JI. Symbolic Computation (1996) 11,

Bidirectional Exact Integer Division

WERNER KRANDICKTAND TUDOR JEBETLEAN?

Research Institute for Symbolic Computation
Johannes Kepler University, A-4040 Linz, Austria

krandick, jebelean@risc.uni-linz.ac.at

(Received 4 July 1995)

Division of integers is called ezact if the remainder is zero. We show that the high-
order part and the low-order part of the exact quotient can be computed independently
from each other. A sequential implementation of this algorithm is up to twice as fast as
ordinary exact division and four times as fast as the general classical division algorithm
if the dividend is twice as long as the divisor. A shared-memory parallel implementation
on two processors gains another factor of two in speed.

Keywords: exact arithmetic, parallel arithmetic.

1. Introduction

Division of integers is called exact if the remainder is zero. Exact division arises system-
atically in exact calculations, e.g. when rational numbers are added or when the primitive
part of an integral polynomial is computed.

Traditionally, these divisions are performed using a general quotient-remainder al-
gorithm (e.g. “Algorithm D” of Knuth, 1981, Section 4.3.1), and then discarding the
remainder. The number of digit multiplications required by this algorithm is

Tp(m,n) =n(m—n+1),

where m, n are the numbers of digits in dividend and divisor, respectively. The amount
of work 1is suggested by the shaded area in Figure 1 left-hand side.
Jebelean (1993a) proposed an algorithm for exact division which determines the quo-
tient digits from right to left and requires only
w(m—n+1)—1 iftm<2np—1

Tr(m,n)= 2
7) n(m — ;n + 15) +m otherwise

digit multiplications (see Corollary 3.1).
In 1994, Krandick devised an algorithm for the seemingly unrelated problem of multiple

t Supported by the Austrian Science Foundation (Grant M0135-PHY).
+ Supported by the Austrian Science Foundation (Grant P10002-MAT).

0747 7171/90/000000 + 00 $03.00/0 © 1996 Academic Press imited

2 W. Krandick and T. Jebelean

A
B
A
B B
H L
Q QH_ QL_

Fignre 1. Classical division with remainder vs. bidirectional exact division.

precision floating point division. His method requires typically

n(m—n+1) ifn<3
Tk (m,n)= W(m—n—kﬂ ifn>3and m<2n—4

n(m — ;n + %) — 3 otherwise

digit multiplications (see Corollary 2.1). The method is modeled after Knuth’s algorithm,
but it does not compute the full remainder. Instances where this would lead to an incor-
rect result are detected by testing a condition sufficient for correctness. The condition 1s
efficiently computable, and 1t is satisfied with very high probability if dividend and
divisor are chosen at random. If, however, the remainder is zero, the condition will not
be satisfied. Thus, Krandick’s method cannot be used to compute all the digits of the
exact quotient.

We will present an algorithm which uses Krandick’s method to compute the high-order
part of the exact quotient, and Jebelean’s method to compute the low-order part. The
combined method requires

m in=1

Tk .y(m,n) < W—F% ifn>3and m<3n—6

n(m—2n+5)—5 otherwise

digit multiplications (see Theorem 4.1). Tn particular, if the dividend is twice as long as
the divisor our method is almost four times as fast as the traditional method (T y(m,n) <
n(n+ 11)/4 4+ 19/8, see also Figure 1 right-hand side). The high-order part Qg of the
quotient is computed using the high-order part By of the divisor, while the low-order
part @7, of the quotient is computed using the low-order part By, of the divisor. The
method is well suited for coarse-grain parallelization, because the two computations are
completely independent. When run in parallel on two processors, each processor has to
compute at most

2mdl ifn=1
W ifn=23

Tica(m,m) < Q gttt i > 3 and m < 30— 6
M,g ifn>3and3n—6<m<4n—6
alm—nd%) 4 mo ifp>3and dn—6<m

Bidirectional Fxact Integer Division 3

digit multiplications (see Theorem 5.1). Tn particular, if the dividend is twice as long
as the divisor, the parallel version of our method is almost eight times as fast as the
traditional method (T% ;(m,n) < (n+ 1)(n+ 11)/8).

This paper was first presented at a conference in 1994 (Krandick and Jebelean 1994).
The idea of combining a high-order algorithm with Jebelean’s exact division was first
suggested to us by Schonhage, who investigated an implementation and applications
together with Vetter (Schonhage and Vetter 1994). Tn contrast to his approach we use
a different method for computing the high-order part of the quotient, we analyze the
method in terms of the required number of digit products, we provide detailed empirical
data, and we discuss and implement a parallel version of the method.

