Logic Programming
 Using Data Structures
 Part 2

Temur Kutsia

Research Institute for Symbolic Computation Johannes Kepler University Linz, Austria kutsia@risc.jku.at

Contents

Recursive Comparison
Joining Structures Together

Accumulators

Difference Structures

Comparing Structures

Structure comparison:

- More complicated than the simple integers
- Have to compare all the individual components
- Break down components recursively.

Comparing Structures. aless

Example
aless (X,Y) succeeds if

- X and Y stand for atoms and
- X is alphabetically less than Y.
aless(avocado, clergyman) succeeds.
aless(windmill, motorcar) fails.
aless (picture, picture) fails.

Comparing Structures. aless

Success Empty word is smaller than a nonempty one.
Success The first character of the first word is alphabetically less than one of the second:
aless (avocado, clergyman).
Recursion The first character is the same in both. Then have to check the rest:
For aless(lazy, leather) check aless(azy, eather).
Failure The first character of the first word is greater than the first one of the second:
aless (book, apple).
Failure Reach the end of both words at the same time:
aless(apple, apple).
Failure Run out of characters for the second word:
aless(alphabetic, alp).

Representation

- Transform atoms into a recursive structure.
- List of integers (ASCII codes).
- Use built-in predicate atom_codes:
?- atom_codes(alp, [97,108,112]).
yes
?- atom_codes(alp, X).
$\mathrm{X}=[97,108,112]$?
yes
?-atom_codes(X, [97,108,112]).
$\mathrm{X}=\mathrm{alp}$?
yes

First Task

Convert atoms to lists:

$$
\begin{aligned}
& \text { atom_codes }(X, X L) . \\
& \text { atom_codes }(Y, Y L) .
\end{aligned}
$$

Compare the lists:
alessx(XL, YL).

Putting together:

```
aless(X, Y) :-
    atom_codes(X, XL),
    atom_codes(Y, YL),
    alessx(XL, YL).
```


Second Task

Compose alessx.
Success First word ends before second:
alessx([], [_|_]).
Success The first character in the first is alphabetically less than the the one in the second:
alessx ([X|_], [Y|_]) :- X < Y.
Recursion The first character is the same in both. Then have to check the rest:
alessx([H|X], [H|Y]) :- alessx(X, Y).
What about failing cases?

Program

```
aless(X, Y):-
    atom_codes(X, XL),
    atom_codes(Y, YL),
    alessx(XL, YL).
alessx([], [_|_]).
alessx([X|_], [Y|_]):-
    X < Y.
alessx([H|X], [H|Y]):-
    alessx(X, Y).
```

Appending Two Lists

For any lists List1, List2, and List3
List2 appended to List1 is List 3 iff either

- List 1 is the empty list and List 3 is List2, or
- List1 is a nonempty list and
- the head of List 3 is the head of List1 and
- the tail of List3 is List2 appended to the tail of List1.

Program:

```
append([], L, L).
append([X|L1], L2, [X|L3]) :-
    append(L1, L2, L3).
```

```
    Test ?- append([a,b,c],[2,1],[a,b,c,2,1]).
Total List ?- append([a,b,c],[2,1],X).
Isolate ?- append(X,[2,1],[a,b,c,2,1]).
    ?- append([a,b,c],x,[a,b,c,2,1]).
    Split ?- append(X,Y,[a,b,c,2,1]).
```


Inventory Example: Bicycle Factory

- To build a bicycle we need to know which parts to draw from the supplies.
- Each part of a bicycle may have subparts.
- Task: Construct a tree-based database that will enable users to ask questions about which parts are required to build a part of bicycle.

Parts of a Bicycle

- Basic parts:

basicpart(rim).	basicpart(gears).
basicpart(spoke).	basicpart(bolt).
basicpart(rearframe).	basicpart(nut).
basicpart(handles).	basicpart(fork).

- Assemblies, consisting of a quantity of basic parts or other assemblies:

```
assembly(bike, [wheel,wheel,frame]).
assembly(wheel, [spoke,rim,hub]).
assembly(frame, [rearframe,frontframe]).
assembly(hub, [gears,axle]).
assembly(axle, [bolt,nut]).
assembly(frontframe, [fork,handles]).
```

Bike as a Tree

Program

Write a program that, given a part, will list all the basic parts required to construct it.

Idea:

1. If the part is a basic part then nothing more is required.
2. If the part is an assembly, apply the same process (of finding subparts) to each part of it.

Predicates: partsof
partsof (X, Y) : Succeeds if X is a part of bike, and Y is the list of basic parts required to construct X.

