
SIAM J. COMPUT.
VOI. 3, No. 1, March 1974

THE COMPUTING TIME OF THE EUCLIDEAN ALGORITHM*

GEORGE E. COLLINS?

Abstract. The minimum, maximum and average computing times of the classical Euclidean
algorithm are derived. With positive integer inputs of lengths m and n, and with output (greatest com-
mon divisor) of length k, m > n >__ k, the minimum is shown to be codominant with n(m- n + 1)
+ k(n- k + 1), while both the maximum and the average are shown to be codominant with
n(m-k + 1).

Key words. Euclidean algorithm, greatest common divisor, arithmetic algorithms, algorithm
analysis

1. Introduction. Knuth Ill], Dixon [6], 7] and Heilbronn [8] have recently
investigated in considerable depth the average number of divisions performed in
the Euclidean algorithm for integers. Although many interesting questions re-
main unanswered, the relatively elementary result of Dixon in 7] already suffices
to completely determine the average computing time of the Euclidean algorithm
to within a constant factor, which is in any case dependent on the particular com-
puter used and inessential details of the implementation. Such a determination
of the average computing time of the Euclidean algorithm is the main result of
the present paper. The maximum and minimum computing times of the Euclidean
algorithm for integers will also be derived since, although their determination is
quite elementary, they have apparently not previously been published. These
computing times are all derived as functions of three variables, namely the lengths
of the two inputs and the length of the resulting g.c.d. (greatest common divisor).
Previous results on the computing time of the Euclidean algorithm ([2 and 11,
4.5.2, Exercise 30]) have been limited to upper bounds on the maximum com-

puting time.

2. Dominance and eodominanee. The relations of dominance and co-
dominance between real-valued functions were introduced in [31, where they were
used in the analysis of the computing time of an algorithm for polynomial re-
sultant calculation. The related concepts and notation have subsequently been
adopted by several authors, for example, Brown [1], Heindel [9] and Musser
F121. The definitions and some fundamental properties will be repeated here
since they will not yet be familiar to many readers.

If f and g are real-valued functions defined on a common domain S, we say
that f is dominated by g, and write f g, in case there is a positive real number
such that f(x) < c. g(x) for all x S. We also say that g dominates f, and write
g f. Dominance is clearly a reflexive and transitive relation. It is important to
note that the definition is not restricted to functions of one variable since the
elements of S may be n-tuples.

Received by the editors February 12, 1973, and in revised form September 17, 1973. This work
was supported by the National Science Foundation under Grant GJ-30125X, by the Wisconsin
Alumni Research Foundation, and in part by the Advanced Research Projects Agency of the Office
of the Secretary of Defense under Grant SD-183.

]" Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.

2 GEORGE E. COLLINS

Knuth [10, pp. 104-108] defines f(x)= O(g(x))in case there is a positive
constant c such that If(x)] =< c.]g(x)]. As long as one is dealing only with non-
negative-valued functions, this formally coincides with the above definition of
j’ g. Although Knuth implies that this definition is applicable only whenf and
g are functions of one variable, he in fact uses it for functions of more than one
variable (e.g., [11, p. 388]) in a manner which is consistent with our definition.
Thus dominance is apparently a new notation and terminology but not a new
concept. Although Knuth discussed at length the logical weaknesses of the O-
notation, he chose not to abandon it in favor of the more natural notation of an
order relation.

lff -< g and g f, then we say that land g are codominant, and writer g.
Codominance is clearly an equivalence relation. Iff -< g but not g --<_ f, then we-
say that f is strictly dominated by g, and write f -< g. We may also say that g
strictly dominates f, and write g >- f. Strict dominance is clearly irreflexive and
transitive. Whereas the O-notation has no counterparts for the codominance and
strict dominance relations, it will become apparent that these are important
concepts in algorithm computing time analyses. Furthermore, the O-notation
has a somewhat different meaning in asymptotic analysis than the one used by
Knuth (see, e.g., [5]).

