
A Generalization of the Binary GCD Algorithm�Tudor JebeleanRISC-LINZ|Research Institute for Symbolic ComputationJohannes Kepler University, A4040 Linz, Austria (Europe)Tel: +43 (7236) 3231-49, -20 Fax: +43 (7236) 3231-30e-mail: tjebelea@risc.uni-linz.ac.at|June 10, 1993AbstractA generalization of the binary algorithm for operation at \word level" byusing a new concept of \modular conjugates" computes the GCD of multipre-cision integers two times faster than Lehmer{Euclid method. Most import-antly, however, the new algorithm is suitable for systolic parallelization, in\least-signi�cant digits �rst" pipelined manner and for aggregation with othersystolic algorithms for the arithmetic of multiprecision rational numbers.IntroductionComputation of the Greatest Common Divisor (GCD) of long integers is heavily usedin Computer Algebra Systems, because it occurs in normalization of rational numbers andother important subalgorithms. According to the experiments in [Buchberger, Jebelean92], in typical algebraic computations more than half of the time is spent for calculatingGCD of long integers. For instance, in Gr�obner Bases computation [Buchberger 85],calculating GCD takes 53% of the total time if the length of the input coe�cients is 5decimal digits and 70% if the length is 50.For the range of integers which typically occur in algebraic computations (up to 100words of 32 bits), the asymptotically fast GCD algorithms based on FFT multiplicationscheme [Sch�onhage 71], [Moenck 73] do not have an e�cient implementation. There-fore, it seems to be generally accepted that the Lehmer{Euclid algorithm [Lehmer 38],[Collins 80], [Knuth 81] is the best one for practical applications, although the binaryGCD algorithm [Stein 67], [Brent 76], [Knuth 81] can be e�ciently adapted to multidigitcomputation in the same way Lehmer improved the Euclidean algorithm [Knuth 81], andthen it gives about 1.45 speed{up over Lehmer{Euclid GCD [Jebelean 92c].�Acknowledgements:Austrian Forschungsf�orderungsfonds, project S5302-PHY (Parallel Symbolic Computation);Austrian Ministry for Science and Research, project 613.523/3-27a/89 (Gr�obner Bases)and doctoral scholarship;POSSO project(Polynomial Systems Solving { ESPRIT III BRA 6846);1

The binary GCD algorithm consists in making the two operands odd by binary{shifting, and then, since their least{signi�cant bits are equal, one obtains by subtractiona number whose least{signi�cant bit is null, which by another binary{shift becomes atleast one-bit shorter than the original numbers. One iterates this process until the GCDis obtained. If by subtraction a negative number is obtained, then the next step will bein fact an addition, hence, in general, the result will not be shortened anymore. There-fore, at each step the two operands have to be compared in order to identify the rightminuend. This makes the binary algorithm less suitable for adaptation to multiprecisioncomputations, because such an adaptation means simulating several steps by using onlythe information contained in the least{signi�cant words of the operands, and recoveringthe full{length operands only when simulation is not accurate anymore. Also, this makesthe binary algorithm less suitable for parallelization (in particular, for systolic paralle-lization), because such parallelization is e�cient if one \master processor" needs onlythe information contained in the least{signi�cant words for making the computationaldecisions at each step. These decisions are then sent to other parallel \slave processor"which operate on the other digits of the operands.In the plus{minusGCD algorithm, [Brent, Kung 83] remove this disadvantage of thebinary algorithm, by noticing that, if the least{signi�cant double{bits of the two (odd)operands are equal, then one can perform subtraction, otherwise addition, in order tomake the least{signi�cant double{bit of the result null. Hence, the shifted result is shor-tened no matter which are the signs of the operands. This algorithm is easier to adaptto multidigit computation (acc. to [Jebelean 92c], the performance obtained is similar tothat of the Lehmer{Euclid algorithm), and it is also suitable for systolic parallelization(see [Brent, Kung 83]). However, the \binary" level at which this algorithm operatesmakes it suitable for hardware implementation, rather than for implementation on mul-tiprocessor machines.This paper presents a generalization of the above idea to arbitrary bit{length: star-ting from the least{signi�cant double{words of the (odd) operands, one can always �ndtwo cofactors (\modular conjugates") which are at most one word long, such that thelinear combination of the operands by these cofactors is a number whose least{signi�cantdouble{word is null. By binary shifting one obtains a number which is one word (forinstance 32 bits) shorter then the initial operands. This algorithm is more e�cient formultidigit GCD computation than the straight forward adaptation of the plus{minus al-gorithm (experimentally 2.35 times speed{up), and, in fact, it seems to be faster thanany other multiprecision algorithm, according to the experiments in [Jebelean 92c].Most importantly, however, this algorithm is suitable for systolic parallelization in\least-signi�cant digits �rst" (LSF) pipelined manner, this time at \word" level, whichmakes it suitable for implementation on multiprocessor machines. This makes it alsosuitable for pipelined aggregation with other LSF systolic multiprecision algorithms (likemultiplication [Atrubin 65], exact division [Jebelean 92b]) and with pipelined units foraddition/subtraction. This is very useful in building systolic algorithms for multiprecisionrational arithmetic, which is extremely time consuming in typical algebraic computations.(According to the experiments in [Buchberger, Jebelean 92], in Gr�obner Bases computa-tion, when increasing the coe�cient length from 1 to 10 decimal digits, the proportion ofrational operations grows from 62% to 98%, and the total computation time grows by afactor of 25.) 2

