Logic Programming

Using Data Structures
Part 1

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria
kutsia@risc. jku.at

Contents

Structures and Trees
Lists

Recursive Search

Mapping

Representing Structures as Trees

Structures can be represented as trees:

» Each functor — a node.
» Each component — a branch.

Example

parents(charles,elizabeth,philip).

parents

1N

charles elizabeth philip

Representing Structures as Trees

Branch may point to another structure: nested structures.

Example
a+b*c. book(moby_dick,author(herman, melville)).
/ + \\ book
a * moby_dick author

N\, /N

herman melville

Parsing

Represent a syntax of an English sentence as a structure.

Simplified view:
» Sentence: noun, verb phrase.
» Verb phrase: verb, noun.

Parsing

Structure:

sentence(noun(X),verb_phrase(verb(Y),noun(Z))).

Tree representation:

sentence
/
noun v\e}Lphrase
| N
X verb/ noun
]
Y z

Parsing

Example

John likes Mary.

sentence(noun(John),verb_phrase(verb(likes),noun(Mary))).

sentence
e AN
noun verb_phrase
\ VRN
John verb noun

likes Mary

Lists

v

v

including other lists.

v

symbolic computation.

v

v

Very common data structure in nonnumeric programming.
Ordered sequence of elements that can have any length.

» Ordered: The order of elements in the sequence matters.
» Elements: Any terms — constants, variables, structures —

Can represent practically any kind of structure used in

The only data structures in LISP — lists and constants.
In PROLOG — just one particular data structure.

Lists

A list in PROLOG is either
» the empty list [], or
» a structure .(h,r) where h is any term and ¢ is a list.

h is called the head and ¢ is called the tail of the list .(A, 7).

Example
> . > (a,(a,.(1,]])))-
> (a,])- > (e, X),), (X, 1)
> (a,.(b,])- > (0)-
B. .(a,b) is a PROLOG term, but not a list!

Lists as Trees

Lists can be represented as a special kind of tree.
Example

(a,])) PN n

N
N, S

List Notation

Syntactic sugar:
» Elements separated by comma.
» Whole list enclosed in square brackets.

Example
(a,[]) la]
(X, 1), (a, (X, 1)) [[X], a, X]
(1) [[]

List Manipulation

Splitting a list L into head and tail:
» Head of L — the first element of L.

» Tail of L — the list that consists of all elements of L except
the first.

Special notation for splitting lists into head and tail:
» [X|Y], where X is head and Y is the tail.

NB. [a|b] is @ PROLOG term that corresponds to .(a, b). It is not
a list!

Head and Tail

Example

List Head Tall
a,b,c,d| a [b,c,d|
al a [

[the, cat],sat] [the,cat] [sat]

[
[
(] (none) (none)
[
X+Y,x+y X+Y [x+]

Unifying Lists

Example
[X,Y,Z] = [john,likes, fish]|
[cat] = [X|Y]

[X,Y|Z] = [mary,likes, wine]
[[the,Y|,Z] = [[X,hare],]is, here]|
[[the,Y||Z] = |[[X,hare],]is, here]]
[golden|T] = |[golden,norfolk]

[vale,horse] = [horse,X]
[white|Q] = [P|horse]

X = john, Y = likes,
Z = fish

X =cat,Y =]

X = mary, Y = likes,
Z = |wine|

X = the, Y = hare,
Z = lis, here]

X = the, Y = hare,

Z = [[is, here]]
T = [norfolk]
(none)

P = white, Q = horse

Strings are Lists

v

v

v

v

PROLOG strings — character string enclosed in double
quotes.

Examples: "This is a string", "abc", "123", etc.

Represented as lists of integers that represent the
characters (ASCII codes)

For instance, the string "system" is represented as
[115,121,115,116,101, 109).

Membership in a List

member (X, Y) is true when X is a member of the list Y.

One of Two Conditions:

1. X'is a member of the list if X is the same as the head of the

list

member (X, [X]|_]) .
2. X is a member of the list if X is a member of the tail of the

list

member (X, [_]Y]) :— member (X,Y).

Recursion

» First Condition is the boundary condition.
(A hidden boundary condition is when the list is the empty
list, which fails.)

» Second Condition is the recursive case.

» In each recursion the list that is being checked is getting
smaller until the predicate is satisfied or the empty list is
reached.

Member Success

?— member (a, [a,b,c]).

Call: (8) member (a, [a,b,c]) ?
Exit: (8) member(a, [a,b,c]) ?
Yes
?- member (b, [a,b,c]) .
Call: (8) member (b, [a,b,c]) ?
Call: (9) member (b, [b,c]) ?
Exit: (9) member (b, [b,c]) ?
Exit: (8) member(b,[a b,cl) ?
Yes

Member Failure

?- member (d, [a,b,c]) .

Call: (8) member (d, [a,b,c]) 2
Call: (9) member (d, [b,c]) ?
Call: (10) member(d, [c]) ?
Call: (11) member(d, []) *?
Fail: (11) member(d, []) *?
Fail: (10) member (d, [c]) ?
Fail: (9) member (b, [b,c]) ?
Fail: (8) member (b, [a,b,c]) ?

No

Member. Questions

What happens if you ask PROLOG the following questions:

?- member (X, [a,b,c]) .
?—- member (a, X) .
?- member (X,Y) .
?— member (X, _)
?- member (_,Y)
(_,_)

?— member (_,

Recursion. Termination Problems

» Avoid circular definitions. The following program will loop
on any goal involving parent or child:

parent (X,Y) :-child (Y, X) .
child(X,Y) :-parent (Y, X) .

» Use left recursion carefully. The following program will loop
on ?— person (X):

person (X) :—person(Y) ,mother (X, Y) .
person (adam) .

Recursion. Termination Problems

» Rule order matters.

» General heuristics: Put facts before rules whenever
possible.

» Sometimes putting rules in a certain order works fine for
goals of one form but not if goals of another form are
generated:

islist ([_|IB]) :—-islist (B).

islist ([1) .
works for goals like islist ([1,2,3]),1islist([]),
islist (£(1,2)) butloopsfor islist (X).

» What will happen if you change the order of islist
clauses?

Weaker Version of islist

» Weak version of islist.

weak _islist([]).
weak_islist ([_|_1).

» Can it loop?
» Does it always give the correct answer?

Mapping?

Map a given structure to another structure given a set of rules:

1. Traverse the old structure component by component
2. Construct the new structure with transformed components.

Mapping a Sentence to Another

Example

you are a computer maps to a reply i am not a computer.
do you speak french maps to a reply no i speak german.

Procedure:

1. Accept a sentence.
Change you to i.
Change are to am not.
Change french to german.
Change do to no.

SIEG RPN

Leave the other words unchanged.

Mapping a Sentence. PROLOG Program

Example

change (you, i) .
change (are, [am, not]) .
change (french, german) .
change (do, no) .
change (X, X) .

alter([],[]).

alter ([H|T], [X|Y]) :-
change (H, X),
alter (T, Y)

Boundary Conditions

» Termination: alter ([], []) .

» Catch all (If none of the other conditions were satisfied,
then just return the same): change (X, X) .

