
J. Symbolic Computation (1996) 11,Bidirectional Exact Integer DivisionWERNER KRANDICKyAND TUDOR JEBELEANzResearch Institute for Symbolic ComputationJohannes Kepler University, A-4040 Linz, Austriakrandick, jebelean@risc.uni-linz.ac.at(Received 4 July 1995)Division of integers is called exact if the remainder is zero. We show that the high-order part and the low-order part of the exact quotient can be computed independentlyfrom each other. A sequential implementation of this algorithm is up to twice as fast asordinary exact division and four times as fast as the general classical division algorithmif the dividend is twice as long as the divisor. A shared-memory parallel implementationon two processors gains another factor of two in speed.Keywords: exact arithmetic, parallel arithmetic.1. IntroductionDivision of integers is called exact if the remainder is zero. Exact division arises system-atically in exact calculations, e.g. when rational numbers are added or when the primitivepart of an integral polynomial is computed.Traditionally, these divisions are performed using a general quotient-remainder al-gorithm (e.g. \Algorithm D" of Knuth, 1981, Section 4.3.1), and then discarding theremainder. The number of digit multiplications required by this algorithm isTD(m;n) = n(m � n+ 1);where m;n are the numbers of digits in dividend and divisor, respectively. The amountof work is suggested by the shaded area in Figure 1 { left-hand side.Jebelean (1993a) proposed an algorithm for exact division which determines the quo-tient digits from right to left and requires onlyTJ (m;n)=(m�n+42 (m� n+ 1)� 1 if m � 2n� 1n(m� 32n + 12) +m otherwisedigit multiplications (see Corollary 3.1).In 1994, Krandick devised an algorithm for the seemingly unrelated problem of multipley Supported by the Austrian Science Foundation (Grant M0135-PHY).z Supported by the Austrian Science Foundation (Grant P10002-MAT).0747{7171/90/000000 + 00 $03.00/0 c
 1996 Academic Press Limited

2 W. Krandick and T. Jebelean
A
B

Q

A
B

Q Q

B
H L

LHFigure 1. Classical division with remainder vs. bidirectional exact division.precision
oating point division. His method requires typicallyTK (m;n)=8><>:n(m � n+ 1) if n � 3m�n+62 (m � n+ 1) if n > 3 and m � 2n� 4n(m � 32n+ 72) � 3 otherwisedigit multiplications (see Corollary 2.1). The method is modeled after Knuth's algorithm,but it does not compute the full remainder. Instances where this would lead to an incor-rect result are detected by testing a condition su�cient for correctness. The condition ise�ciently computable, and it is satis�ed with very high probability | if dividend anddivisor are chosen at random. If, however, the remainder is zero, the condition will notbe satis�ed. Thus, Krandick's method cannot be used to compute all the digits of theexact quotient.We will present an algorithm which uses Krandick's method to compute the high-orderpart of the exact quotient, and Jebelean's method to compute the low-order part. Thecombined method requiresTKJ (m;n)�8><>:m if n = 1(m�n)(m�n+11)4 + 198 if n > 3 and m � 3n� 6n(m � 2n+ 5)� 5 otherwisedigit multiplications (see Theorem 4.1). In particular, if the dividend is twice as long asthe divisor our method is almost four times as fast as the traditional method (TKJ (m;n) �n(n+ 11)=4 + 19=8, see also Figure 1 { right-hand side). The high-order part QH of thequotient is computed using the high-order part BH of the divisor, while the low-orderpart QL of the quotient is computed using the low-order part BL of the divisor. Themethod is well suited for coarse-grain parallelization, because the two computations arecompletely independent. When run in parallel on two processors, each processor has tocompute at mostT �KJ (m;n)�8>>>>>>><>>>>>>>:2m+13 if n = 1n2(m�n+1)+mn2n+1 if n = 2; 3(m�n+11)(m�n+1)8 if n > 3 and m � 3n� 6n(m�2n+6)2 � 3 if n > 3 and 3n� 6 < m � 4n� 6n(m�2n+2)2 + m2 if n > 3 and 4n� 6 < m

