
Logic Programming
Using Data Structures

Part 1

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

kutsia@risc.jku.at

Contents

Structures and Trees

Lists

Recursive Search

Mapping

Representing Structures as Trees

Structures can be represented as trees:

I Each functor — a node.
I Each component — a branch.

Example

parents(charles,elizabeth,philip).

parents

charles elizabeth philip

Representing Structures as Trees

Branch may point to another structure: nested structures.

Example

a+b*c.

+

a *

b c

book(moby_dick,author(herman, melville)).

book

moby_dick author

herman melville

Parsing

Represent a syntax of an English sentence as a structure.

Simplified view:
I Sentence: noun, verb phrase.
I Verb phrase: verb, noun.

Parsing

Structure:

sentence(noun(X),verb_phrase(verb(Y),noun(Z))).

Tree representation:

sentence

noun

X

verb_phrase

verb

Y

noun

Z

Parsing

Example

John likes Mary.

sentence(noun(John),verb_phrase(verb(likes),noun(Mary))).

sentence

noun

John

verb_phrase

verb

likes

noun

Mary

Lists

I Very common data structure in nonnumeric programming.
I Ordered sequence of elements that can have any length.

I Ordered: The order of elements in the sequence matters.
I Elements: Any terms — constants, variables, structures —

including other lists.
I Can represent practically any kind of structure used in

symbolic computation.
I The only data structures in LISP — lists and constants.
I In PROLOG — just one particular data structure.

Lists

A list in PROLOG is either
I the empty list [], or
I a structure .(h, t) where h is any term and t is a list.

h is called the head and t is called the tail of the list .(h, t).

Example
I [].

I .(a, []).
I .(a, .(b, [])).

I .(a, .(a, .(1, []))).
I .(.(f (a,X), []), .(X, [])).
I .([], []).

NB. .(a, b) is a PROLOG term, but not a list!

Lists as Trees

Lists can be represented as a special kind of tree.

Example

.(a, [])
.

a []

.(.(X, []), .(a, .(X, [])))

.

.

X []

.

a .

X []

List Notation

Syntactic sugar:
I Elements separated by comma.
I Whole list enclosed in square brackets.

Example

.(a, []) [a]

.(.(X, []), .(a, .(X, []))) [[X], a,X]

.([], []) [[]]

List Manipulation

Splitting a list L into head and tail:
I Head of L — the first element of L.
I Tail of L — the list that consists of all elements of L except

the first.
Special notation for splitting lists into head and tail:

I [X|Y], where X is head and Y is the tail.

NB. [a|b] is a PROLOG term that corresponds to .(a, b). It is not
a list!

Head and Tail

Example

List Head Tail
[a, b, c, d] a [b, c, d]
[a] a []
[] (none) (none)
[[the, cat], sat] [the, cat] [sat]
[X + Y, x + y] X + Y [x + y]

Unifying Lists

Example

[X,Y,Z] = [john, likes, fish] X = john, Y = likes,
Z = fish

[cat] = [X|Y] X = cat, Y = []
[X,Y|Z] = [mary, likes,wine] X = mary, Y = likes,

Z = [wine]
[[the,Y],Z] = [[X, hare], [is, here]] X = the, Y = hare,

Z = [is, here]
[[the,Y]|Z] = [[X, hare], [is, here]] X = the, Y = hare,

Z = [[is, here]]
[golden|T] = [golden, norfolk] T = [norfolk]

[vale, horse] = [horse,X] (none)
[white|Q] = [P|horse] P = white, Q = horse

Strings are Lists

I PROLOG strings — character string enclosed in double
quotes.

I Examples: "This is a string", "abc", "123", etc.
I Represented as lists of integers that represent the

characters (ASCII codes)
I For instance, the string "system" is represented as

[115, 121, 115, 116, 101, 109].

Membership in a List

member(X,Y) is true when X is a member of the list Y.

One of Two Conditions:
1. X is a member of the list if X is the same as the head of the

list
member(X,[X|_]).

2. X is a member of the list if X is a member of the tail of the
list

member(X,[_|Y]) :- member(X,Y).

Recursion

I First Condition is the boundary condition.
(A hidden boundary condition is when the list is the empty
list, which fails.)

I Second Condition is the recursive case.
I In each recursion the list that is being checked is getting

smaller until the predicate is satisfied or the empty list is
reached.

Member Success

?- member(a,[a,b,c]).
Call: (8) member(a,[a,b,c]) ?
Exit: (8) member(a,[a,b,c]) ?

Yes

?- member(b,[a,b,c]).
Call: (8) member(b,[a,b,c]) ?
Call: (9) member(b,[b,c]) ?
Exit: (9) member(b,[b,c]) ?
Exit: (8) member(b,[a,b,c]) ?

Yes

Member Failure

?- member(d,[a,b,c]).
Call: (8) member(d,[a,b,c]) ?
Call: (9) member(d,[b,c]) ?
Call: (10) member(d,[c]) ?
Call: (11) member(d,[]) ?
Fail: (11) member(d,[]) ?
Fail: (10) member(d,[c]) ?
Fail: (9) member(b,[b,c]) ?
Fail: (8) member(b,[a,b,c]) ?

No

Member. Questions

What happens if you ask PROLOG the following questions:

?- member(X,[a,b,c]).
?- member(a,X).
?- member(X,Y).
?- member(X,_).
?- member(_,Y).
?- member(_,_).

Recursion. Termination Problems

I Avoid circular definitions. The following program will loop
on any goal involving parent or child:

parent(X,Y):-child(Y,X).
child(X,Y):-parent(Y,X).

I Use left recursion carefully. The following program will loop
on ?- person(X):

person(X):-person(Y),mother(X,Y).
person(adam).

Recursion. Termination Problems

I Rule order matters.
I General heuristics: Put facts before rules whenever

possible.
I Sometimes putting rules in a certain order works fine for

goals of one form but not if goals of another form are
generated:

islist([_|B]):-islist(B).
islist([]).

works for goals like islist([1,2,3]), islist([]),
islist(f(1,2)) but loops for islist(X).

I What will happen if you change the order of islist
clauses?

Weaker Version of islist

I Weak version of islist.

weak_islist([]).
weak_islist([_|_]).

I Can it loop?
I Does it always give the correct answer?

Mapping?

Map a given structure to another structure given a set of rules:

1. Traverse the old structure component by component
2. Construct the new structure with transformed components.

Mapping a Sentence to Another

Example
you are a computer maps to a reply i am not a computer.
do you speak french maps to a reply no i speak german.

Procedure:
1. Accept a sentence.
2. Change you to i.
3. Change are to am not.
4. Change french to german.
5. Change do to no.
6. Leave the other words unchanged.

Mapping a Sentence. PROLOG Program

Example
change(you,i).
change(are,[am,not]).
change(french,german).
change(do,no).
change(X,X).

alter([],[]).
alter([H|T],[X|Y]) :-

change(H,X),
alter(T,Y).

Boundary Conditions

I Termination: alter([],[]).
I Catch all (If none of the other conditions were satisfied,

then just return the same): change(X,X).