Coarse level parallelization of long integer division is apparently not treated in the
literature. Parallel algorithms for division refer mostly to fixed-point fractions, and are
designed at the level of bit processing. One research direction in this area is the theoret-
ical investigation of time and area complexity of division on parallel computing models
such as parallel random access memory (PRAM); for a survey see (Lakshmivarahan and
Dhall 1990), Section 3.7. Research with practical applications is mainly VLST-oriented
(see e.g. Swartzlander, 1990), again at bit-level. Word-level algorithms are based on the
systolic approach (see e.g. Jebelean, 1993b), which is too fine-grained for shared-memory
architectures. Our algorithm, although not scalable, is suitable for coarse-grain paral-
lelization on shared-memory machines and it will increase the performance of parallel
algebraic algorithms which contain exact division as a subalgorithm.

Under a title quite similar to the title of this paper Vacariu (1992) treats the computa-
tion of the quotient of fixed-point numbers at bit-level. He uses the term “exact quotient”
to refer to the representation of the quotient as a periodic fraction. The computation is
performed from both directions, on two parallel processors, but it is organized according
to a “master-slave” scheme, with communication at each step. In our algorithm only final
synchronization is needed.

Section 2 describes Krandick’s algorithm, Section 3 reviews Jebelean’s method. Sec-
tion 4 combines the two methods to maximize the performance of a sequential implemen-
tation. Section b shows how a parallel implementation best combines the two methods.
Section 6 compares the new method empirically with the algorithms by Knuth and Je-
belean and estimates at 15,000 words the break-even point against asymptotically fast
division based on Karatsuba’s multiplication algorithm.

2. Computing the high-order part

(GGiven positive integers

m—1 n—1
A= wf B=) b (2.1)
i=0 7=0

of f-length m,n > 1 and with g-digits 0 < a;,b; < § and a,,_1,b,—1 > 0, we want to
find the h high-order digits of @ = | A/ B|, where 1 < h < m—n+ 1. Here we consider @
as having m — n 4+ 1 digits, with the high-order digit being possibly zero. In other words,
we want to compute

Q=1[A/B],

where B = Bgm—n+1-h,
Traditional classical division requires hAn digit multiplications for this task. We will

4 W. Krandick and T. Jebelean

describe a method that typically requires only h(h + 5)/2 digit multiplications when
n > 3 and h < n — 3. The savings are obtained by suppressing the computation of the
remainder.

Instead of computing @ and R, 0 < R < B, with

A=Q-B+R
we compute @ and R* such that
A=Q" o B+ R,

where Q* o B is a well-defined approximation to the product Q*B. Computing Q% o B
requires fewer digit products than computing the exact product Q* B.
We will define the approximate product o and derive an error bound

e>Q*B— Q"o B.

We will state a condition involving € and R* which will be easy to test and which will
imply equality of @* and . We will argue that Q* can be determined in such a way that
the sufficient condition will be satisfied with high probability.

DEFINITION 2.1. Let A, B be integers as in (2.1) with B having n digits. We define the
approximate product

AoB= Y aphg*.

i4j>n—3

Clearly, for n = 1,2 or 3, the approximate product coincides with the exact product.
Tn the notation of Krandick and Johnson (1993a), A o B= (A x,,_1 B)3"* where x,, 4
denotes “the short product with respect to (n—1)". The deviation from the exact product
can be estimated as follows.

PropoSITION 2.1. Let A,B as in (2.1) with B having n digits, let

s_[0 ifn=1,2
Tl -3 ifn> 3

Then
Ao B<AB < Ao B+4.

PrOOF. The cases n = 1,2 are trivial. By induction on n > 3,
S FT < BF @ P,
i+j<n—3

The right-hand side is < §. This proves the second inequality. O

The proposed division method uses the approximate product of @* and B. Noting that
B has m — h + 1 digits we obtain

QoB= > qbpt, (2.2)

iti>m—h—2

with Q* = Y212 g7, 0 < g7 < B and with B=Y"""b;87, 0 < b; < 3. Furthermore,

Bidirectional Fxact Integer Division 5

we have
Q"o B<Q'B<Q"oB+e, (2.3)
where
0 m—h=0,1
‘ {(thWMh'1iﬁnh>2. (2.4)

We now give a sufficient condition for the success of the method.

PROPOSITION 2.2. Lel € as in (2.4). If
e<R"'<RB (2.5)
then
Q" =Q.
Proor. Let
R*=A-Q*B
and assume (2.5). Then (2.3) implies
R™=(Q e B+ R) — Q" B>(Q o B+e)—Q B>0
and
R*"<A—-Q"oB=R"<B.