Bidirectional Exact Integer Division 3digit multiplications (see Theorem 5.1). In particular, if the dividend is twice as longas the divisor, the parallel version of our method is almost eight times as fast as thetraditional method (T �KJ (m;n) � (n+ 1)(n+ 11)=8).This paper was �rst presented at a conference in 1994 (Krandick and Jebelean 1994).The idea of combining a high-order algorithm with Jebelean's exact division was �rstsuggested to us by Sch�onhage, who investigated an implementation and applicationstogether with Vetter (Sch�onhage and Vetter 1994). In contrast to his approach we usea di�erent method for computing the high-order part of the quotient, we analyze themethod in terms of the required number of digit products, we provide detailed empiricaldata, and we discuss and implement a parallel version of the method.Coarse level parallelization of long integer division is apparently not treated in theliterature. Parallel algorithms for division refer mostly to �xed-point fractions, and aredesigned at the level of bit processing. One research direction in this area is the theoret-ical investigation of time and area complexity of division on parallel computing modelssuch as parallel random access memory (PRAM); for a survey see (Lakshmivarahan andDhall 1990), Section 3.7. Research with practical applications is mainly VLSI-oriented(see e.g. Swartzlander, 1990), again at bit-level. Word-level algorithms are based on thesystolic approach (see e.g. Jebelean, 1993b), which is too �ne-grained for shared-memoryarchitectures. Our algorithm, although not scalable, is suitable for coarse-grain paral-lelization on shared-memory machines and it will increase the performance of parallelalgebraic algorithms which contain exact division as a subalgorithm.Under a title quite similar to the title of this paper V�acariu (1992) treats the computa-tion of the quotient of �xed-point numbers at bit-level. He uses the term \exact quotient"to refer to the representation of the quotient as a periodic fraction. The computation isperformed from both directions, on two parallel processors, but it is organized accordingto a \master-slave" scheme, with communication at each step. In our algorithm only �nalsynchronization is needed.Section 2 describes Krandick's algorithm, Section 3 reviews Jebelean's method. Sec-tion 4 combines the two methods to maximize the performance of a sequential implemen-tation. Section 5 shows how a parallel implementation best combines the two methods.Section 6 compares the new method empirically with the algorithms by Knuth and Je-belean and estimates at 15,000 words the break-even point against asymptotically fastdivision based on Karatsuba's multiplication algorithm.2. Computing the high-order partGiven positive integers A = m�1Xi=0 ai�i; B = n�1Xj=0 bj�j ; (2.1)of �-length m;n � 1 and with �-digits 0 � ai; bj < � and am�1; bn�1 > 0, we want to�nd the h high-order digits of Q = bA=Bc, where 1 � h � m�n+1. Here we consider Qas having m�n+1 digits, with the high-order digit being possibly zero. In other words,we want to compute �Q = �A= �B� ;where �B = B�m�n+1�h.Traditional classical division requires hn digit multiplications for this task. We will

4 W. Krandick and T. Jebeleandescribe a method that typically requires only h(h + 5)=2 digit multiplications whenn > 3 and h � n � 3. The savings are obtained by suppressing the computation of theremainder.Instead of computing �Q and �R, 0 � �R < �B, withA = �Q � �B + �Rwe compute Q� and R� such that A = Q� � �B +R�;where Q� � �B is a well-de�ned approximation to the product Q� �B. Computing Q� � �Brequires fewer digit products than computing the exact product Q� �B.We will de�ne the approximate product � and derive an error bound� � Q� �B � Q� � �B:We will state a condition involving � and R� which will be easy to test and which willimply equality of Q� and �Q. We will argue that Q� can be determined in such a way thatthe su�cient condition will be satis�ed with high probability.Definition 2.1. Let A, B be integers as in (2.1) with B having n digits. We de�ne theapproximate product A �B = Xi+j�n�3aibj�i+j :Clearly, for n = 1; 2 or 3, the approximate product coincides with the exact product.In the notation of Krandick and Johnson (1993a), A �B= (A�n�1B)�n�3 where �n�1denotes \the short product with respect to (n�1)". The deviation from the exact productcan be estimated as follows.Proposition 2.1. Let A,B as in (2.1) with B having n digits, let� = � 0 if n = 1; 2(n� 3)�n�2 if n � 3:Then A �B � AB � A �B + �:Proof. The cases n = 1; 2 are trivial. By induction on n � 3,Xi+j<n�3(� � 1)2�i+j � (n� 3)�n�2 + (2 � n)�n�3 + 1:The right-hand side is � �. This proves the second inequality. 2The proposed division method uses the approximate product of Q� and �B. Noting that�B has m � h+ 1 digits we obtainQ� � �B = Xi+j�m�h�2 q�i �bj�i+j ; (2.2)with Q� =Ph�1i=0 q�i �i, 0 � q�i < � and with �B =Pm�hj=0 �bj�j , 0 � �bj < �. Furthermore,

Bidirectional Exact Integer Division 5we have Q� � �B � Q� �B � Q� � �B + �; (2.3)where � = � 0 if m � h = 0; 1(m � h� 2)�m�h�1 if m � h � 2: (2.4)We now give a su�cient condition for the success of the method.Proposition 2.2. Let � as in (2.4). If� � R� < �B (2.5)then Q� = �Q:Proof. Let R�� = A�Q� �Band assume (2.5). Then (2.3) impliesR��=(Q� � �B +R�) �Q� �B� (Q� � �B + �)�Q� �B�0and R�� � A� Q� � �B = R� < �B:Hence, A = Q� �B +R�� with 0 � R�� < �B, so Q� must be the desired quotient �Q. 2The proposed division method will produce a Q� such that A = Q� � �B + R�. It willbe shown that Q� = �Q with high probability. Condition (2.5) will be used to establishQ� = �Q with certainty. Therefore, the following question has to be discussed. GivenQ� = �Q, what is the probability that condition (2.5) is satis�ed? | Because of (2.3) wehave A�Q� � �B � A �Q� �B � A� Q� � �B � �:Hence, letting Q� = �Q in the middle,R� � �R � R� � �or, equivalently, �R � R� � �R+ �:Thus, condition (2.5) will be satis�ed if� � �R < �B � �: (2.6)If all possible values 0; : : : ; �B � 1 for �R are equally likely, (2.6) is true with probability�B � 2��B � 1� 2(m� h� 2)�m�h�1�B � 1� 2(m � h� 2)� :This value is very close to 1 if � is the word size of a computer (e.g. � = 232).The digits of Q� are determined by AlgorithmH in Figure 3 analogously to \AlgorithmD" of Knuth (1981, p.257). We assume radix � to be a power of 2, for example the word

