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In the last lecture, we gave the rule of addition for points on an elliptic curve. However, there
were no examples. We give one here

Example 1. Let K = F5 and E : y3 = x3 + x+ 1. We check if E is an elliptic curve

∆E = 4a3 + 27b2 = 4 + 2 = 1 mod 5

So E is an elliptic curve over F5. We can even count the points of E = E(F5). The points (α, β)
on E should satisfy α3+α+1 is a quadratic residue modulo 5. We note that the quadratic residue
mod 5 are the numbers {0, 1,−1} mod 5 and their square roots are {0,±1,±2} mod 5. Now we
compute all α ∈ F5 such that f(α) ∈ {0, 1,−1}, where f(x) = x3 + x+ 1. We see that

f(±2) = f(0) = 1, f(−1) = −1 and f(α) ̸= 0∀α ∈ K

So the points of E are

{O, (0, 1), (0,−1), (2, 1), (−2, 1), (2,−1), (−2,−1), (−1, 2), (−1,−2)}

Finally let us compute, for P = (0, 1) and Q = (2,−1), the point P + Q for the group structure
of E.
We see that xP ̸= xQ so we can compute the slope

µ =
yQ − yP
xQ − xP

=
−1− 1 mod 5

2− 0 mod 5
= −1 mod 5

Thus

xP+Q = µ2 − xP − xQ = 1− 0− 2 = −1 mod 5

yP+Q = −yP − µ(xP+Q − xP ) = −1− (−1)(−1− 0) = −2 mod 5

So P +Q = (−1,−2)

Recall that in the last lecture we wrote isogenies ϕ(x, y) = (R1(x, y), R2(x, y)) for rational
functions R1 and R2 and we then conclude we can write R1(x, y) = r1(x) and R2(x, y) = yr2(x)
for rational functions r1 and r2. Furthermore we wrote r1 = p/q for polynomials p and q. With
this convention we are able to define the degree of an isogeny.

Definition.

• We also define the degree of an isogeny ϕ to be

deg ϕ := max{deg p, deg q}

if ϕ ̸≡ O and if ϕ ≡ O then define deg(ϕ) = 0. We also say that ϕ is separable if r′1(x) ̸≡ 0
i.e. if p′ or q′ is not 0 (see the exercise of the last lecture).

• We denote the set of all isogenies from E1 to E2 by Hom(E1, E2) and the set of all endo-
morphism of an elliptic curve E as End(E).

We may need a lot of machinery (commutative algebra) to prove the facts below, so we will
take them for granted
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Remark 2.

a.) The definition for degree and separability of isogeny comes from a characterization of sep-
arability and degree of the pullback of the function fields ϕ∗ : K(E2) ↪→ K(E1). Thus, in
particular, if we have two isogenies ϕ : E1 → E2 and ψ : E2 → E3 then

deg(ψ ◦ ϕ) = (degψ)(deg ϕ)

b.) A non-constant isogeny ϕ : E1 → E2 is a surjective map.

Example 3. Consider the duplication map of the last example. We compute the degree of this
map

R1(x, y) =

(
3x2 + a

2y

)2

− 2x ⇒ r1(x) =
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)

One checks that the numerator and denominator do not have common zero in E, so deg ϕ = 4.
Furthermore, we see that q′(x) = 4(3x2 + a) ̸≡ 0 (check this also for charK = 3!) which means
that ϕ is separable.

Notation. We have seen the duplication endomorphism ϕ : E(K̄) → E(K̄), this is often denoted
as

[2] : E(K̄) → E(K̄)

and can clearly be restricted to a morphism E → E. We can also talk about endomorphisms that
are n-multiples of points in E (for any n ∈ Z) and this is similarly denoted [n].

Exercise 1. Given an elliptic curve E : y2 = x3 + ax + b over K with charK - 6, show that
deg[n] = n2

Henceforth, unless otherwise stated, charK ̸= 2. Also, starting from the Theorem below, since
we treat Hom(E1, E2) as a Z-module, when we write mϕ for an isogeny ϕ and a number m, we
actually mean [m] ◦ ϕ ([m] defined in the endomorphism ring of the codomain of ϕ).

Theorem 4. Let E,E1, E2 be elliptic curves over K then

a.) Hom(E1, E2) is a torsion-free Z-module.

b.) The endomorphism ring End(E) has no zero-divisors and is of characteristic 0.

c.) The map End(E)× End(E) → Z defined by

(ψ, ϕ) 7→ deg(ψ + ϕ)− degψ − deg ϕ

is Z-bilinear i.e. we have the identity

deg(mϕ+ nψ) = m2 deg ϕ+ n2 degψ +mn(deg(ϕ+ ψ)− deg ϕ− degψ)

for all ϕ, ψ ∈ End(E) and m,n ∈ Z

d.) Let K = Fp and m,n ∈ Z such that (m,n) ̸= (0, 0) then mϕp + n is separable iff p - n.