1 Modular ConjugatesLet us remember the basic Euclidean method. Starting with two positive integers a0 � a1,one computes the remainder sequence (ai)1�i�n+1 de�ned by the relations:ai+2 = ai mod ai+1; an+1 = 0: (1)and then one has: GCD(a0; a1) = an:A detailed presentation of the Euclidean algorithm can be found in [Knuth 81].The extended Euclidean algorithm (also in [Knuth 81]) consists in computing addi-tionally the quotient sequence (qi)1�i�n and the cosequences of cofactors (ui; vi)0�i�n+1de�ned by: qi+1 = bai=ai+1c; (2)u0 = 1; v0 = 0; u1 = 0; v1 = 1; (3)(ui+2; vi+2) = (ui; vi)� qi+1 � (ui+1; vi+1): (4)Then one has: ai+2 = ai � qi+1 � ai+1 (5)ui � a0 + vi � a1 = ai: (6)It is useful to note that the signs of the cofactors alternate. Indeed, by (3):u0 � 0; v0 � 0;u1 � 0; v1 � 0:If one assumes that for any i < k:ui � 0; vi � 0; if i even;ui � 0; vi � 0; if i odd;then using (4) one can deduce the above relations for i = k � 2: Hence, one has:juij = (�1)i � ui; jvij = (�1)i+1 � viand (4) can be also written as:(jui+2j; jvi+2j) = (juij; jvij) + qi+1 � (jui+1j; jvi+1j): (7)In order to investigate the size of the cofactors, we use the continuant polynomials(see also [Knuth 81]) de�ned by8<: P0() = 1;P1(x1) = x1;Pi+2(x1; : : : ; xi; xi+1; xi+2) = Pi(x1; : : : ; xi) + xi+2 � Pi+1(x1; : : : ; xi; xi+1): (8)3

which are known to enjoy the symmetryPi(x1; : : : ; xi) = Pi(xi; : : : ; x1): (9)By comparing the recurrence relations (7) and (8) one notesjuij = Pi�2(q2; : : : ; qi�1);jvij = Pi�1(q1; : : : ; qi�1): (10)Also, by transforming (5) into ai = ai+2 + qi+1 � ai+1;and using ai > ai+1, one can provea0 � ai � Pi(qi; : : : ; q1);a1 � ai � Pi�1(qi; : : : ; q2): (11)Hence by (10) and (11) one has jvi+1j � a0=ai;jui+1j � a1=ai: (12)Let us denote by m the bit{length of the computer word (in our implementationm = 32), and let us consider two odd double{words a; b (a; b < 22m). We show inthe sequel how to �nd the modular conjugates of a; b, that is, the integers x; y with theproperties: 0 < x; jyj < 2m;(x � a+ y � b) mod 22m = 0 (13)Since a; b are odd, one can �nd b�1 mod 22m andc = (a � b�1) mod 22m;which is also odd. Then (13) becomes(x � c+ y) mod 22m = 0:If c < 2m, then x = 1 and y = �c satisfy (13) and they also have the desired lengths.If c � 2m, then let us apply the extended Euclidean algorithm to a0 = 22m and a1 = c.Since c is odd, the remainder sequence (ai) is strictly decreasing to 1 = GCD(22m; c),hence for some k: 0 < ak < 2m � ak�1:By (12): jvkj � a0=ak�1 � 22m=2m = 2m:Also, by (6): 22m � uk + c � vk = ak;hence: (c � vk � ak) mod 22m = 0:In fact, jvkj cannot equal 2m, because in this case the above relation implies:ak mod 2m = 0;4