6 W. Krandick and T. JebeleanAlgorithm H (High-order part of quotient). Let A;B as in (2.1) with m and n digits, respectively,and let 1 � h � m� n+ 1. The algorithm will compute the h high-order digits qm�n; : : : ; qm�n�h+1of bA=Bc or fail. The probability of a failure is very small. We may assumem � n > 1, and m = n onlyif am�1 � bn�1 .H1. [Normalize.] Set d the number of leading 0-bits in bn�1 , I max(0;m� n� h). Then performthe left-shifts [am; am�1; : : : ; aI] [am�1; : : : ; aI] � 2d and [bn�1; : : : ; b0] [bn�1 ; : : : ; b0] � 2d.H2. [Initialize loop.] Set k m � n, i m.H3. [Calculate quotient digit.] If ai � bn�1, set qk � � 1; otherwise set qk b[ai; ai�1]=bn�1c.Subtract bn�1qk from [ai; ai�1]; then subtract bn�2qk from [ai; ai�1; ai�2].If this leaves ai negative, decrement qk by 1 and add [bn�1; bn�2] to [ai; ai�1; ai�2].H4. [Multiply and subtract.] Set J max(0;m � h � 2 � k); then subtract [bn�3 ; : : : ; bJ] � qk from[ai; : : : ; ak+J].H5. [Test remainder.] If ai � 0, go to step H7.H6. [Add back.] Decrement qk by 1; add [bn�1 ; : : : ; bJ] to [ai; : : : ; ak+J].H7. [Remainder over
ow?] If ai 6= 0 then fail.H8. [Loop on k.] If k > m� n� h+ 1, decrement k and i by 1 and go back to H3.H9. [Final remainder too small?] If am�h = 0 and am�h�1 < m� h� 2 then fail.H10. [Final remainder too large?] If [am�h; : : : ; am�n+1�h] � [bn�1; : : : ; b0] then fail.Figure 2. Computing the high-order part of the quotient.size of the computer. We represent �-digits as words; hence we may refer in step H1 tothe number of leading 0-bits of a �-digit. The normalization is e�ected by a binary shiftwhich is applied to all digits of B, but only to those digits of A that will be neededin step H10. Steps H3 and H4 together subtract [bn�1; : : : ; bJ] � qk from [ai; : : : ; ak+J]with J = max(0;m � h � 2 � k). In total, the loop subtracts [qm�n; : : : ; qm�n�h+1] �[bn�1; : : : ; b0; 0; : : : ; 0] = [q�m�n; : : : ; q�m�n�h+1]� [�bm�h; : : : ;�bm�n�h+1;�bm�n�h; : : : ;�b0] =Q� � �B from [am; : : : ; a0]. This motivates the analysis in Proposition 2.3. Steps H9 andH10 test for the condition of Proposition 2.2.We will now argue that the loop in Algorithm H will produce �Q with high probability.Knuth (1981) shows in exercise 4.3.1.21 that step D3 of his algorithm will fail to supplythe correct quotient digit with approximate probability 2=�. This number is very smallwhen � is the word size of a computer. For Algorithm H this means that quotient digitqi�n calculated in step H3 will be correct in almost all cases where the three leadingdigits ai, ai�1, ai�2 of the current \remainder" are correct. We will argue inductivelythat for i = m; : : : ;m� h+ 2 the values of ai, ai�1, ai�2 are most likely correct.At the beginning of the algorithm the values of am, am�1, am�2 are clearly correct.For the induction step we assume that ai, ai�1, ai�2 are correct at the beginning ofstep H3. Under this assumption the value of qi�n at the end of step H3 is correct withapproximate probability 2=�. In step D4 of Knuth's algorithm qi�n is multiplied by alldigits of the divisor; in step H4 of Algorithm H some of these multiplications are skipped.The probability that this deliberate error a�ects the values of ai, ai�1, ai�2 in step H7 isbounded above by the probability that adding � to Q� � �B produces a carry into the h+1high-order digits (according to (2.3), Q� � �B � Q� �B � Q� � �B + �). A carry can only beproduced if am�h�1 � ��(m�h�2). But this is highly unlikely; experiments by Krandickand Johnson (1993b) seem to indicate that all numbers 0; : : : ; � � 1 are equally likely asvalues of am�h�1. Under this assumption, the probability that am�h�1 � �� (m�h�2)is (m � h� 2)=�. This is very small, so the values of ai, ai�1, ai�2 in step H7 are mostlikely correct.We note that step H7 is not necessary in Knuth's algorithm. In our algorithm, however,the value of ai might be positive (and not zero as it should be), because we are not