Hence, A = Q*B + R** with 0 < R** < B, so * must be the desired quotient . O

The proposed division method will produce a Q* such that A = Q* o B+ R*. Tt will
be shown that @Q* = @ with high probability. Condition (2.5) will be used to establish
Q" = @ with certainty. Therefore, the following question has to be discussed. Given

Q* = @, what is the probability that condition (2.5) is satisfied? Because of (2.3) we
have

A—Q"oB>A—-Q"B>A—-Q"oB—c¢.
Hence, letting @* = @ in the middle,
R*>R>R" —¢

or, equivalently,

R<R*<R+e
Thus, condition (2.5) will be satisfied if

e<R<B—e (2.6)
Tf all possible values 0,..., B — 1 for R are equally likely, (2.6) is true with probability
B—2 2(m —h —2)gm - 2(m —h —2
> (m)5 >177(m)
B~ B - 154

This value is very close to 1if 3 is the word size of a computer (e.g. 3 = 2°?).
The digits of @* are determined by Algorithm H in Figure 3 analogously to “Algorithm
D” of Knuth (1981, p.257). We assume radix 8 to be a power of 2, for example the word

6 W. Krandick and T. Jebelean

Algorithm H (High-order part of quotient). Tet A, B as in (2.1) with m and n digits, respectively,
and let 1 < h < m — n + 1. The algorithm will compute the h high-order digits gm—n, ..., @m_n_pt1
of | A/B] or fail. The probability of a failure is very small. We may assume m > n > 1, and m = n only
if Qom,—1 Z bn,1 .

H1. [Normalize.] Set d < the number of leading 0-bits in b,,_1, T + max(0,m — n — h). Then perform
the left-shifts [am, am—_1,...,a7] < [am—1,...,a7] % 2% and [br—1y--vybo] < [br—1,.--,bo] * 24,

H2. [Initialize loop.] Set k + m — n, 1 < m.

H3. [Calculate quotient digit.] Tf a; > b,_1, set g + 3 — 1; otherwise set qp + [[a;,a;_1]/bn_1].
Subtract by, _1qg from [a;,a;_1]; then subtract b, _2q from [a;,a;,_1,a,_2].
Tf this leaves a; negative, decrement g by 1 and add [b,—1,b, 2] to [a;,a;-1,a,-2].

H4. [Multiply and subtract.] Set .JJ < max(0,m — h — 2 — k); then subtract [by_3,...,b] * g from
[’11‘,7 ceey ’114+J]-
H5. [Test remainder.] If a; > 0, go to step H7.

[
H6. [Add back.] Decrement g5 by 1; add [by,—1,...,b;] to [a;, ..., ap4 s]-
H7. [Remainder overflow?] Tf a; # 0 then fail.
HS8. [l.oopon k] Tk >m —n—h+ 1, decrement k and 7 by 1 and go back to H3.
H9. [Final remainder too small?] f a,, ;, = 0and a,,_p_1 < m — h — 2 then fail.
H10. [Final remainder too large?] T [a,, 5, ..., ¢m_pny1-p] > [brn_1,-.-,bo] then fail.

Fignre 2. Computing the high-order part of the quotient.

size of the computer. We represent 3-digits as words; hence we may refer in step H1 to
the number of leading 0-bits of a 8-digit. The normalization is effected by a binary shift
which is applied to all digits of B, but only to those digits of A that will be needed
in step H10. Steps H3 and H4 together subtract [b, _1,...,bs] * g from [a;, ..., axi1]

with J = max(0,m — h — 2 — k). Tn total, the loop subtracts [¢m_n,---, ¢m—n—n+t1]©
[bnfh R | b07 07 R | 0] = [q:n,—nm R | q:n,fn,fh,_k]] © [bmrfhw R | })m’,n,h_l_] 9 bmr*ﬂrfhw R | bo] =
Q* o B from [@m, ..., ag]. This motivates the analysis in Proposition 2.3. Steps H9 and

H10 test for the condition of Proposition 2.2.

We will now argue that the loop in Algorithm H will produce) with high probability.
Knuth (1981) shows in exercise 4.3.1.21 that step D3 of his algorithm will fail to supply
the correct quotient, digit with approximate probability 2/3. This number is very small
when [1s the word size of a computer. For Algorithm H this means that quotient digit
¢;_n calculated in step H3 will be correct in almost all cases where the three leading
digits a;, a;_1, a;_o of the current “remainder” are correct. We will argue inductively
that for i = m,...,m — h+ 2 the values of a;, a;_1, a;_o are most likely correct.