Iff and g are functions defined on S and $1 is a subset of S, it will often be
convenient to write./ g on St in case J’ g, where fl and g are the functions
f and g restricted to $1. Also, if S c_z S x x S,, a Cartesian product, we will
denote by J the function f restricted to ({a} ["1 $2 x x S,) S; that is,
f(x2,"’, x,) f(a, x2,..., x,) for (a, x2, ..’, x,)e S. Similarly we may fix any
other of the n variables off.

Dominance and codominance have the following fundamental properties,
most of which were listed by Musser in [12].

THEOREM 1. Let f, f, f2, g, g and g2 be nonnegative real-valued functions on
S, and let c be a positive real number. Then

(a) f
(b) ij’L gl andf2 g2, thenf + f2 g + g2 andff2 -< gg2;
(c) iff g and fz "< g, then f + f2 "< g;
(d) max (f, g) f+ g;
(e) if f and -< g, then f + g fg
(f) if -.(f, then f f+ c;
(g) if S S x x S, and a S then f g implies fa ga;
(h) if S S (J $2, then f g on $1 and f-< g on $2 implies f g on S.
Proof. These properties follow immediately from the definition, except for

(e). To prove (e), apply (b) to f-< f and g, obtaining f fg. Similarly
g-< fg, so f + g _fg by (c). |

3. Comptting time functions. Let A be any algorithm, and let S be the set of
all valid inputs to A. In general, S will be denumerable, and its elements may be
n-tuples. We associate with A a computing time function A defined on S, the
positive integer ta(X being the number of basic operations performed by the
algorithm A when presented with the input x. This assumes that the algorithm

COMPUTING TIME OF THE EUCLIDEAN ALGORITHM 3

is unambiguously specified in terms ofsome finite set of basic operations. Changing
the set of basic operations (as in reprogramming the algorithm for a different
computer) will result in changing the computing time function a. Alternatively,
we could take the view that this represents a change in the algorithm. However,
if B1 and B2 are two sets, of basic operations such that each operation in B1 can
be performed by a fixed sequence of operations in B2, and vice versa, then the
computing time functions associated with B1 and B2 for any algorithm A are
codominant, and we will concern ourselves only with the codominance equivalence
class of A Thus the choice of basic operations is somewhat arbitrary. We assume
a choice which is consistent with any of the existing, or conceivable, random
access digital computers but, in order to avoid the triviality of finiteness, with a
memory which is indefinitely ,expandable.

The function A is frequently too complex to be of interest for direct study.
Instead, we ordinarily decompose S into a disjoint union S 13, 1S,, where
each S, is a nonempty finite set, S being a denumerable set. The choice of de-
composition is made on the basis of some prior knowledge or some conjecture
about the general behavior of A Relative to a decomposition5 S1, $2, $3,
of S we define maximum, minimum and average computing time functions,
a+, t4 and t,], on as follows, where IS.I denotes the number of elements of S,"

(1) t(S,) max ta(X),

(2) t2(S,) min tA(X),

(3) t](s.) =/
As an illustration, and in preparation for our analysis of the Euclidean algo-

rithm, let us consider the computing times of the classical algorithms for arith-
metic operations, that is, addition, subtraction, multiplication and division, of
arbitrarily large integers. We assume that all integers are represented in radix
form relative to an integral base >__ 2, as discussed by Knuth in [11, 4.3]. We
know that the computing times of these algorithms depend on the lengths of the
inputs.

Following Musser [12] we denote by La(a) the [d-length of the integer a, that
is, the number of digits in the radix form of a relative to the base//. If [x] is the
ceiling function of x, the least integer greater than or equal to x, and lxj is the
floor function of x, the greatest integer less than or equal to x, we have

(4) Lt(a) [logt (lal + 1)q- Llogt lall +

for a - 0, and we define La(0) 1.
In most contexts the base is fixed, and we write simply L(a) for the length

of a. The omission of the subscript is further justified by the observation that, 7
being any other base, we have

(5) Lt-- L,

4 GEORGE E. COLLINS

where Lt and L are functions defined on the set I of all integers. In fact, we can
use the definition (4) when a is any real number, and we then have