Bidirectional Exact Integer Division 7subtracting enough in step H4. For the same reason, the value of ai in step H3 might betoo large. By letting qk � � 1 if ai � bn�1 we make sure that in any event qk will beless than �.The inductive argument shows that qm�n; : : : ; qm�n�h+2 are most likely to be correct.If this is the case, [am�h+1; am�h; am�h�1] deviates from its true value by at most m �h� 2, so also the last quotient digit qm�n�h+1 will most likely be correct.Thus, the number Q� produced by the loop in Algorithm H is equal to �Q with aprobability in the neighborhood of 1� 1=�. We have argued above that in case Q� = �Qthe tests in steps H9 and H10 will be passed with probability � 1� 2(m� h� 2)=�. So,Algorithm H will succeed with a probability close to 1. When we used the algorithm in amillion randomly generated test cases to compute the high 25 words of the exact quotientof a 100-word number and a 50-word number, there was not a single case of failure. Theword size in this experiment was � = 229. If Algorithm H fails, the method of Section 3,which is fail-safe, can be used to compute all the digits of the exact quotient.Proposition 2.3. The number �(n; h) of digit products in formula (2.2) is�(n; h) = 8<: nh if n � 3h(h+5)2 if n > 3 and h � n � 32hn�n2+5n�62 if n > 3 and h > n � 3: (2.7)Proof. For each index i = 0; : : : ; h � 1 index j ranges from max(0;m � h � 2 � i) tom�h, but since �b0 = : : : = �bm�h�n = 0, only the j � m�h�n+1 have to be considered.Hence the number �i of digit products for a given i is�i = (m � h) + 1�max((m � h) � (n � 1); 0; (m� h)� (2 + i))= (m � h) + 1�max(0; (m� h)�min(n� 1; 2 + i)):The expression can be simpli�ed by distinguishing two cases.1 In case i � n� 3 we have n� 1 � 2 + i, so�i = (m � h)�max(0; (m� h) � (n� 1)) + 1:Noting that (m � h)� (n� 1) � 0 since h � m � n+ 1, we obtain�i = (m � h)� ((m � h)� (n� 1)) + 1 = n:2 In case i < n� 3 we have n� 1 > 2 + i, so�i = (m � h)�max(0; (m� h)� (2 + i)) + 1:Since i < n� 3 � m � h� 2, the expression evaluates to�i = (m � h) � ((m � h)� (2 + i)) + 1 = 3 + i:Knowing the �i we can now verify the three cases of the proposition.1 In case n � 3 we have n� 3 � 0 � h� 1, so all i are � n� 3, hence all �i = n andso there are �(n; h) = h�1Xi=0 �i = nh

8 W. Krandick and T. Jebeleandigit products.2 In case n > 3 and h � n� 3 we have 0 � h� 1 < n� 3, so all indices i are < n� 3,hence all �i = 3 + i and so there are�(n; h) = h�1Xi=0(3 + i) = h(h+ 5)2digit products.3 In case n > 3 and h > n� 3 we have 0 < n� 3 � h� 1, so there are�(n; h) = n�4Xi=0(3 + i) + h�1Xi=n�3n = 2hn� n2 + 5n� 62digit products.2Corollary 2.1. Letting h = m� n+ 1 in Proposition 2.3 we obtainTK(m;n)=8><>:n(m � n+ 1) if n � 3m�n+62 (m � n+ 1) if n > 3 and m � 2n� 4n(m � 32n+ 72)� 3 otherwise.3. Computing the low-order partLet A and B as in (2.1), and assume that B divides A. The exact division algorithmof Jebelean (1993a) exploits the implication(A0� + a0) = (B0� + b0) � (Q0� + q0)) a0 = (b0q0) mod �:The latter equation can be used to compute q0q0 = (a0(b0)�1mod �)mod �| provided GCD(b0; �) = 1. When � is a power of 2 this condition can be ensured byshifting A and B to the right until b0 becomes odd. After the least-signi�cant quotientdigit q0 has been found, A is replaced by(A� q0B)=� = Q0 �B;and the procedure is repeated to �nd q1, and so on. This method is faster than thetraditional classical algorithm, because only the l low-order digits of the intermediateresults A� q0B etc. have to be computed in order to determine the l low-order digits ofthe quotient. Algorithm L in Figure 3 takes advantage of this insight. We may assumethat the least-signi�cant �-digit of B is non-zero; indeed, A must have at least as manytrailing zero �-digits as B, and common trailing zeros can be deleted without a�ectingthe quotient.When analyzing Algorithm L, we will not consider the (constant) cost of �nding themodular inverse of b0 in step L2. Jebelean (1993a) shows that b0 can be inverted usingone or two digit multiplications and a table look-up when � is a power of 2; the extendedEuclidean algorithm need not be applied. In our experiments the modular inverse costsas much as 2.25 digit products.

