Lecture 10

Jose Capco (jeapco@risc.jku.at)

In the last lecture, we gave the rule of addition for points on an elliptic curve. However, there
were no examples. We give one here

Example 1. Let K = F5 and E : y3 = 2% + 2 + 1. We check if E is an elliptic curve
Ap=4a* 427" =4+2=1mod 5

So E is an elliptic curve over F5. We can even count the points of E = E(F5). The points (a, §)
on E should satisfy a® +a+1 is a quadratic residue modulo 5. We note that the quadratic residue
mod 5 are the numbers {0,1, —1} mod 5 and their square roots are {0, +£1,+2} mod 5. Now we
compute all a € F5 such that f(a) € {0,1, -1}, where f(z) = 23 + z + 1. We see that

F(E£2) = f(0) =1, f(-1) = —1 and f(a) # OVa € K
So the points of E are
{Ov (07 1)7 (07 _1)7 (27 1)» (_27 1)» (27 _1)7 (_27 _1)7 (_1’ 2)7 (_1’ _2)}

Finally let us compute, for P = (0,1) and @ = (2,—1), the point P + @ for the group structure
of F.
We see that xp # x¢ so we can compute the slope

- ~1—1mod
=Y UP _ mod5 _ ) mod 5

xQ—xp_ 2 —0mod 5
Thus
xP+Q:MQ—xp—xQ:1—0—2:—1m0d5
yp+qQ = —yp — W@prg —wp) =-1—(=1)(-1-0) = —2mod 5

So P+Q=(-1,-2)

Recall that in the last lecture we wrote isogenies ¢(z,y) = (R1(z,y), Re(x,y)) for rational
functions R; and Ry and we then conclude we can write Ry (z,y) = r1(z) and Ra(x,y) = yra(z)
for rational functions r1 and ry. Furthermore we wrote vy = p/q for polynomials p and ¢q. With
this convention we are able to define the degree of an isogeny.

Definition.

e We also define the degree of an isogeny ¢ to be

deg ¢ := max{deg p,deg ¢}

if  # O and if ¢ = O then define deg(¢) = 0. We also say that ¢ is separable if r{(z) # 0
i.e. if p’ or ¢’ is not O (see the exercise of the last lecture).

e We denote the set of all isogenies from E; to E2 by Hom(E;, F>) and the set of all endo-
morphism of an elliptic curve E as End(E).

We may need a lot of machinery (commutative algebra) to prove the facts below, so we will
take them for granted


mailto:jcapco@risc.jku.at

Remark 2.

a.) The definition for degree and separability of isogeny comes from a characterization of sep-
arability and degree of the pullback of the function fields ¢* : K(E2) «— K(E;). Thus, in
particular, if we have two isogenies ¢ : £1 — Fs and ¢ : F; — E3 then

deg(v) o ¢) = (degt))(deg o)

b.) A non-constant isogeny ¢ : E1 — FEs is a surjective map.

Example 3. Consider the duplication map of the last example. We compute the degree of this
map
x* — 2az? — 8bx + a?

4(x® 4+ ax + b)

322 +a
R1<xay): ( 2y

One checks that the numerator and denominator do not have common zero in F, so deg¢ = 4.
Furthermore, we see that ¢'(z) = 4(322 + a) # 0 (check this also for char K = 3!) which means
that ¢ is separable.

)2 —2r = r(z)=

Notation. We have seen the duplication endomorphism ¢ : E(K) — E(K), this is often denoted
as

[2]: E(K) — E(K)

and can clearly be restricted to a morphism EF — E. We can also talk about endomorphisms that
are n-multiples of points in E (for any n € Z) and this is similarly denoted [n].

Exercise 1. Given an elliptic curve E : y?> = 2% + ax + b over K with char K { 6, show that
deg[n] = n?

Henceforth, unless otherwise stated, char K # 2. Also, starting from the Theorem below, since
we treat Hom(E7, F») as a Z-module, when we write m¢ for an isogeny ¢ and a number m, we
actually mean [m] o ¢ ([m] defined in the endomorphism ring of the codomain of ¢).

Theorem 4. Let E, E, Fs be elliptic curves over K then
a.) Hom(E, Es) is a torsion-free Z-module.
b.) The endomorphism ring End(E) has no zero-divisors and is of characteristic 0.

c.) The map End(E) x End(E) — Z defined by

(1, ¢) = deg(¢) + ¢) — deg ¥ — deg

is Z-bilinear i.e. we have the identity

deg(m@ + n1p) = m? deg ¢ + n” deg ¢ + mn(deg(¢ + 1b) — deg ¢ — deg 1))
for all ¢,¢ € End(E) and m,n € Z
d.) Let K =F, and m,n € Z such that (m,n) # (0,0) then m¢, + n is separable iff p { n.

