
Logic Programming
Efficiency Issues

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

kutsia@risc.jku.at

Efficiency Issues in Prolog

I Narrow the Search
I Let Unification do the Work
I Avoid assert and retract

I Understand Tokenization
I Avoid String Processing
I Recognize Tail Recursion
I Let Indexing Help
I Use Accumulators
I Use Difference Lists

Narrow the Search

Efficient programs must search efficiently.

Example
Knowledge base contains 1000 grey objects and 10 horses.

?- horse(X), grey(X).

is 100 times as fast as

?- grey(X), horse(X).

Narrow the search space as early as possible.

Narrow the Search

Example
Determine whether two lists are equal as sets.

Bad solution:
set_equal(L1,L2) :- permute(L1,L2).

N element list has N! permutations.

Testing set-equality of 20-element list can require 2.4 × 1018

comparisons.

Better solution:
set_equal(L1,L2) :- sort(L1,L3), sort(L2,L3).

N-element list can be sorted in N log N steps. Faster than the
first solution by a factor of more than 1016.

Let Unification do the Work

Example
Write a predicate that accepts a list and succeeds if the list has
three elements.

Bad solution:
had_three_elements(L):-length(L,N),N=3.

Slightly better solution:
had_three_elements(L):-length(L,3).

Good solution:
had_three_elements([_,_,_]).

Let Unification do the Work

Example
Write a predicate that accepts a list and generates from it a
similar list with the first two elements swapped.

Good solution:
swap_first_two([A,B|Rest],[B,A|Rest]).

The data structures [A,B|Rest] and [B,A|Rest], or
templates for them, are created when the program is compiled,
and unification gives values to the variables at run time.

Avoid assert and retract

Reasons:

I assert and retract are relatively slow and they lead to
a messy logic.

I In many implementations the dynamic predicates can not
run in a full compiled speed.

I The effect of assert and retract can not be undone by
backtracking.

I Programs get hard to debug.

Avoid assert and retract

Legitimate Uses:

I To record new knowledge in the knowledge base.
I To store the intermediate results of a computation that

must backtrack past the point at which it gets its result.
(Think about using setof or bagof instead. It might be
faster.)

Understand Tokenization

Fundamental unit: Term (numbers, atoms, structures).
I Numbers are stored in fixed-point or floating-point binary.
I Atoms are stored in a symbol table in which each atom

occurs only once.
I Atoms in the program are replaced by their addresses in

the symbol table (tokenization).

Understand Tokenization

I Because of tokenization the structure
f(‘What a long atom this seems to be’,
‘What a long atom this seems to be’,
‘What a long atom this seems to be’)

is more compact than
g(aaaaa,bbbbb,ccccc).

I To compare two atoms, even long ones, the computer
needs only compare their addresses.

I By contrast, comparing lists or structures requires every
element to be examined individually.

Avoid String Processing

Strings:
I Lists of numbers representing ASCII codes of characters.
I abc – an atom.
I "abc" – a list [97, 98, 99].
I Strings are designed to be easily taken apart.
I Their only proper use is in situations where access to the

individual characters is essential.

Recognize Tail Recursion

Recursion:
I Can be inefficient.
I Each procedure call requires information to be saved so

that control can return to the calling procedure.
I If a clause calls itself 1000 times, there will be 1000 copies

of its stack frame in memory.
Exception:

I Tail Recursion.
I Control need not return to the calling procedure because

there is nothing more for it to do.

Recognize Tail Recursion

Tail recursion exists when:

I The recursive call is the last subgoal in the clause, and
I There are no untried alternative clauses, and
I There are no untried alternatives for any subgoal

preceding the recursive call in the same clause.

Recognize Tail Recursion

Example
This predicate is tail recursive.

test1 :- write(hello), nl, test1.

Example
This predicate is not tail recursive because the recursive call is
not last.

test2 :- test2, write(hello), nl.

Recognize Tail Recursion

Example
This predicate is not tail recursive because it has an untried
alternative.

test3 : - write(hello), nl, test3.

test3 : - write(goodbye).

Recognize Tail Recursion

Example
This predicate is not tail recursive because a subgoal has an
untried alternative.

test4 : - g, write(hello), nl, test4.

g : - write(starting).

g : - write(beginning).

Let Indexing Help

To match the query

?- f(a,b).

PROLOG does not look at all the clauses in the knowledge base.

It looks only the clauses for f.

Indexing.

Let Indexing Help

Implementation dependent.

I Many implementations index not only the predicate symbol
but also the main functor of the first argument

I First-argument indexing.
I For ?- f(a,b).

The search considers only clauses that match f(a,...)
and neglects clauses such as f(b,c).

Let Indexing Help

Consequences of (first-argument) indexing.
Argument order:

I The first argument should be the one most likely to be
known at search time, and

I Preferably the most diverse.
I Better to have
f(a,x).
f(b,x).
f(c,x).
than
f(x,a).
f(x,b).
f(x,c).

Let Indexing Help

Consequences of (first-argument) indexing.

Indexing can make a predicate tail recursive when it otherwise
would not be.

Example
p(f(A,B)) :- p(A).
p(a).

is tail-recursive because indexing eliminates p(a) from
consideration.