At the beginning of the algorithm the values of a,,, am_1, am_o are clearly correct.
For the induction step we assume that a;, a;_1, a;_5 are correct at the beginning of
step H3. Under this assumption the value of ¢;_, at the end of step H3 is correct with
approximate probability 2/8. Tn step D4 of Knuth’s algorithm ¢;_,, is multiplied by all
digits of the divisor; in step H4 of Algorithm H some of these multiplications are skipped.
The probability that this deliberate error affects the values of a;, a; 1, a;_o in step H7 18
bounded above by the probability that adding € to @* o B produces a carry into the A+ 1
high-order digits (according to (2.3), @* o B< Q*B < Q* o B+¢). A carry can only be
produced if ay,_p_1 > f—(m—h—2). But this is highly unlikely; experiments by Krandick
and Johnson (1993b) seem to indicate that all numbers 0,..., 3 — 1 are equally likely as
values of a,,_p_1. Under this assumption, the probability that a,,_p_1 > 38— (m—h—2)
is (m — h — 2)/p. This is very small| so the values of a;, a;_1, a;_5 in step H7 are most
likely correct.

We note that step H7 is not necessary in Knuth’s algorithm. In our algorithm, however,
the value of a; might be positive (and not zero as it should be), because we are not

Bidirectional Fxact Integer Division 7

subtracting enough in step H4. For the same reason, the value of a; in step H3 might be
too large. By letting ¢, + G — 1 1f a; > b, _1 we make sure that in any event ¢ will be
less than j.

The inductive argument shows that ¢y, - .., ¢gm—_n_n+2 are most likely to be correct.
If this is the case, [@m_h11, Gm_h, @m_pr_1] deviates from its true value by at most m —
h — 2, so also the last quotient digit ¢,,_n_p4+1 will most likely be correct.

Thus, the number @* produced by the loop in Algorithm H 1s equal to @ with a
probability in the neighborhood of 1 — 1/3. We have argued above that in case Q* = Q
the tests in steps HY and H10 will be passed with probability > 1 —2(m — h — 2)/5. So,
Algorithm H will succeed with a probability close to 1. When we used the algorithm in a
million randomly generated test cases to compute the high 25 words of the exact quotient
of a 100-word number and a 50-word number, there was not a single case of failure. The
word size in this experiment was 8 = 227, Tf Algorithm H fails, the method of Section 3,
which 1s fail-safe, can be used to compute all the digits of the exact quotient.

PROPOSITION 2.3. The number u(n, h) of digit products in formula (2.2) is

p(n,h) = A2 ifn>3andh<n—3 (2.7)

W# ifn>3 and h >n — 3.
Proo¥. For each index i = 0,...,h — 1 index j ranges from max(0,m — h — 2 — 1) to
m—h, but since by = ... =bp,_p_, = 0,0nly the j > m—h—n+1 have to be considered.

Hence the number p; of digit products for a given ¢ is

wi = (m—h)+1—max((m—»h)—(n—1),0,(m—h) — (2+1))
= (m —h)+1—max(0,(m— h) —min(n — 1,2 4 1)).

The expression can be simplified by distinguishing two cases.

1 Tncase2>n—3 we haven —1 <2414, s0
wi = (m—h) —max(0,(m—h) —(n— 1))+ 1.
Noting that (m — h) — (n — 1) > 0 since h < m —n + 1, we obtain
g = (m—h)— ((m—)~ (n— 1)) +1=n.
2 Incasei<n—3wehaven—1>2+41, so
i = (m—h) —max(0,(m—h) — (2+1)) + 1.
Since i <n—3 <m —h— 2 the expression evaluates to

wi=(m—h)—((m—h)—(244)+1=3+14.
Knowing the p; we can now verify the three cases of the proposition.

1 Tncase n <3 we have n —3 <0< h—1,s0alliare>n—3, hence all y; =n and
so there are

h—1
p(n,h) = pi=nh
i=0

8 W. Krandick and T. Jebelean

digit products.
2 Incasen >3 and h <n—3 wehave 0 < h—1<n—3,so all indices 7 are < n — 3,
hence all y; = 3 + 7 and so there are

i) = 30 (3 4+) = 2L

i=0
digit products.
3 Incasen>3 and h >n —3 we have 0 <n —3 < h— 1, so there are

n—4 h—1

, 2hn —n” 450 — 6
pln h) =SB4+ Y n=

; , 2
i=0 1=n—3

digit products.