Partial Proof. We will only partially prove the above theorem

a.) Clearly Hom(FE1, Es) is Z-module ie. (¢ + ¢)(P) = ¢(P) + ¢(P) and n¢ = [n] o ¢ (where
[n] is in End(Es3). From the exercise we learn that [n] € End(E») is non-constant for all non-zero
n € Z. Consider now [n] o ¢ for some non-trivial ¢ € Hom(E1, E2) and n # 0, then if [n] o ¢ = [0]
we get

deg([n] o ¢) = deg[n]deg$ =0

which implies that n = 0 and this is a contradiction.



b.) Since End(F) is torsion-free it has characteristic zero i.e. [n]¢ # 0 for non-trivial n and ¢.
Moreover, if ¢ o 1) = [0] we get

deg(¢ 0 ¢)) = deg ¢ degp =0
and this implies that ¢ or 1 is [0].

c.) We just prove the identity assuming Z-bilinearity. We get

deg(m¢ + ny)) — deg(mip) — deg(ng) = mn(deg(v + ¢) — deg) — deg @)

SO
deg(m¢ + nip) = deg(my)) + deg(n¢) + mn(deg(v) + @) — degtp — deg ¢)

But
deg(m¢) = deg([m]) deg ¢ = m” deg ¢

and similarly deg(ni) = n? deg, so we obtain the result.
O

Studying endomorphism of elliptic curve has several applications, one of which is the proof of
Hasse’s theorem which gives a bound to the number of points in an elliptic curve over a finite
field. There is a weaker statement to Hasse’s theorem that we can immediately prove:

Proposition 5. Let E : y?> = f(z) be an elliptic curve over a finite field F,,, where p is a prime

number greater than 3, then
(@
#E=p+1+) (>
x=0 p L

Proof. The solutions in E\{O} of y*> = f(z) is given by the numbers of = such that f(z) is
a quadratic residue mod p. The Legendre symbol evaluates to 0,1, —1 respectively for 1,2,0
solutions to y? = f(x). Thus

(L@ (@

#e\on =3 ((B2) 1) =ps 3 (12)

=0 P /L — \ P /L

the desired result follows after adding O. O
We however want to prove a more general result, namely

Hasse’s Theorem. Let F : y* = f(z) be an elliptic curve over a finite field F,, then #FE is in
the interval

p+1—2yp,p+1+2\p|
We will use isogenies to prove this. For this we need ...

Proposition 6. Let ¢ # 0 be a non-trivial separable isogeny, then'

deg ¢ = #ker(¢)

Proof. We assume ¢ : By — E; and By : y?> = fi(x) and Es :

E1(K)\{O1}, let ¢(x,y) = (r1(x),yr2(z)) with 7, = p/q for some p, g [ ]
common factor. Since ¢ is separable we get ] £ 0, so pg’ — p'q # O

fa(x). For points in
with no non-constant

Lin fact, non-constant isogenies are finite maps, i.e. the preimage of a point is finite



Let S be the set of zeros of ¢(pg’ — p'q) in K. We first show that we can choose an («, ) €
E5(K)\{O2} such that

1. a#0and 8 #0.

2. deg(p(x) — aq(x)) = deg ¢ = max{deg p, deg ¢}
3. adr(S)

4. (@ B) € $(B(K)\{0s)

This (a, 8) exists because

e p'q — pq’ is not identical to 0, thus it has only finite zeros, thus r1(S) is also finite
e There are only finitely many o € K* that deg ¢ > deg(p(z) — ag(z))

e We can thus arbitrarily choose an element in o € r1(K) N K* (K* is infinite!) such that
deg ¢ = deg(p(x) — aq(x)) and is neither in r1(S) nor a zero of f,

e Since fo(a) #£0, B # 0.
We claim that for this («, 8) € ¢(F1(K) we have

#o (. f) = deg ¢
Suppose ¢(aq,P1) = (o, B) i.e.

~—

p(a1

7 glan)

Bira(ar) = B

Since the («, 8) # O2, we must have ¢(a1) # 0 (see Exercise). Furthermore, since 8 # 0, we can
write 81 = 8/r2(a1). Thus 8 is determined by «a; and we need only count the o4 in the preimage.
By our assumption on (a, ), we just need to show that p — ag does not have multiple roots.

Suppose, by contradiction, that p — g has multiple roots. In other words, we assume that
there is an ag € K such that

p(ag) —ag(an) =0 p'(ap) — ag'(ag) =0
This yields
ap(ao)q'(en) = aq(ao)p’(ao)
But this implies that ap € S and so o = r(ag) € r(S) which is a contradiction. O