Bidirectional Exact Integer Division 9Algorithm L (Low-order part of quotient). Let A;B be as in (2.1) with m and n digits, respectively,with A mod B = 0 and with b0 6= 0, and let 1 � l � m � n+ 1. The algorithm will compute the llow-order digits ql�1; : : : ; q0 of Q = A=B.L1. [Right-shift.] Set d the number of trailing 0-bits in b0, and set L min(n; l). Then perform theright-shifts [al�1; : : : ; a0] [al; al�1; : : : ; a0]=2d and [bL�1 ; : : : ; b0] [bL; bL�1; : : : ; b0]=2d.L2. [Compute modular inverse.] Set b0 (b0)�1mod � .L3. [Initialize loop.] Set k 0.L4. [Calculate quotient digit.] Set qk (b0 � ak)mod � .L5. [Test termination] If k = l� 1 then STOP.L6. [Multiply and subtract.] Set J min(L; l�k); then subtract [bJ�1; : : : ; b0]�qk from [al�1; : : : ; ak].L7. [Loop.] Increment k and go back to step L4.Figure 3. Computing the low-order part of the quotient.Proposition 3.1. The number �(n; l) of digit products in Algorithm L is�(n; l) = (l(l+3)2 � 1 if l � nl(n + 1)� n2�n+22 if l > n: (3.1)Proof. Let L = min(n; l). We will show that�(n; l) = l(L + 1)� L2 � L + 22 : (3.2)From Algorithm L we obtain�(n; l) = l + l�2Xk=0min(L; l � k)= l + min(l�2;l�L)Xk=0 L+ l�2Xk=max(0;min(l�2;l�L)+1)(l � k)= l + l�max(2;L)Xk=0 L+ l�2Xk=max(0;l�max(2;L)+1)(l � k):1 If L = 1 we have�(n; l) = l + l�2Xk=01 + l�2Xk=l�1(l � k) = l + (l � 1) + 0 = 2l � 1:2 If L = 2 we have�(n; l) = l + l�2Xk=0 2 + l�2Xk=l�1(l � k) = l + 2(l � 1) + 0 = 3l � 2:3 If L > 2 we have�(n; l) = l + l�LXk=0L + l�2Xk=l�L+1(l � k) = l + (l � L+ 1)L+ (L� 2)(L+ 1)2 :In all three cases equation (3.2) is satis�ed; and equation (3.2) implies equation (3.1).2

10 W. Krandick and T. JebeleanCorollary 3.1. Letting l = m � n+ 1 in Proposition 3.1 we obtainTJ (m;n)=�m�n+42 (m � n+ 1)� 1 if m � 2n� 1n(m � 32n+ 12) +m otherwise.This result corrects the analysis given in the original paper (Jebelean 1993a), whichdid not account for the digit multiplications in step L4 of the algorithm.4. Sequential exact divisionThe digits of the exact quotient can be computed sequentially by �rst using AlgorithmH to calculate the high-order part of the quotient and then Algorithm L for the low-orderpart. This is most e�cient when the quotient is split in such a way that the combinednumber of digit products is minimized.Definition 4.1. Let �(n; h) as in (2.7), �(n; l) as in (3.1), and let �(n; 0) = �(n; 0) = 0.Now de�ne TKJ (m;n) = min 0�h�m�n+1 �(n; h) + �(n;m� n+ 1� h):In order to avoid a profusion of unproductive case distinctions we only give an upperbound for TKJ (m;n).Theorem 4.1.TKJ (m;n)�8><>:m if n = 1(m�n)(m�n+11)4 + 198 if n > 3 and m � 3n� 6n(m� 2n+ 5)� 5 otherwise.Proof. Let h =8<: m if n = 1�m�n2 � if n > 3 and m � 3n� 6m � 2n+ 2 otherwise, (4.1)and let l = m� n+ 1� h. Now the desired inequality is obtained by bounding �(n; h)+�(n; l) from above. For easy application of equations (2.7) and (3.1) we distinguish thefollowing cases.1 In case n = 1 the result is straightforward.2 In case n > 3 and m � 3n � 6 let ~h = (m � n)=2 and ~l = (m � n + 3)=2. Thenh � ~h � n� 3, l � ~l < n and�(n; h) + �(n; l) � �(n; ~h) + �(n; ~l) = m � n4 (m � n+ 11) + 198 :3 In case n > 3 and m = 3n� 5 we have h = n� 3, l = n� 1, and �(n; h)+ �(n; l) =n2 � 5 = n(m� 2n+ 5)� 5.4 In case n > 3 and m > 3n� 5 we have h > n� 3, l = n� 1 and �(n; h) + �(n; l) =n(m � 2n+ 5)� 5.5 In case n = 2; 3 we have h = m � 2n + 2, l = n � 1 and �(n; h) + �(n; l) =(2mn � 3n2 + 5n� 4)=2. For n = 2; 3 this equals n(m � 2n+ 5)� 5.2

