a)),y — g(a)}

Examples

Example 3.10 (Failure)
Unify p(z, z) and p(y, f(y)).

{p(z,2) =" p(y, fF(¥))};) =>Dec
{CIZ =! Yy,x =! f(y)}a @ —VarEl

{y="fW)} {z =y} =>0ccch
1

29 /42

30/ 42

Properties of : Termination

Lemma 3.3
For any finite set of equations P, every sequence of
transformations in 41

.f);Q ~ }21;5;1 = }%g;fgg = -

terminates either with 1. or with (); S, with S in solved form.

31/42

Properties of : Termination

Proof.
Complexity measure on the set P of equations: (ni,ns,ns),
ordered lexicographically on triples of naturals, where

n1 = The number of distinct variables in P.
ng = The number of symbols in P.

ns = The number of equations in P of the form t = x where
t is not a variable.

32/42

Properties of : Termination

Proof [Cont.]

Each rule in U strictly reduces the complexity measure.

Rule ny mng N3
Trivial > >
Decomposition = >
Orient = = >
Variable Elimination >

Properties of : Termination

Proof [Cont.]

» A rule can always be applied to a system with non-empty P.

» The only systems to which no rule can be applied are | and
0;S.

» Whenever an equation is added to S, the variable on the
left-hand side is eliminated from the rest of the system, i.e.
S1,S2,... are in solved form.

Corollary 3.1
If P;) <t 0: S then og is idempotent.

33/42

34 /42

Properties of il: Correctness

Notation: I' for systems.

Lemma 3.4
For any transformation P;S < I', a substitution v unifies P; S iff

it unifies T".

35/42

Properties of il: Correctness

Proof.
Occurs Check: If x € Var(t) and x # t, then

» x contains fewer symbols than ¢,
» J(x) contains fewer symbols than ¥(t) (for any).
Therefore, ¥(x) and ¥(t) can not be unified.

Variable Elimination: From 9J(z) = 9(t), by structural induction
on u:

Hu) = Hz — t}(u)
for any term, equation, or set of equations u. Then

I(P') =9z = t}(P), 9(S) = x> t}(S).

36 /42

Properties of il: Correctness

Theorem 3.5 (Soundness)
If P;() < (; S, then og unifies any equation in P.

Proof.
By induction on the length of derivation, using the previous lemma
and the fact that og unifies S.]

37 /42

Properties of il: Correctness

Theorem 3.6 (Completeness)

If ¥ unifies every equation in P, then any maximal sequence of
transformations P;() < --- ends in a system (); S such that
os < 0.

Proof.

Such a sequence must end in (); S where 9 unifies S (why?).

For every binding = — t in 0g, Yog(z) = 9(t) = ¥(x) and for
every x ¢ Dom(og), dog(z) = ¥(z). Hence, ¥ = dog. O
Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations
from P:; () must have the form P;) & --- & 1.

38 /42

Observations

» {4 computes an idempotent mgu.

» The choice of rules in computations via U is “don’t care”
nondeterminism (the word “any” in Completeness Theorem).

» Any control strategy will result to an mgu for unifiable terms,
and failure for non-unifiable terms.

» Any practical algorithm that proceeds by performing
transformations of 4l in any order is

» sound and complete,
» generates mgus for unifiable terms.

» Not all transformation sequences have the same length.

» Not all transformation sequences end in exactly the same mgu.

39/42

Example 3.10 in Prolog

Recall: Unification algorithm fails for p(z,z) =" p(y, f(y)) because
of the occurrence check.

But Prolog behaves differently:

Example 3.11 (Infinite Terms)

X = f(xx), Y = £(xx).

In some versions of Prolog output looks like this:

X =f(fEEEEEEEECD000DND)
Y= fEEEETEEEEECD)DDOND)

40 / 42

Occurrence Check

Prolog unification algorithm skips Occurrence Check.

Reason: Occurrence Check can be expensive.
Justification: Most of the time this rule is not needed.

Drawback: Sometimes might lead to unexpected answers.

41 /42

Occurrence Check

Example 1

less(X,s(X)).
foo:-less(s(Y),Y).

7?- foo.

Yes

42 /42

	*