- Boundary condition. Basic part: partsof(X, [X]) :- basicpart(X).
- Assembly:

```
partsof(X, P) :-
    assembly(X, Subparts),
    partsoflist(Subparts, P).
```

- Need to define partsoflist.

Predicates: partsoflist

- Boundary condition. List of parts for the empty list is empty:

```
partsoflist([], []).
```

- Recursive case. For a nonempty list, first find part sof of the head, then recursively call partsoflist on the tail of the list, and glue the obtained lists together:

```
partsoflist([P|Tail], Total) :-
    partsof(P, Headparts),
    partsoflist(Tail, Tailparts),
    append(Headparts, Tailparts, Total).
```


Finding Parts

```
?- partsof(bike, Parts).
Parts=[spoke,rim,gears,bolt, nut,spoke,rim,
    gears,bolt,nut,rearframe,fork,handles] ;
```

No
?- partsof(wheel, Parts).
Parts=[spoke, rim, gears, bolt, nut] ;
No

Using Intermediate Results

Frequent situation:

- Traverse a Prolog structure.
- Calculate the result which depends on what was found in the structure.
- At intermediate stages of the traversal there is an intermediate value for the result.

Common technique:

- Use an argument of the predicate to represent the "answer so far".
- This argument is called an accumulator.

Length of a List without Accumulators

Example

listlen (L, N) succeeds if the length of list L is N .

- Boundary condition. The empty list has length 0 : listlen([], 0).
- Recursive case. The length of a nonempty list is obtained by adding one to the length of the tail of the list.

```
listlen([H|T], N) :-
    listlen(T, N1),
    N is N1 + 1.
```


Length of a List with an Accumulator

Example

lenacc ($\mathrm{L}, \mathrm{A}, \mathrm{N}$) succeeds if the length of list L, when added the number A , is N .

- Boundary condition. For the empty list, the length is whatever has been accumulated so far, i.e. A: lenacc ([], A, A).
- Recursive case. For a nonempty list, add 1 to the accumulated amount given by A, and recur to the tail of the list with a new accumulator value A1:

```
lenacc([H|T], A, N) :-
    A1 is A + 1,
    lenacc(T, A1, N).
```


Length of a List with an Accumulator, Cont.

```
Example
Complete program:
```

```
listlenacc(L, N) :-
```

listlenacc(L, N) :-
lenacc(L, 0, N).
lenacc(L, 0, N).
lenacc([], A, A).
lenacc([], A, A).
lenacc([H|T], A, N) :-
lenacc([H|T], A, N) :-
A1 is A + 1,
A1 is A + 1,
lenacc(T, A1, N).

```
    lenacc(T, A1, N).
```


Computing List Length

```
Example (Version without Accumulator)
listlen([a,b,c], N).
listlen([b,c], N1), N is N1 + 1.
listlen([c], N2), N1 is N2 + 1, N is N1 + 1.
listlen([], N3), N2 is N3 + 1, N1 is N2 + 1,
N is N1 + 1.
N2 is 0 + 1, N1 is N2 + 1, N is N1 + 1.
N1 is 1 + 1, N is N1 + 1.
N is 2 + 1.
N = 3
```


Computing List Length

Example (Version with an Accumulator)

```
listlenacc([a,b,c], N).
lenacc([a,b,c], 0, N).
A1 is 0+1, lenacc([b,c], A1, N).
lenacc([b,c], 1, N).
A2 is 1+1, lenacc([c], A2, N).
lenacc([c], 2, N).
A3 is 2+1, lenacc([], A3, N).
lenacc([], 3, N).
N = 3
```

- Accumulators need not be integers.
- If a list is to be produced as a result, an accumulator will hold a list produced so far.
- Wasteful joining of structures avoided.

Example (Reversing Lists)

```
reverse(List, Rev) :-
    rev_acc(List, [], Rev).
rev_acc([], Acc, Acc).
rev_acc([X|T], Acc, Rev) :-
    rev_acc(T, [X|Acc], Rev).
```


Bicycle Factory

Recall how parts of bike were found.

- Inventory example
partsoflist has to find the parts coming from the list [wheel, wheel, frame]:
- Find parts of frame.
- Append them to [] to find parts of [frame].
- Find parts of wheel.
- Append them to the parts of [frame] to find parts of [wheel, frame].
- Find parts of wheel.
- Append them to the parts of [wheel, frame] to find parts of [wheel, wheel, frame].
Wasteful!

Bicycle Factory

Improvement idea: Get rid of append. Use accumulators. partsacc ($\mathrm{X}, \mathrm{A}, \mathrm{P}$) : parts of X , when added to A , give P .

```
partsof(X, P) :- partsacc(X, [], P).
```

partsacc(X, A, [X|A]) :- basicpart(X).
partsacc (X, A, P) :-
assembly(X, Subparts),
partsacclist(Subparts, A, P).
partsacclist([], A, A).
partsacclist([P|Tail], A, Total) :-
partsacc(P, A, Headparts),
partsacclist(Tail, Headparts, Total).