which is impossible for 0 < ak < 2m:Hence, by taking x = jvkj and y = (�1)kak, one has the desired modular conjugates.Note that if m = 1, then(x; y) = � (1;�1); if ba=2c = bb=2c;(1; 1); otherwise;which is the basic idea of the plus{minus GCD algorithm of [Brent, Kung 83].2 The new algorithmNow let A;B be two multidigit integers. As in the binary and plus{minus algorithms, onecan skip the trailing binary zeroes in order to make A and B odd (the number of commonzeroes is stored in order to be incorporated into GCD at the end of the algorithm).Then the modular conjugates x; y of the least signi�cant double words of A and Bcan be found, and the linear combinationC = jx �A+ y �Bj=22mwhich is (roughly) one word shorter than max(A;B). Then one can make C odd bybinary shifting and reiterate the procedure with C and min(A;B).Note that if m = 1, then one obtains the plus{minus GCD algorithm introduced in[Brent, Kung 83].However, when operating at word level, some further improvements are necessary.The inter{reduction by modular conjugates is e�cient when (length(A) { length(B)) issmall (for m = 32, we experimentally observed that the best threshold is 8). Otherwise,it is more e�cient to bring the lengths closer by another scheme { for instance, by divi-sion. However, division is not suitable for parallelization, and it is also a relatively slowoperation. It is better to apply instead the \exact division" scheme described in [Jebelean92a], which works like this:Let be d = length(A) { length(B) and a; b the trailing d bits of A;B.Set c = (a � b�1) mod 2d.Then C = (A � c �B)=2d is (at least) d bits shorter than A.Hence, the generalized binary algorithm consists in alternating the \exact division"step with \inter-reduction by modular conjugates" step. After each alternation, the twooperands become (at least) one word shorter (typically one word is 32 bits). Note thattwo such steps need 3 multiplications of a simple precision integer by a multiprecisioninteger, compared with 4 such multiplications in Lehmer{Euclid method, but the reduc-tion obtained is one word, while in Lehmer{Euclid only half{word reduction is achieved.This is the reason why the experimental running{time decreases to half.The algorithm terminates when a 0 is obtained. If 0 is obtained after an exact divisionstep, then G0 = B, and if 0 is obtained after an inter-reduction step, then G0 = (A �GCD(x; y))=y = (B �GCD(x; y))=x, where G0 is the approximative GCD of initial A;B.However, G0 is in general di�erent from G = GCD(A;B), becauseGCD(A;B) j GCD(B; x �A+ y �B);but not the other way around. A \noise" factor may be introduced at each inter-reductionstep, which equals GCD(B=GCD(A;B); x):5

The combined noise must be eliminated after �nding the �nal G0 by:GCD(A;B) = GCD(G0; A;B) = GCD(GCD(G0; A mod G0); B mod G0)): (14)This \noise" is nevertheless small in the average case, and we experimentally observedthat the operations (14) take less than 5% of the GCD computation, in the average.Let us also note that the computation of x�1 mod 22m, which is quite costly whenperformed via the extended Euclidean algorithm, was implemented using a scheme deve-loped in [Jebelean 92a]:Let be x = x1 � � + x0: Then:x�1 mod �2 = (((1� x � a0) � x0) + x0) mod �2;where x0 = x�10 mod �Using this relation, the computation of modular inverse of a double{word can be reducedto the modular inverse of a half{word, which is done by look{up in a precomputed table.

050100150200250300350

0 10 20 30 40 50 60 70 80 90 100Length of operands (32 bit words)

Timings in milliseconds 317 Euclid
151 Plus{minus149 Binary91 Multiprecision plus{minus87 Lehmer{Euclid60 Multiprecision binary39 Generalized binary3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

+ + + + + + + + + + + + + + + + + + + +
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
� � � � � � � � � � � � � � � � � � � �4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?e e e e e e e e e e e e e e e e e e e e6

3 Practical experimentsThe new algorithm was implemented using the GNU multiprecision arithmetic library[Granlund 91] and the GNU optimizing C compiler on a Digital DECstation 5200. Forcomparison purposes, the Euclidean and Lehmer{Euclid, as well as binary, plus{minusand the multiprecision versions of these were also implemented and bench marked (formore details concerning the experiments, see [Jebelean 92c]). The diagrams present theaverage timings (in milliseconds) and the speed{up (in %) over the Euclidean algorithm.