Bidirectional Exact Integer Division 115. Parallel exact divisionThe high-order and the low-order part of the exact quotient can be computed byexecuting Algorithm H and Algorithm L in parallel on two processors. This is moste�cient when the quotient is split in such a way that the number of digit products ineither algorithm is minimized.Definition 5.1. Let �(n; h) and �(n; l) as in De�nition (4.1). De�ne T �KJ (m;n) =min 0�h�m�n+1 max(�(n; h); �(n;m� n + 1� h)):For simplicity we only give an upper bound for T �KJ (m;n).Theorem 5.1.T �KJ (m;n)�8>>>>>>><>>>>>>>:2m+13 if n = 1n2(m�n+1)+mn2n+1 if n = 2; 3(m�n+11)(m�n+1)8 if n > 3 and m � 3n� 6n(m�2n+6)2 � 3 if n > 3 and 3n� 6 < m � 4n� 6n(m�2n+2)2 + m2 if n > 3 and 4n� 6 < m:Proof. Let h = 8<: l n+12n+1 (m� n)m if n � 3�m�n2 � otherwise, (5.1)and let l = m � n+ 1� h.We �rst prove the theorem for the case n � 3.1 The �rst branch of � in (3.1) is only relevant if n = 1 and m = 1; 2; 3 or if n = 2 andm = 2; : : : ; 6 or if n = 3 and m = 3; : : : ; 9. In each of these 15 cases the theoremcan be veri�ed explicitly.2 If m and n are such that � is de�ned by its second branch in (3.1), we handle theceiling function in the de�nition of h by letting~h = (n+ 1)(m� n) + 2n2n+ 1 � h:Since the �rst branch of � in (2.7) is monotone increasing in h we have�(n; h) � �(n; ~h) = n2(m � n+ 1) +mn2n+ 1 :Furthermore, let ~l = m� n+ 1� n + 12n+ 1(m � n) � l:Now �(n; l) � �(n; ~l), where�(n; ~l) = n(2mn + 2m � 4n2 + 3n+ 3)4n+ 2 :Now note �(n; ~l) � �(n; ~h) if n = 1, and �(n; ~h) � �(n; ~l) if n = 2; 3.

12 W. Krandick and T. JebeleanWe now prove the theorem for the case n > 3. Here we let~h = m � n+ 12 � hand ~l = m� n+ 1� m � n2 � l:1 In case m � 3n� 7 we have ~h � n� 3 and ~l < n; hence the second branch of � andthe �rst branch of � have to be used. Thus,�(n; h) � �(n; ~h) = m� n+ 118 (m � n+ 1);�(n; l) � �(n; ~l) = m � n8 (m � n+ 10) + 1;and �(n; ~h) � �(n; ~l).2 In case m = 3n� 6 we have h = n� 3, l = n � 2, and the theorem can be veri�edexplicitly.3 In case 3n � 5 � m � 3n � 2 we have to use the third branch of � and the �rstbranch of �. We obtain�(n; h) � �(n; ~h) = n2 (m � 2n+ 6) � 3and �(n; l) � �(n; ~l) = m � n8 (m � n+ 10) + 1:For each 3n� 5 � m � 3n� 2, �(n; ~h) � �(n; ~l).4 In case m = 3n� 1 we have h = l = n, and �(n; h) > �(n; l) can be bounded as inthe previous case.5 In case m > 3n � 1 we have h � (m � n)=2 > n � 1=2 and l � m � n+ 1 � (m �n+ 1)=2 > n. Using the third branch of � and the second branch of � we have�(n; h) � �(n; ~h) = n2 (m � 2n+ 6) � 3and �(n; l) � �(n; ~l) = n2 (m� 2n+ 2) + m2 :Now, if m � 4n� 6 then �(n; ~h) � �(n; ~l); if m > 4n� 6 then �(n; ~l) > �(n; ~h).2Our method for exact division on two processors will be most useful on a shared-memory machine when invoked by an algebraic algorithm with a higher level of paral-lelism.When several exact divisions have to be executed in parallel, our method will addanother level of parallelism to the program.6. ExperimentsWe ran a sequential and a parallel implementation of our method on the shared-memory architecture of the Sequent Symmetry. We used the PACLIB environment (Hong