(6) Lt(a In (lal + 2) on R,

where In is the natural logarithm and R is the set of all real numbers, and (6)
clearly implies (5). The length function also has the following easily verified
fundamental properties (here I is the set of integers)"

(7) L(a 4- b) L(a)+ L(b) for a, b I,

(8) L(ab) L(a) + L(b) for a, b e I {0},
(9) L([a/b])..L(a)-L(b)+ fora, beI and la >_lbl >0,

where Ix] [x for x > 0 and Ix] Ix] for x < 0.
THEOREM 2. (a) Let S= {(al,’..,a,)’n >= and al,...,a, 6I}. Then

L(l-[= ai) 27= 1L(ai) 07/ S.
(b) Let $ {(a,...,a)’n >= and a, a I {-1,0, 1. Then

L L(a) on S.(l-I/= lai)’’ Z7=1
L L(ai) by in-Proof. L(ab) <= L(a) + L(b) for a, b I, so (I-I,= lai) <- ,,=1

duction on n, proving (a). To prove (b), assume first that 2 =< lail </3 for =< =< n.
Then

=> (log 2)log2 2"= (log 2)n (log 2) L(ai),
i=1

Lso 7= xL(ai)<= (log2 fl) (l-I/= ai) Next, assume L(ai)> 2 for =< _< n, and
let 1 Ll(ai). Then

i=1
=> loga

so E’= 1L(ai)<--- 2L(I-I’= la,)
Combining these two cases, we assume L(ai) for < N m and L(ai) >_ 2

form + _< i_< n. Then

L(a,) <_<_ (log2 fl)L
i=1

--<_ 2(log2

i=1 i=m+l

L Io + L(fi
i=1 i=m+

since L(a) + L(b) 2L(ab) for a, b e I {0}. |

As an immediate corollary of Theorem 2, we have

(10) L(ab),-bL(a) fora, beI,]a] >2 and b>0.

COMPUTING TIME OF THE EUCLIDEAN ALGORITHM 5

If A, M and D are the classical algorithms for addition (or subtraction),
multiplication and division, respectively, as described in [11, 4.3], then we
clearly have

(11) tA(a,b)L(a)+L(b) fora, beI- {0},

(12) tM(a,b)L(a).L(b) fora, bI- {0},

(13) to(a,b)L(b).L([a/b]) fora,belandla >]b >0.

Thus, for these algorithms, the natural decomposition of the set S {(a, b)"
a, be I} consists of the sets S,,, {(a,b)’L(a)= m and L(b)= n I. If we write
t+(m,n) in place of t+(Sm,,), and similarly for t- and t*, then from (11), (12) and
(13), and using (9), we have

(14) t-(m, n).. t.-(m, n).. t4(m, n) m + n,

(15) th(m, n) tt(m, n) t](m, n) mn,

(16) tD(m,n)’. tD(m,n)., t)(m,n).,n(m- n + 1) form >_ n.

Thus for these algorithms the maximum, minimum and average computing
times all coincide. This will not be the case for the Euclidean algorithm, to which
we now turn.

4. The maximum and minimum computing times. For simplicity, and without
loss of generality, we will consider the following version of the Euclidean algo-
rithm, for which the permissible inputs are the pairs (a, b) of positive integers
with a >= b. The output of the algorithm is the positive integer c g.c.d.(a, b).

ALGORITHM E.
Step 1. [Initialize.] c ,- a" d ,- b.
Step 2. [Divide.] Compute the quotient q and remainder r such that c dq

+ r and 0 =< r < d, using Algorithm D (classical algorithm for division).
Step 3. [Test for end.] c ,- d;d ,- r’if d - 0, go to Step 2.
Step 4. Return.
This algorithm computes two sequences, (al,a2, ..., at+z) and (ql,q2,.., q), such that a a, a2 b, ai qiai+l + ai+ 2 with 0 __< ai+ 2 < ai+l for

__< =< l, and a+ 2 0. a l, al+ are the successive values assumed by the
variable c, and q 1,’", ql are the successive values assumed by the variable q.
(al, al+ 2) is called the remainder sequence of (a, b) and (ql,"" ql) is called
the quotient sequence of (a, b). Steps 2 and 3 are each executed times; this is the
number of divisions performed, which we denote by D(a, b).