Difference Structures

Compute parts of wheel without and with accumulator:
Example (Without Accumulator)
?- partsof(wheel, P).
$\mathrm{X}=$ [spoke, rim, gears, bolt, nut] ;
No
Example (With Accumulator)
?- partsof(wheel, P).
$\mathrm{X}=$ [nut, bolt, gears, rim, spoke] ;
No
Reversed order.

Difference Structures

How to avoid wasteful work and retain the original order at the same time?

Difference structures.

Open Lists and Difference Lists

- Consider the list [a, b, c|Ho].
- The structure of the list is known up to a point.
- If, at some point, Ho is unbound then we have an open list.
- Informally, Ho is a called a "hole".

Open Lists and Difference Lists

- Unify Ho with [d,e]:

$$
\begin{aligned}
& ?-\text { List }=[a, b, c \mid H o], H o=[d, e] . \\
& \text { List }=[a, b, c, d, e]
\end{aligned}
$$

- We started with an open list and "filled" in the hole with the structure.

Open Lists and Difference Lists

- The result of filling in the hole in an open list with a "proper" list is a "proper" list.
- What happens if we instantiate the hole with an open list?
- The result will be an open list again:

$$
\begin{aligned}
& ?-\text { List }=[a, b, c \mid H o], \mathrm{Ho}=[\mathrm{d}, \mathrm{e} \mid \mathrm{Y}] . \\
& ?-\text { List }=[\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \mid \mathrm{Y}] .
\end{aligned}
$$

Open Lists and Difference Lists

- Filling in the hole with a proper list, again:
- ?- List=[a,b,c|Ho], Ho=[d,e].
- ?- List=[a,b,c,d,e].
- Is not it the same as append ($[a, b, c],[d, e], L i s t)$?
open_append
- We can define append in terms of "hole filling".
- Assume the first list is given as an open list.
- Define a predicate that fills in the hole with the second list.
- A naive and limited way of doing this:

```
open_append([H1,H2,H3|Hole],L2):-Hole=L2.
?- List=[a,b,c|Ho], open_append(List,[d,e]).
    List=[a,b,c,d,e]
    Ho=[d,e]
```

- Improvement is needed: This version assumes having a list with three elements and the hole.

Improvement Idea

- One often wants to say about open lists something like "take the open list and fill in the hole with ..."
- Hence, one should know both an open list and a hole.
- Idea for list representation: Represent a list as an open list together with the hole.
- Such a representation is called a difference list.
- Example: The difference list representation of the list $[a, b, c]$ is the pair of terms $[a, b, c \mid x]$ and x.

diff_append

- Difference append:

```
diff_append(OpenList, Hole, L2) :- Hole=L2.
?- List=[a,b,c|Ho], diff_append(List,Ho,[d,e]).
    List=[a,b,c,d,e]
    Ho=[d,e]
```

- Compare to the open_append:

```
open_append([H1,H2,H3|Hole], L2) :- Hole=L2.
?- List=[a,b,c|Ho], open_append(List,[d,e]).
    List=[a,b,c,d,e]
    Ho=[d,e]
```


Difference Lists

- Introduce a notation for difference lists.
- Idea: We are usually interested the open list part of difference list, without the hole.
- From the pair $[\mathrm{a}, \mathrm{b}, \mathrm{c} \mid \mathrm{Ho}$] and Ho we are interested in [a,b, c].
- "Subtracting" the hole Ho from the open list $[\mathrm{a}, \mathrm{b}, \mathrm{c} \mid \mathrm{Ho}$].
- [a,b, c|Ho]-Ho.
- The - has no interpreted meaning. Instead one could define any operator to use there.

diff_append. Version 2

- diff_append(OpenList-Hole, L2) :- Hole=L2.
?- DList=[a,b,c|Ho]-Ho, diff_append(DList, [d,e]).