100200300400500600700800900

0 10 20 30 40 50 60 70 80 90 100Length of operands (32 bit words)

Speedup (%) 820 Generalized binary
528 Multiprecision binary365 Lehmer{Euclid350 Multiprecision plus{minus212 Binary210 Plus{minus100 Euclid3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3+ + + + + + + + + + + + + + + + + + + +2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2� � � � � � � � � � � � � � � � � � � �4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?e e e e e e e e e e e e e e e e e e e e

4 Systolic computationThe generalized binary algorithm is suitable for systolic parallelization in least{signi�cantdigits �rst (LSF) pipelined manner, (the particular case m = 2 was implemented systo-lically by [Brent, Kung 83]). This is so because all the decisions on the procedure aretaken using only the lowest digits of the operands. Hence, a \master" processor computes7

the modular conjugates by using only the information contained in the least{signi�cantdouble{words of the operands, and then sends the modular conjugates to the \slave" pro-cessors, which apply the linear combination to the rest of the digits of the operands. Thecofactors and the carries can be pipelined along the string of slave processors, while themaster processor can start the next cycle of the algorithm as soon as the least{signi�cantdigits of the new operand are ready.The LSF manner in which this algorithm operates makes it suitable for pipelinedaggregation with other LSF systolic algorithms for multiprecision arithmetic (e.g. mul-tiplication [Atrubin 65], exact division [Jebelean 92b]) and with pipelined units for ad-dition/subtraction. Hence, one has all the components required for the realization of aLSF pipelined systolic device for the arithmetic of multiprecision rationals.References[Atrubin 65] A. J. Atrubin|A one{dimensional iterative multiplier, IEEE C-14 (1965)394{399.[Brent, Kung 83] R. P. Brent, H. T. Kung | Systolic VLSI arrays for linear-timeGCD computation, in V. Anceau, E. J. Aas { VLSI'83, Elsevier (North-Holland),1983, 145 { 154.[Brent 76] R. P. Brent | Analysis of the binary Euclidean algorithm, in J. F. Traub{ New directions and recent results in algorithms and complexity, Academic Press,1976, 321 { 355.[Buchberger 85] B. Buchberger | Gr�obner Bases: An Algorithmic Method in Poly-nomial Ideal Theory, in N. K. Bose (ed.) | Multidimensional Systems Theory, D.Reidel Publishing Co., 1985.[Buchberger, Jebelean 92] B. Buchberger, T. Jebelean | Parallel Rational Arith-metic for Computer Algebra systems: Motivating Experiments, RISC{Linz Report92-29, May 1992.[Collins 80] G. E. Collins | Lecture notes on arithmetic algorithms, Univ. of Wiscou-sin, 1980.[Granlund 91] T. Granlund | GNU MP: The GNU multiple precision arithmetic li-brary, Free Software Foundation, 1991.[Jebelean 92a] T. Jebelean | An algorithm for exact division, RISC{Linz Report 92-35, May 1992, submitted to Journal of Symbolic Computation.[Jebelean 92b] T. Jebelean | Systolic algorithms for exact division, submitted toPARS Workshop, Dresden, April 1993.[Jebelean 92c] T. Jebelean | Comparing several GCD algorithms, submitted to 11thACM Symp. on Computer Arithmetic, Windsor, 1993.[Knuth 81] D. E. Knuth | The art of computer programming, Vol. 2, Addison-Wesley1981.[Lehmer 38] D. H. Lehmer | Euclid's algorithm for large numbers, Am. Math. Mon.45 (1938), 227{233.[Moenck 73] R. T. Moenck | Fast computation of GCDs, Proceedings ACM Vth Symp.Theory of Computing, ACM 1973, 142 { 151.[Sch�onhage 71] A. Sch�onhage | Schnelle Berechung von Kettenbruchentwicklugen, ActaInformatica 1 (1971), 139 { 144.[Stein 67] J. Stein | Computational problems associated with Racah algebra, J. Comp.Phys. 1 (1967), 397{405. 8