By (13), the computing time for the ith execution of Step 2 is "L(qi)L(ai+ 1).
The computing time for the ith execution of Step 3 is certainly dominated by
L(ai+ 1) since it at most requires copying the digits of a+l and a+2. In an im-
plementation of the algorithm in which a large integer is represented by the list
of its digits (e.g., [4]), such copying is unnecessary, and the computing time for

6 GEORGE E. COLLINS

each execution of Step 3 is 1. For the same reason, we will assume that the
single executions of Steps and 4 have computing times 1. We then have

(17) te(a,b) L(qi)" L(ai+,).
i=1

If instead we were to assume that copying is required in Steps and 3, (17) would
still hold after adding L(a) to the right-hand side. But L(a) L(q)+ L(a2)- L(q)L(a2), so (17) holds in any case.

From (17) we will derive the maximum, minimum and average computing
times of Algorithm E, by analyzing the possible distributions of values of the a
and q, obtaining the codominance equivalence classes of these computing times
as functions of L(a), L(b) and L(c). Thus we consider the decomposition of S
into the sets

(1"8) S,,,,,k {(a, b)’L(a) m and L(b) n and L(g.c.d.(a,b)) k},
with m >_ n _>_ k >= 1. We may verify that each set S,,,,k is nonempty as follows.
Ifm k, then(fl"-l, flm-)S,,,,,.Ifm > k, let a /m-1 + /k-1 andb= fin-1.
Then c g.c.d.(a, b)= fl-1, L(a)= m, L(b)= n and L(c)= k, so (a, b) Sm,,,.
As above, we will write t; (m, n, k) in place of t; (S,,,,,), and similarly for t[and t:.

THEOREM 3. t/ (m, t, k) -- rt(m k + 1).
Proof. Since b a2 > a3 > > a+l, we have by (17) that

(19) t(a, b) - L(b) L(qi).
i=1

Since L(qi) L(qi + 1) and q >= 2 we obtain, by Theorem 2,
l--1

(20) _, L(q)- L q 1-I (q + 1)
i=1 i=1

Since a qiai+ + a+2 > qiai+2 + ai+2, we have qz + < az/a+ 2 for
< l, and hence Y[i-1(qi + 1) < ala2/aa+ 1. Combining this with q at/a+

yields
l-1

(21) qt 1-I (qi + 1) =< ab/c2

i=1

Since L(ab/c2) < L(a2/c2) L(a/c) L(a)- L(c) + 1, (19), (20) and (21)
yield

(22) t(a, b) -< L(b){L(a) L(c) + },
from which Theorem 3 is immediate. |

We now proceed to prove that t(m, n, k) n(m- k + 1), for which pur-
pose we need the following two theorems.

THORFM 4. t(a, b)

_
D(a, b){D(a, b) + L(g.c.d.(a, b))}.

Proof. Let (q,..., q) and (a,..., a/2) be the quotient and remainder
sequences of (a, b), c g.c.d.(a, b) and k L(c). By (17),

(23) t(a, b) >- L(a,).
i=1

COMPUTING TIME OF THE EUCLIDEAN ALGORITHM 7

Since a+ 2 0, al+ c and ai qiai+ 4- ai+ 2 ai+ "1- ai+ 2, a simple
induction shows that a/2_i > cFi, where F/ is the ith term of the Fibonacci
sequence defined by F0=0, F1 and Fi+2 =Fi+ Fi+1. But 10, p. 82]
Fi+ >= @i/N//- where 49 (1 + V/)/2, and (2 > N/f SO Fi+ 3 > d/) i. Hence

ll _..2 {/--2)L(ai) > loga (oF/) > /(logt c) + log/ qSi> /(log c) + (log/ b).
i=1 i=2 i=1 2