DList=[a,b,c,d,e]-[d,e]
Ho= [d,e]

- Has to be improved again: We are not interested in the "filled hole" in the instantiation of Ho hanging around.
- Let diff_append return the open list part of the first argument:

```
diff_append(OpenList-Hole, L2, OpenList) :-
            Hole=L2.
?- DList=[a,b,c|Ho]-Ho,
    diff_append(Dlist,[d,e],Ans).
    Dlist=[a,b, c,d,e]-[d,e]
    Ho=[d,e]
    Ans=[a,b,c,d,e ]
```

- It is better now. Ans looks as we would like to.
- Still, there is a room for improvement: The diff_append
- takes a difference list as its first argument,
- a proper list as its second argument, and
- returns a proper list.
- Let's make it more uniform.

diff_append. Version 3

- Better, but not the final approximation: diff_append takes two difference lists and returns an open list:

```
diff_append(
    OpenList1-Hole1, OpenList2-Hole2, OpenList1
) :-
            Hole1=OpenList2.
? - Dlist=[a,b, c|Ho]-Ho,
    diff_append(Dlist, [d,e|Hol]-Ho1,Ans).
    Dlist=[a,b, c, d, e|Hol]-[d,e|Hol]
    \(\mathrm{Ho}=[\mathrm{d}, \mathrm{e} \mid \mathrm{Hol}]\)
    Ans=[a,b, c, d,e|Hol]
```

- We have returned an open list but we want a difference list.
- The first list has gained the hole of the second list.
- All we need to ensure is that we return the hole of the second list.
diff_append. Version 3
- Return the hole of the second list as well:

```
diff_append(
    OpenList1-Hole1,
    OpenList2-Hole2,
    OpenList1-Hole2
) :-
    Hole1=OpenList2.
?- DList=[a,b,c|Ho]-Ho,
    diff_append(DList, [d,e|Ho1]-Ho1,Ans).
    DList = [a, b, c, d, e|Hol]-[d,e|Ho1]
    \(\mathrm{Ho}=[\mathrm{d}, \mathrm{e} \mid \mathrm{Hol}]\)
    Ans=[a, b, c, d, e| Hol]-Ho1
```

- We have returned an difference list.
- Now we can recover the proper list we want:

```
?- DList=[a,b,c|Ho]-Ho,
    diff_append(DList, [d,e|Ho1]-Ho1,Ans-[]) .
        Ans=[a,b,c,d,e]
```


diff_append. Version 4

diff_append can be made more compact:

```
diff_append(
    OpenList1-Hole1,
    Hole1-Hole2,
    OpenList1-Hole2
    ).
```


diff_append. Usage

- Add an element at the end of a list:

```
add_to_back(L-H, El, Ans) :-
    diff_append(L-H, [El|H1]-H1, Ans-[]).
?- add_to__back([a,b,c|H]-H, e, Ans).
    H = [e]
    Ans = [a,b,c,e]
```


Difference Structures

Both accumulators and difference structures use two arguments to build the output structure.

Accumulators: the "result so far" and the "final result".
Difference structures: the (current approximation of the) "final result" and the "hole in there where the further information can be put".

Bicycle Factory

Use holes.

```
partsof(X, P) :-
    partshole(X, P-Hole),
    Hole=[].
```

partshole(X, [X|Hole]-Hole) :-
basicpart(X).
partshole(X, P-Hole) :-
assembly(X, Subparts),
partsholelist(Subparts, P-Hole).
partsholelist([], Hole-Hole).
partsholelist([P|Tail], Total-Hole) :-
partshole(P, Total-Hole1),
partsholelist(Tail, Hole1-Hole).

Bicycle Factory. Detailed View

```
partsof(X, P) :-
    partshole(X, P-Hole),
    Hole=[].
```

- partshole (X, P-Hole) builds the result in the second argument P and returns in Hole a variable.
- Since partsof calls partshole only once, it is necessary to terminate the difference list by instantiating Hole with []. (Filling the hole.)
- Alternative definition of partsof:
partsof(X, P) :- partshole(X, P-[]).
It ensures that the very last hole is filled with [] even before the list is constructed.

Bicycle Factory. Detailed View

```
partshole(X, [X|Hole]-Hole) :- basicpart(X).
```

- It returns a difference list containing the object (basic part) in the first argument.
- The hole remains open for further instantiations.

Bicycle Factory. Detailed View

```
partshole(X, P-Hole):-
    assembly(X, Subparts),
    partsholelist(Subparts, P-Hole).
```

- Finds the list of subparts.
- Delegates the traversal of the list to partsholelist.
- The difference list P -Holeis passed to partsholelist.

Bicycle Factory. Detailed View

```
partsholelist([P|Tail], Total-Hole) :-
    partshole(P, Total-Hole1),
    partsholelist(Tail, Hole1-Hole).
```

- partshole starts building the Total list, partially filling it with the parts of P, and leaving a hole Hole1 in it.
- partsholelist is called recursively on the Tail. It constructs the list Hole1 partially, leaving a hole Hole in it.
- Since Hole1 is shared between partshole and partsholelist, after getting instantiated in partsholelist it gets also instantiated in partshole.
- Therefore, at the end Total consists of the portion that partshole constructed, the portion of Hole1 partsholelist constructed, and the hole Hole.