O

COROLLARY 2.1. Letting h = m — n + 1 in Proposition 2.3 we obtain

n(m—n+1) ifn<3
Tk (m,n)= m*TM(m—n—FU ifn>3 and m < 2n —4

n(m — %n + g) — 3 otherwise.

3. Computing the low-order part

Tet A and B as in (2.1), and assume that B divides A. The exact division algorithm
of Jebelean (1993a) exploits the implication

(A8 +aq) = (B'B+bo) * (Q'B+4q0) = ao= (bago) mod .

The latter equation can be used to compute ¢q

g0 = (a0(bo) meq 5)mod 5

provided GCD(by, 3) = 1. When 3 is a power of 2 this condition can be ensured by
shifting A and B to the right until by becomes odd. After the least-significant quotient
digit gq has been found, A is replaced by

(A—qB)/B=Q *B,

and the procedure is repeated to find ¢1, and so on. This method is faster than the
traditional classical algorithm, because only the I low-order digits of the intermediate
results A — qg B etc. have to be computed in order to determine the I low-order digits of
the quotient. Algorithm T. in Figure 3 takes advantage of this insight. We may assume
that the least-significant 8-digit of B is non-zero; indeed, A must have at least as many
trailing zero G-digits as B, and common trailing zeros can be deleted without affecting
the quotient.

When analyzing Algorithm T., we will not consider the (constant) cost of finding the
modular inverse of by in step T.2. Jebelean (1993a) shows that by can be inverted using
one or two digit multiplications and a table look-up when 3 is a power of 2; the extended
Fuclidean algorithm need not be applied. In our experiments the modular inverse costs
as much as 2.25 digit products.

Bidirectional Fxact Integer Division 9

Algorithm L (Low-order part of quotient). T.et A, B be as in (2.1) with m and n digits, respectively,
with A mod B = 0 and with by # 0, and let 1 <[<m —n + 1. The algorithm will compute the [
low-order digits q;_1,...,q90 of Q = A/B.

L1. [Right-shift.] Set d < the number of trailing 0-bits in by, and set I, + min(n,l). Then perform the
right-shifts [a;_1,...,a0] < [ag,a1_1,-..,a0]/2% and [by_1,. .. bo] < [br,br—1,...,bo]/2%

—1

L2. [Compute modular inverse.] Set b’ (bo)mod 5

[

L3. [Initialize loop.] Set k « 0.

L4. [Calculate quotient digit.] Set g < (b’ * 2k)moa 8-
L5. [Test termination] Tf k =1 — 1 then STOP.

L6. [Multiply and subtract.] Set .JJ < min(7.,I —k); then subtract [by_1,...,bo]*qg from [a;_1,...,ax].
L7. [loop.] Tncrement k and go back to step T.4.

Fignre 3. Computing the low-order part of the quotient.

PropPOSITION 3.1. The number v(n,l) of digit products in Algorithm I is

43) :
viny=4 = 1 i< (3.1)
I(n+1)— 2= 4fl >n.

Proo¥. Tet I = min(n,l). We will show that

2
v(n)y =1L +1) - # (3.2)
From Algorithm T. we obtain
-2
v(n,d) = 14> min(l,1— k)
k=0
min(i—2,1—1) -2
= I+ > I+ > (I — k)
k=0 k=max(0,min(I—2,]—T.)4+1)
I—max(2,1.) -2
= I+ > I+ > (I — k).
k=0 k=max(0,]—max(2,1.)+1)
1 I L.=1 we have
-2 -2
v) =1+> 1+ Y (I —k)y=1+(—-1)+0=20—1.
k=0 k=1-1
2 If . = 2 we have
-2 -2
v) =1+ 2+ > (I—k)=1+2(—1)+0=23—2.
k=0 k=1-1

3L >2 we have
— (1 —2)(T+1)

I—TL
vin)=1+> L+ > (k) =14 (= L+ DL+
k=0 k=l—TL4+1

Tn all three cases equation (3.2) is satisfied; and equation (3.2) implies equation (3.1). O

10 W. Krandick and T. Jebelean

CoROLLARY 3.1. Lettingl = m —n 4+ 1 in Proposition 3.1 we obtain

Dt m—n+1)—1 ifm<2n—1
T](TTI,, 77) = 2 ('3 1) f i
n(m — sn+ 5) +m otherwise.
This result corrects the analysis given in the original paper (Jebelean 1993a), which
did not account for the digit multiplications in step L4 of the algorithm.

4. Sequential exact division

The digits of the exact quotient can be computed sequentially by first using Algorithm
H to calculate the high-order part of the quotient and then Algorithm L. for the low-order
part. This 1s most efficient when the quotient is split in such a way that the combined
number of digit products is minimized.