So fork> 2andl>_4,_, L(ai) _>_ }kl 4-]-d(logt, (/))/2 . kl + 2

i=1

while for k and _> 4,

__12 2L(a)>=](log qS)/2 >- kl +
i=1

For =< 3, 21i 1L(ai) >_ L(c) k kl + 12. So by Theorem 1, part (h), 2li=l L(ai)
> kl + 12 for all k and l, proving the theorem, since D(a, b). |

By an application of Theorem 4, together with an elementary construction
utilizing the generalized Fibonacci sequences F’) defined by F0h) 1, Flh)= h
and ,(h) =Flh) + (h)

ai + 2 --i + 1, one can obtain a proof that t(m, m, k)

_
n(m k + 1).

However, we will abstain from this construction, obtaining the result instead
as a corollary of our analysis, in 5, of the average computing time. Hence we
proceed next to derive the minimum computing time of the Euclidean algorithm.

THEOREM 5. t[(m,n,k) n(m- n + 1) + k(n- k + 1).
Proof. By(17),t{(m,n,k) ;>-L(ql)L(a2),, n(m- n + 1).Sinceq [ai/ai+lJ,

we have qi+l > ai/ai+l and so]-Ili= l(qi + 1) > [I= l(a/ai+ 1) a/c. By (17),

tF.(a, b) _, L(qi)L(ai+ 1) L(c) 2 L(qi) L(c) 2 L(qi 4- 1)
i=1 i=1 i=1

.>= L(c)L(a/c) >= L(c)L(b/c) L(c) {L(b) L(c) + ..
Hence t[(m, n, k) ;>- k(n k + 1) and by Theorem 1, part (c), t[(m,n,k)
)>-n(m- n+ 1) + k(n- k+ 1).

Ifn=k, let a=tim-1 and b=fl"- so that c=fl"-I and D(a,b)= 1. By
(17), this shows that t[(m, n, k) -< n(m n + 1) -< n(m n + 1) 4- k(n k + 1).

If n > k, let a- tim-1
_

ilk-1 and b fl"-1, so that c fl-1, L(a)= m
and D(a,b)=2. Then by (17), t{ (m, n, k) -<:, n(m n + 1) 4-k(n- k+ 1) for
n > k. Application of Theorem 1, part (h), concludes the proof. |

5. The average computing time. As observed in the proof of Theorem 4, if
a b and (al,a2, "", al+l,a+2) is the remainder sequence of (a,b), then

a >= El + >= 491/ Since e > v/, we have/In >= (In a) + 1. That is,

(24) D(a, b) < (In b)-l((ln a)+ 1),

with (In b)-1 2.078.... Dixon established in [6] that for every > 0

(25) ID(a, b) r In al < (In a) 1/2 +:

GEORGE E. COLLINS

for almost all pairs (a, b) with u >_ a >_ b >_ 1, as u -, oo, where

(26) z 12re- 2 In 2,

and we have r 0.84276.... By more elementary means, Dixon proved in [7]
the weaker result that

(27) D(a, b) >= 1/2 In a

for almost all pairs (a, b) with u > a > b >_ as u --, oo. In the following, we will
show how Dixon’s weaker result can be used to prove that the average computing
time of the Euclidean algorithm is codominant with its maximum computing
time of n(m k + 1). Before proceeding to the det".iled proof, however, we shall
present an intuitive sketch.

It is a well-known result (see [11, {}4.5.2, Exercise 10]) that the proportion
of pairs (a, b) with u > a >_ b > for which g.c.d.(a, b) approaches 6re-2 as
u -, oo. We will first generalize this result to the pairs (a, b) with u > a > b >_ v
as u v --, . Next we set u =/,-k+ 1/2 and v =/"-k and conclude, combining
this result with Dixon’s, that, for n k large, at least half of the pairs (a, b) for
which u > a > b >__ v satisfy both g.c.d.(a, b)= and D(a, b) >_ - In a. For each
pair satisfying these conditions and each c with [:- _< c </-/2, we obtain a
pair (2, b) (ac, bc) with g.c.d.(fi, b) c, L() L(b) n and L(c) k. If rn > n,
then from each pair (2, 5) we obtain at least 1/2/m-, pairs (fi, b) of the form
(q + b, b) for which L(fi) m and these also satisfy L(b) n, L(g.c.d.(8, b)) k
and O(c,) >__ 1/2 In/"-. The pairs (,) so obtained constitute at least 0.004f1-2
of all pairs in Sin,n, and t(fi,)_>-n(m- k + 1) for all (c,), so t(m,n,k)
_