Bidirectional Exact Integer Division 13et al. 1992) which combines the computer algebra library SACLIB (Collins et al. 1993)with the parallel features of the �System library (Buhr et al. 1991).Table 1 lists computing times and computing time ratios for inputs of various lengths.The row heading 20=15 refers to a dividend of 20 words and a divisor of 15 words. Thecolumn heading IQR stands for the SACLIB implementation of Knuth's integer quotient-remainder algorithm, Algorithm D; IEQ stands for the SACLIB implementation of Jebe-lean's integer exact quotient method; Sequential and Parallel refer to a sequential anda parallel implementation of our new method. The sequential implementation splits thequotient as in the proof of Theorem 4.1; the parallel implementation splits the quotientas in the proof of Theorem 5.1.Table 2 has the same structure as Table 1, but instead of the computing time it liststhe number of digit products that were computed. Those numbers agree very well withthe bounds given in Theorems 4.1 and 5.1. The ratios of those numbers with respect tothe number of digit products required in the classical algorithm are a measure for theexpected speed-up.The observed speed-up agrees well with the expected speed-up when the quotient ismore than 30 words long. When the quotient is shorter, certain linear-time operationsare signi�cant. In particular, since PACLIB integers are represented as linked lists, wecopy the inputs from lists to arrays and the output from an array to a list.Surprisingly, the observed speed-up of IEQ and Sequential in the third section of Ta-ble 1 exceeds the expectations. This can be explained by noting that IQR and AlgorithmH use digit divisions in order to determine the quotient digits. Table 2 counts those digitdivisions as digit products, but the true cost of digit division is about 2.5 times the cost ofa digit product in the SACLIB implementation we used. Hence the unexpected speed-upis due to the replacement of a linear number of divisions by multiplications.Finally we note that the parallel algorithm provides a signi�cant speed-up even whenthe quotient is only 10 words long. In our experiments the e�ciency of the parallelimplementation exceeds 83% for quotients longer than 25 words and reaches 93% insome cases.Since our method is in the same complexity class as classical division, one might askfor which length of the operands one should use an asymptotically fast method instead.Asymptotically fast algorithms for division are based on an iterative computation ofthe inverse that uses Newton's method. Knuth (1981, Section 4.3.3.D) describes sucha method and analyzes the time required to divide one n-bit number by another. Weadapt his analysis to estimate the number of digit products needed for dividing a 2n-word number by an n-word number.Each Newton step requires two multiplications that are performed by an asymptoticallyfast algorithm. The only such algorithm which is useful for integers shorter than 400words is the multiplication algorithm due to Karatsuba and Ofman (1962). An estimate(along the lines suggested by Knuth) of the number R(n) of digit products required byNewton-inversion leads to R(n) = 2T (4n)+ 2T (2n)+ 2T (n) + 2T (n=2)+ :::; where T (n)digit products are needed for the multiplication of n-digit numbers. Using the propertyT (2n) = 3T (n) of the Karatsuba algorithm, one gets R(n) � 27T (n) digit products; thusthe entire division requires roughly 30 T (n) digit products.In order to obtain an estimate for the break-even point of our method with Newton-division, we estimate T (n) = nlog2 3 � n3=2. If n is the break-even point, it will satisfy30n3=2 � n2=4, and thus n � 15; 000.

14 W. Krandick and T. JebeleanTable 1. Computing times in milliseconds (left) and speed-up (right) with respect tothe classical algorithm.Lengths IQR IEQ Sequential Parallel20/15 4.7 1.5 3.1 1.5 3.1 1.5 3.140/30 16.1 3.7 4.4 3.4 4.7 2.4 6.760/45 34.4 7.2 4.8 5.8 5.9 3.7 9.3100/75 91.2 17.5 5.2 12.3 7.4 7.4 12.3150/112 201.5 37.6 5.4 23.7 8.5 13.1 15.4200/150 351.5 62.6 5.6 37.7 9.3 20.6 17.120/10 6.0 3.7 1.6 3.0 2.0 2.3 2.640/20 20.6 14.4 1.4 8.1 2.5 4.7 4.460/30 44.7 24.2 1.8 14.9 3.0 8.6 5.2100/50 119.3 61.5 1.9 35.0 3.4 20.0 6.0150/75 262.5 133.3 2.0 72.1 3.6 40.6 6.5200/100 462.3 233.4 2.0 122.3 3.8 66.8 6.920/5 5.0 4.2 1.2 4.2 1.2 2.9 1.740/10 16.4 13.8 1.2 12.6 1.3 7.2 2.360/15 34.8 28.8 1.2 25.1 1.4 14.5 2.4100/25 91.4 75.0 1.2 62.8 1.5 35.1 2.6150/37 198.1 162.8 1.2 133.0 1.5 72.8 2.7200/50 351.0 286.9 1.2 229.6 1.5 123.9 2.8Table 2. Count of digit products (left) and expected speed-up (right) with respect tothe classical algorithm.Lengths IQR IEQ Sequential Parallel20/15 90 26 3.5 20 4.5 12 7.540/30 330 76 4.3 51 6.5 26 12.760/45 720 151 4.8 95 7.6 52 13.8100/75 1950 376 5.2 220 8.9 117 16.7150/112 4368 818 5.3 457 9.6 229 19.1200/150 7650 1376 5.6 751 10.2 376 20.320/10 110 75 1.5 51 2.2 26 4.240/20 420 250 1.7 151 2.8 76 5.560/30 930 525 1.8 301 3.1 151 6.2100/50 2550 1375 1.9 751 3.4 376 6.8150/75 5700 3000 1.9 1595 3.6 817 7.0200/100 10100 5250 1.9 2751 3.7 1376 7.320/5 80 85 0.9 70 1.1 37 2.240/10 310 295 1.1 245 1.3 130 2.460/15 690 630 1.1 520 1.3 267 2.6100/25 1900 1675 1.1 1370 1.4 697 2.7150/37 4218 3665 1.2 2992 1.4 1514 2.8200/50 7550 6475 1.2 5245 1.4 2650 2.8