Partial Proof. We will only partially prove the above theorem

a.) Clearly Hom(E1, E2) is Z-module i.e. (ϕ + ψ)(P ) = ϕ(P ) + ψ(P ) and nϕ = [n] ◦ ϕ (where
[n] is in End(E2). From the exercise we learn that [n] ∈ End(E2) is non-constant for all non-zero
n ∈ Z. Consider now [n] ◦ ϕ for some non-trivial ϕ ∈ Hom(E1, E2) and n ̸= 0, then if [n] ◦ ϕ = [0]
we get

deg([n] ◦ ϕ) = deg[n] deg ϕ = 0

which implies that n = 0 and this is a contradiction.

2



b.) Since End(E) is torsion-free it has characteristic zero i.e. [n]ϕ ̸= 0 for non-trivial n and ϕ.
Moreover, if ϕ ◦ ψ = [0] we get

deg(ϕ ◦ ψ) = deg ϕ degψ = 0

and this implies that ϕ or ψ is [0].

c.) We just prove the identity assuming Z-bilinearity. We get

deg(mϕ+ nψ)− deg(mψ)− deg(nϕ) = mn(deg(ψ + ϕ)− degψ − deg ϕ)

so
deg(mϕ+ nψ) = deg(mψ) + deg(nϕ) +mn(deg(ψ + ϕ)− degψ − deg ϕ)

But
deg(mϕ) = deg([m]) deg ϕ = m2 deg ϕ

and similarly deg(nψ) = n2 degψ, so we obtain the result.

Studying endomorphism of elliptic curve has several applications, one of which is the proof of
Hasse’s theorem which gives a bound to the number of points in an elliptic curve over a finite
field. There is a weaker statement to Hasse’s theorem that we can immediately prove:

Proposition 5. Let E : y2 = f(x) be an elliptic curve over a finite field Fp, where p is a prime
number greater than 3, then

#E = p+ 1 +

p−1∑
x=0

(
f(x)

p

)
L

Proof. The solutions in E\{O} of y2 = f(x) is given by the numbers of x such that f(x) is
a quadratic residue mod p. The Legendre symbol evaluates to 0, 1,−1 respectively for 1, 2, 0
solutions to y2 = f(x). Thus

#(E\{O}) =
p−1∑
x=0

((
f(x)

p

)
L

+ 1

)
= p+

p−1∑
x=0

(
f(x)

p

)
L

the desired result follows after adding O.

We however want to prove a more general result, namely

Hasse’s Theorem. Let E : y2 = f(x) be an elliptic curve over a finite field Fp, then #E is in
the interval

[p+ 1− 2
√
p, p+ 1 + 2

√
p]

We will use isogenies to prove this. For this we need . . .

Proposition 6. Let ϕ ̸= 0 be a non-trivial separable isogeny, then1

deg ϕ = #ker(ϕ)

Proof. We assume ϕ : E1 → E2 and E1 : y2 = f1(x) and E2 : y2 = f2(x). For points in
E1(K̄)\{O1}, let ϕ(x, y) = (r1(x), yr2(x)) with r1 = p/q for some p, q ∈ K[x] with no non-constant
common factor. Since ϕ is separable we get r′1 ̸≡ 0, so pq′ − p′q ̸≡ 0.

1in fact, non-constant isogenies are finite maps, i.e. the preimage of a point is finite
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Let S be the set of zeros of q(pq′ − p′q) in K̄. We first show that we can choose an (α, β) ∈
E2(K̄)\{O2} such that

1. α ̸= 0 and β ̸= 0.

2. deg(p(x)− αq(x)) = deg ϕ = max{deg p, deg q}

3. α ̸∈ r1(S)

4. (α, β) ∈ ϕ(E1(K̄))\{O2}

This (α, β) exists because

• p′q − pq′ is not identical to 0, thus it has only finite zeros, thus r1(S) is also finite

• There are only finitely many α ∈ K∗ that deg ϕ > deg(p(x)− αq(x))

• We can thus arbitrarily choose an element in α ∈ r1(K̄) ∩ K̄∗ (K̄∗ is infinite!) such that
deg ϕ = deg(p(x)− αq(x)) and is neither in r1(S) nor a zero of f2

• Since f2(α) ̸= 0, β ̸= 0.

We claim that for this (α, β) ∈ ϕ(E1(K̄) we have

#ϕ−1(α, β) = deg ϕ

Suppose ϕ(α1, β1) = (α, β) i.e.

α =
p(α1)

q(α1)
β1r2(α1) = β

Since the (α, β) ̸= O2, we must have q(α1) ̸= 0 (see Exercise). Furthermore, since β ̸= 0, we can
write β1 = β/r2(α1). Thus β1 is determined by α1 and we need only count the α1 in the preimage.
By our assumption on (α, β), we just need to show that p− αq does not have multiple roots.

Suppose, by contradiction, that p − αq has multiple roots. In other words, we assume that
there is an α0 ∈ K̄ such that

p(α0)− αq(α0) = 0 p′(α0)− αq′(α0) = 0

This yields
αp(α0)q

′(α0) = αq(α0)p
′(α0)

But this implies that α0 ∈ S and so α = r(α0) ∈ r(S) which is a contradiction.
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