n(m k + 1) for n k > h, say. But it is trivial that t(m, n, k)

_
n(m k + 1)

for n k =< h for any constant h, and so t(m, n, k) n(m k + 1).
THEOREM 6. Let u and v be positive integers with u > v, let w u v, and let

q be the number of pairs of integers (a, b) such that u > a, b = v and g.c.d.(a, b) 1.
Then q/w2 6/rc2[=< 2((ln u) + 1)/w + u/we + 1/u.

Proof. Let Vk be the number of integers a such that kla and u > a >= v. Then

(28) Iv,- w/kl < 1,

and vk2 is the number of pairs (a, b) for which klg.c.d.(a, b) and u > a, b _> v. By the
principle of inclusion and exclusion,

(29) q ,u(k)v2,
k=l

where # is the M6bius function. By (28),

(30) ivk2 w2/k21 < 2w/k +

Multiplying (30) by//(k)/W2 and summing, we have, by (29),

(31) Iq/wz /u(k)/kZl < 2H,/w + u/w2,
k=l

COMPUTING TIME OF THE EUCLIDEAN ALGORITHM 9

where Hu is the harmonic sum ,= 11/k. Using

(32) la(k)/k rt/6

together with (31) yields

(33) Iq/w2 7r2/61 < 2H,,/w + U/W2 .qt_ 1/k2

k=u+l

But =u+ l|/k2 < j’,Tx -2 dx l/u, and H, =< (lnu)+ 1, which establishes the
theorem after substitution in (33). |

TrmOREM 7. There is a positive integer h such that Jbr n k > h, there are at

least 0.02flin- 2k + pairs (a, b) for which fl,-k + 1/2 > a >= b >= [3"-k, g.c.d.(a, b)
and D(a, b) >= -- In a.

Proof. Set u fl,-+1/2, v fl"-k, w u- v. Since lim,__,o(u/w)
(1 fi-1/2)-1 =< (1 1/xf.)- < 4, it follows from Theorem 6 that

lim (q/w2) 6/2.

Since 6/7C2 > 0.6 and g.c.d.(a, b)= g.c.d.(b, a) there exists an h such that for
n k > hi, there are at least 0.3w2 pairs (a, b) for which u > a > b > v and
g.c.d.(a, b) 1. By Dixon’s theorem there is an h2 such that if n k > h2, then
D(a, b)< 1/21na for at most 0.05 pairs (a,b) with u >_ a, b > 1. Hence if
h max (hl,h2) and n- k > h, there are at most 1/4wz pairs (a,b) for which
u > a >= b >= v, g.c.d.(a, b)= and O(a, b) >= 1/2 In a. The theorem follows since

w => (x/ 1)fl"-’ and (v@ 1)2/ ’ (N/// 1)2/2 0.08.
THEOREM 8. There is a positive integer h such that for n k > h, there are at

least 0.004flm+’- pairs (a, b) such that a b, L(a) m, L(b) n, L(g.c.d.(a, b)) k
and D(a, b) > 1/2 In fl,-k.