Bidirectional Exact Integer Division 15Since this value is very large one might obtain a smaller break-even point when Karat-suba's algorithm is replaced by FFT-based multiplication (Sch�onhage and Strassen 1971).The number of digit products required by this algorithm has not been analyzed in theliterature. Since such an analysis is outside the scope of this paper, we just note thatSch�onhage himself (1994, Section 6.1.53.) uses the classical method whenever the divi-dend is shorter than 240 words. We believe that the break-even point with our methodis much higher than this. 7. AcknowledgementsWe thank George Collins for pointing out a
aw in the earlier version of Algorithm H.We also thank one of the anonymous referees for noting non-obvious typographical errors.ReferencesBuhr, P.A., Macdonald, H.I., Stroobosscher, R.A. (1991). �System Annotated Reference Manual. Ver-sion 4.4.1. Technical report, Department of Computer Science, University of Waterloo, Ontario,October.Collins, G. E., Buchberger, B., Encarnacion, M. J., Hong, H., Johnson, J. R., Krandick, W., Loos, R.,Mandache, A. M., Neubacher, A., Vielhaber, H. (1993). SACLIB 1.1 User's Guide. Technical Report93{19, RISC{Linz.Hong, H., Schreiner,W., Neubacher, A., Siegl, K., Loidl, H.-W., Jebelean, T., Zettler, P. (1992). PACLIBUser Manual. Technical Report 92{32, RISC-Linz.Jebelean, T. (1993). An algorithm for exact division. Journal of Symbolic Computation, 15(2):169{180.Jebelean, T. (1993). Systolic Algorithms for Exact Division. In Workshop on Fine Grain and MassiveParallelism, pages 40{50, Dresden, Germany, April. Published in Mitteilungen{Gesellschaft f�urInformatik e. V. Parallel-Algorithmen und Rechnerstrukturen, Nr. 12, July 1993.Karatsuba, A., Ofman, Yu (1962). Multiplication of multidigit numbers on automata. Sov. Phys. Dokl.,7:595{596.Knuth, D. E. (1981). The Art of Computer Programming, volume 2. Addison-Wesley, 2nd edition.Seminumerical Algorithms.Krandick, W., Jebelean, T. (1994). Bidirectional exact integer division. In Hong, H., editor, FirstInternational Symposium on Parallel Symbolic Computation (PASCO'94), pages 264{272, Hagen-berg/Linz, Austria, September. World Scienti�c Publishing Co.Krandick, W., Johnson, J. R. (1993). E�cient multiprecision
oating point multiplication with optimaldirectional rounding. In Swartzlander, Earl, Jr., Irwin, Mary Jane, Jullien, Graham, editors, Pro-ceedings of the 11th IEEE Symposium on Computer Arithmetic, pages 228{233, Windsor, Ontario.IEEE Computer Society Press.Krandick, W., Johnson, J. R. (1993). E�cient multiprecision
oating point multiplication with exactrounding. Technical Report 93-76, RISC-Linz, RISC-Linz, JohannesKepler University, A-4040 Linz,Austria.Lakshmivarahan, S., Dhall, S. K. (1990). Analysis and design of parallel algorithms: Arithmetic andmatrix problems. McGraw-Hill.Sch�onhage, A., Strassen, V. (1971). Schnelle Multiplikation grosser Zahlen. Computing, 7:281{292.Sch�onhage, A., Vetter, E. (1994). A new approach to resultant computations and other algorithms withexact division. In van Leeuwen, Jan, editor,Proceedings of the 2nd Annual European Symposium onAlgorithms, Lecture Notes in Computer Science, vol. 855, pages 448{459, Utrecht, The Netherlands,September. Springer-Verlag.Sch�onhage, A., Grotefeld, A. F. W., Vetter, E. (1994). Fast Algorithms: A Multitape Turing MachineImplementation. B. I. Wissenschaftsverlag, Mannheim.Swartzlander, E. E., editor. Computer Arithmetic, volume 1, part IV, and volume 2. IEEE ComputerSociety Press.V�acariu, C. T. (1992). Method and symmetrical architecture circuit for performing the exact divisionthrough step by step approximation, in various ways and formats (in German). Patent Application892/92, Vienna: �Osterreichisches Patentamt.