DEFINITION 4.1. Let u(n, h) asin (2.7), v(n,l) as in (3.1), and let p(n,0) = v(n,0) = 0.
Now define Tk j(m,n) = Min g<p<m-nt1 p(n,h)+v(n,m—n+1—h).

In order to avoid a profusion of unproductive case distinctions we only give an upper
bound for Tk j(m, n).

THEOREM 4.1.
m ifn=1

Tk .y(m,n) < W—F% ifn>3and m<3n—6

n(m—2n+5)—5 otherwise.

PrOOF. let
m ifn=1

h=1{ |22 ifn>3andm<3n—6 (4.1)

m —2n+ 2 otherwise,

and let | =m —n 41— h. Now the desired inequality is obtained by bounding u(n, h) +
v(n,l) from ahove. For easy application of equations (2.7) and (3.1) we distinguish the
following cases.

1 Tn case n = 1 the result is straightforward. ~
2 Incase n >3 and m <3n—6 let h = (m —n)/2 and I = (m —n + 3)/2. Then
h<h<n-—3,1<l<nand

- =) — 7N 19
p(m, b) 4+ v(m. 1) < (b + v, D) = T (m =0+ 1) + —

3Mncasen>3and m=3n—5wehave h=n—-3,I=n—1,and pu(n,h)+v(n,l)=
n2—5:n(m—2n—|—5)—5.

4 Tncasen >3 and m>3n—5we have h>n—3,1=n—1and u(n,h)+v(nl) =
n(m — 2n +5) — 5.

5 Tn case n = 2,3 we have h = m — 2n + 2,1 = n— 1 and p(n,h) + v(n,l) =
(2mn—3n2—|—5n—4)/2. For n = 2,3 this equals n(m — 2n + 5) — 5.

Bidirectional Fxact Integer Division 11

5. Parallel exact division

The high-order and the low-order part of the exact quotient can be computed by
executing Algorithm H and Algorithm T, in parallel on two processors. This is most
efficient when the quotient is split in such a way that the number of digit products in
either algorithm is minimized.

DEFINITION B.1. Let u(n,h) and v(n,l) as in Definition (4.1). Define Ty ;(m,n) =
min g<h<m—nt1 max(p(n, h),v(n,m—n+1—h)).

For simplicity we only give an upper bound for Ty ;(m, n).

THEOREM H.1.

2L ifn =1
Sl gy
Tr y(myn) < ot lm nd) ey, 5 3 and m < 3n — 6
nlm 246 3 ifn >3 and 3n—6 <m < 4n — 6
nmo2ndA%) 4 omo ey > 3 and 4n — 6 < m.

PrOOF. let

[27;1,_:11 (m— 77)—‘ ifn<3

h = (5.1)

{%] otherwise,

andlet l=m—n+1—h.
We first prove the theorem for the case n < 3.

1 The first branch of v in (3.1) is only relevant if n = 1 and m = 1,2, 3 or if n = 2 and
m=2,...,6orifn=3and m=23,...,9. In each of these 15 cases the theorem
can be verified explicitly.

2 Tf m and n are such that v is defined by its second branch in (3.1), we handle the
ceiling function in the definition of h by letting

- (n+1)(m—n)+2n

h = > h.

2n+ 1 -

Since the first branch of g in (2.7) is monotone increasing in h we have

n2(m—n—|—1)—|—mn

p(n,h) < p(n,h) = T

Furthermore, let

)+ 1
nt (m—n) > 1.

l=m-—n+1—
ment g =

Now v(n,l) < wv(n,l), where

~ n(2mn + 2m — 4n” + 3n + 3)
v(n,l) = yreSD))

Now note y(n,lN) > p(n,i}) ifn=1, and u(n,il) > y(n,lN) ifn=2,3.

12

W. Krandick and T. Jebelean

We now prove the theorem for the case n > 3. Here we let

and

O

~ —n 4+ 1

m—n

i:m—n—|—1—

> 1.

In case m < 3n—7 we have h <n—3and I < n; hence the second branch of & and
the first branch of v have to be used. Thus,

- m—mn-+11
N(nvh) Sﬂ(nvh) = f(mfn_kwv
y(n,l)gy(nj): ?(m—n—kﬂ))—FL

and u(n,il) > y(n,f)

In case m = 3n — 6 we have h = n — 3,1 = n — 2, and the theorem can be verified
explicitly.