Proof. Choose an h for which Theorem 7 holds. For every pair (a, b) satis-
fying Theorem 7 and every integer satisfying ilk-1 C < jk-1/2, we obtain a
pair (ac, bc) with ac > bc, L(ac)= L(bc)= n, L(g.c.d.(ac, bc))= L(c)= k, and
D(ac, bc) D(a, b) >= 1/2 In a => 1/2 In fl,-k. The mapping f((a, b), c) (ac, bc) thus
defined is one-to-one so there are at least

(O.02fl2n-2k+ l)(x//- i)flk- O.O08fl2n-k+

pairs (a, b) with a b, L(a) L(b) n, L(g.c.d.(a, b)) k and D(a, b) >__ 1/2- In fl"-.
If m n, this completes the proof; so assume m > n. For each pair (a, b) with
L(a) L(b) n, there are at least

j [m -1)/a _> [j -1)/j (1 --1)m-n-

pairs (aq + b, a) with L(aq + b) m. Since g.c.d.(aq + b, a)= g.c.d.(a, b) and
D(aq + b, a) D(a, b) + 1, we obtain at least (0.008fiz"-k)(1/2flm-") 0.004flm+n-
pairs (aq + b, a) for which aq + b >= a, L(aq + b) m, L(a) n, L(g.c.d.(qa + b,
a)) k and D(aq + b, a) > 1/2In fl"-. |

10 GEORGE E. COLLINS

THEOREM 9. t(m, n, k) t(m, n, k) n(m k + 1).
Proof. Let c min(1,1/21n fi). By Theorems 4 and 8, there exist h and

C2 > 0 such that

t:(a, b) _>= c2D(a, b){D(a, b) + L(g.c.d.(a, b))} Czcl(n k){cl(n k) +
> Cczn(n k)

for n k > h and for at least 0.004fi"+"-k elements of S,,,,k. Every element of
Sm,,, is of the form (ac, bc) with a < fl"-+ 1, b < fl,-+l and c < fl, so
has at most fl"+"-+2 elements. Hence, t(m, n, k) > O.O04c2c2fl-2n(n k)

n(n- k) for n- k > h. By Theorem 5, t(m,n,k);>-n(m- n + 1) > n
n(n k) for n k =< h. Hence by Theorem 1, part (h), t(m, n, k) >- n(n k).

By Theorem 5, t:(m, n, k)

_
n(m n + 1) so by Theorem 1, part (c),

(34) tz(m, n, k) ;>- n(n k) + n(m n + 1) n(m k + 1).

The conclusion of the theorem is now immediate from Theorem 3, (34) and the
obvious inequality t*(m, n, k) <= t(m, n, k).

REFERENCES

[1] W. S. BROWN, On Euclid’s algorithm and the computation ofpolynomial greatest common divisors,

J. Assoc. Comput. Mach., 18 (1971), pp. 478--504.
[2] G. E. COLLINS, Computing time analyses for some arithmetic’ and algebraic algorithms, Proc. 1968

Summer Institute on Symbolic Mathematical Computation, IBM Corp., Cambridge,
Mass., 1969, pp. 197-231.

[3] The calculation of multivariate polynomial resultants, J. Assoc. Comput. Mach., 18

(1971), pp. 515-532.
[41 The SAC-1 integer arithmetic system---Version III, Tech. Rep. 156, Computer Sciences

Dept., Univ. of Wisconsin, Madison, 1973.
[5] N. G. DFBRUIJN, Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1961.

[6] J. D. DIXON, The number of steps in the Euclidean algorithm, J. Number Theory, 2 (1970), pp.
414-422.

[7] ----, A simple estimatefor the number ofsteps in the Euclidean algorithm, Amer. Math. Monthly,
78 (1971), pp. 374-376.

[8] H. HFILBRONN, On the average length ofa class ofcontinuedfractions, Abhandlungen aus Zahlen-
theorie und Analysis, VEB Deutscher Verlag, Berlin, 1968.

[9] L. E. H1INDL, Integer arithmetic algorithms for polynomial real zero determination, J. Assoc.
Comput. Mach., 18 (1971), pp. 533-548.

[10] D. E. KNUTtt, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-
Wesley, Reading, Mass., 1968.

[11] The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley,
Reading, Mass., 1969.

[12] D. R. MUSSFR, Algorithmsfor Polynomial Factorization, Ph.D. thesis, Tech. Rep. 134, Computer
Sciences Dept., Univ. of Wisconsin, Madison, 1971.