In case 3n — 5 < m < 3n — 2 we have to use the third branch of y and the first
branch of v. We obtain

(0, h) < p(n,b) = S (m — 20 +6) =3

and

v(n,l) < V(nj) = ?(m—n—k 10) + 1.
For each 3n — 5 < m < 3n — 2, u(n,h) > v(n,l).
Tn case m = 3n — 1 we have h =1 =n, and u(n,h) > v(n,l) can be hounded as in
the previous case.
Tncase m >3n—1we have h > (m—n)/2>n—1/2and I >m—n+1—(m-—
n+ 1)/2 > n. Using the third branch of p and the second branch of v we have

p(n,h) < pa(n, h) = Z(m — 2n +6) -3

and

v(n,1) <vin,d) = Z(m—2n+2) + 7.

Now, if m < 4n — 6 then p(n, 71) > y(n,lN); if m > 4n — 6 then y(n,lN) > p(n, 71)

Our method for exact division on two processors will be most useful on a shared-

memory machine when invoked by an algebraic algorithm with a higher level of paral-

lelism. When several exact divisions have to be executed in parallel, our method will add

another level of parallelism to the program.

6. Experiments

We ran a sequential and a parallel implementation of our method on the shared-

memory architecture of the Sequent Symmetry. We used the PACLIB environment (Hong

Bidirectional Fxact Integer Division 13

et al. 1992) which combines the computer algebra library SACLIB (Collins el al. 1993)
with the parallel features of the uSystem library (Buhr et al. 19971).

Table 1 lists computing times and computing time ratios for inputs of various lengths.
The row heading 20/15 refers to a dividend of 20 words and a divisor of 15 words. The
column heading TQR stands for the SACLIB implementation of Knuth’s integer quotient-
remainder algorithm, Algorithm D; TEQ stands for the SACLIB implementation of Jebe-
lean’s integer exact quotient method; Sequential and Parallel refer to a sequential and
a parallel implementation of our new method. The sequential implementation splits the
quotient as in the proof of Theorem 4.1; the parallel implementation splits the quotient
as in the proof of Theorem 5.1.

Table 2 has the same structure as Table 1, but instead of the computing time it lists
the number of digit products that were computed. Those numbers agree very well with
the bounds given in Theorems 4.1 and 5.1. The ratios of those numbers with respect to
the number of digit products required in the classical algorithm are a measure for the
expected speed-up.

The observed speed-up agrees well with the expected speed-up when the quotient 1s
more than 30 words long. When the quotient is shorter, certain linear-time operations
are significant. In particular, since PACLIB integers are represented as linked lists, we
copy the inputs from lists to arrays and the output from an array to a list.

Surprisingly, the observed speed-up of TEQ and Sequential in the third section of Ta-
ble 1 exceeds the expectations. This can be explained by noting that TQR. and Algorithm
H use digit divisions in order to determine the quotient digits. Table 2 counts those digit
divisions as digit products, but the true cost of digit division is about 2.5 times the cost of
a digit product in the SACLIB implementation we used. Hence the unexpected speed-up
is due to the replacement of a linear number of divisions by multiplications.

Finally we note that the parallel algorithm provides a significant speed-up even when
the quotient is only 10 words long. ITn our experiments the efficiency of the parallel
implementation exceeds 83% for quotients longer than 25 words and reaches 93% in
some cases.

Since our method 1s in the same complexity class as classical division, one might ask
for which length of the operands one should use an asymptotically fast method instead.

Asymptotically fast algorithms for division are based on an iterative computation of
the inverse that uses Newton’s method. Knuth (1981, Section 4.3.3.D) describes such
a method and analyzes the time required to divide one n-bit number by another. We
adapt his analysis to estimate the number of digit products needed for dividing a 2n-
word number by an n-word number.

Each Newton step requires two multiplications that are performed by an asymptotically
fast algorithm. The only such algorithm which is useful for integers shorter than 400
words is the multiplication algorithm due to Karatsuba and Ofman (1962). An estimate
(along the lines suggested by Knuth) of the number R(n) of digit products required by
Newton-inversion leads to R(n) = 2T(4n) 4+ 2T(2n) + 2T (n) + 2T (n/2) + ..., where T'(n)
digit products are needed for the multiplication of n-digit numbers. Using the property
T(2n) = 3T(n) of the Karatsuba algorithm, one gets R(n) & 27T (n) digit products; thus
the entire division requires roughly 30 T'(n) digit products.

In order to obtain an estimate for the break-even point of our method with Newton-
division, we estimate T'(n) = n'%23 & n3/? Tf n is the break-even point, it will satisfy

30n%2 & n?/4, and thus n &~ 15, 000.

14 W. Krandick and T. Jebelean

Table 1. Computing times in milliseconds (left) and speed-up (right) with respect to
the classical algorithm.

T.engths TQR TEQ Sequential Parallel
20/15 4.7 1.5 3.1 1.5 3.7 1.5 9.1
40/30 16.1 3.7 4.4 3.4 4.7 2.4 6.7
60/45 34.4 7.2 4.8 58 5.9 3.7 9.3
100/75 91.2 175 5.2 12.3 7.4 74 12.3
150/112 201.5 376 5.4 23.7 8.5 13.1 15,4

200/150 351.5 62.6 5.6 377 9.3 206 17.1
20/10 6.0 3.7 1.6 3.0 2.0 2.3 2.6
40/20 20.6 14.4 1.4 81 2.5 4.7 4.4
60/30 44.7 242 1.8 14.9 3.0 86 5.2
100/50 119.3 61.5 1.9 35.0 9.4 20.0 6.0
150/75 2625 133.3 2.0 721 7.6 40.6 6.5

200/100 462.3 2334 2.0 1223 3.8 66.8 6.9
20/5 5.0 4.2 1.2 4.2 1.2 2.9 1.7
40/10 16.4 13.8 1.2 12.6 1.3 7.2 2.3
60/15 34.8 288 1.2 25.1 1.4 145 2.4
100/25 91.4 75.0 1.2 62.8 1.5 35.1 2.6
150/37 198.1 162.8 7.2 133.0 1.5 72.8 2.7
200/50 351.0 286.9 7.2 2296 1.5 1239 2.8

Table 2. Count of digit products (left) and expected speed-up (right) with respect to
the classical algorithm.

T.engths TQR TEQ Sequential Parallel
20/15 90 26 3.5 20 4.5 12 7.5
40/30 330 6 4.3 51 6.5 26 12.7
60/45 720 151 4.8 95 7.6 52 15.8
100/75 1950 376 5.2 220 8.9 17 16.7
150/112 4368 818 5.3 457 9.6 229 19.1
200/150 7650 1376 5.6 751 10.2 376 20.3
20/10 110 1.5 51 2.2 26 4.2
40/20 420 250 1.7 151 2.8 %6 5.5
60/30 930 525 1.8 301 9.1 151 6.2
100/50 2550 1375 1.9 751 9.4 376 6.8
150/75 5700 3000 7.9 1595 9.6 817 7.0
200/100 10100 5250 7.9 2751 3.7 1376 7.3
20/5 80 85 0.9 70 1.1 37 2.2
40/10 310 295 1.1 245 1.3 130 2.4
60/15 690 630 1.1 520 1.3 267 2.6
100/25 1900 1675 1.1 1370 1.4 697 2.7
150/37 4218 3665 1.2 2992 1.4 1514 2.8
200/50 750 6475 1.2 5245 1.4 2650 2.8

Bidirectional Fxact Integer Division 15

Since this value 1s very large one might obtain a smaller break-even point when Karat-
suba’s algorithm is replaced by FFT-based multiplication (Schonhage and Strassen 1971).
The number of digit products required by this algorithm has not been analyzed in the
literature. Since such an analysis 18 outside the scope of this paper, we just note that
Schonhage himself (1994, Section 6.1.53.) uses the classical method whenever the divi-
dend is shorter than 240 words. We believe that the break-even point with our method
is much higher than this.

7. Acknowledgements

We thank George Collins for pointing out a flaw in the earlier version of Algorithm H.
We also thank one of the anonymous referees for noting non-obvious typographical errors.

References

Buhr, P.A., Macdonald, H.T.; Stroobosscher, R.A. (1991). uSystem Annotated Reference Manual. Ver-
sion 4.4.1. Technical report, Department of Computer Science, University of Waterloo, Ontario,
October.

Collins, G. E., Buchberger, B., Encarnacion, M. I., Hong, H., Johnson, J. R., Krandick, W., T.oos, R.,
Mandache, A. M., Neubacher, A., Vielhaber, H. (1993). SACLIB 1.1 User’s Guide. Technical Report
93 19, RISC Linz.

Hong, H., Schreiner, W., Neubacher, A., Siegl, K., T.oidl, H-W., Jebelean, T., Zettler, P. (1992). PACT.TB
User Manual. Technical Report 92 32, RISC-T.inz.

Jebelean, T. (1993). An algorithm for exact division. Journal of Symbolic Computation, 15(2):169 180.

Jebelean, T. (1993). Systolic Algorithms for Fxact Division. Tn Workshop on Fine Grain and Massive
Parallelism, pages 40 50, Dresden, Germany, April. Published in Mitteilungen Gesellschaft fur
Informatik e. V. Parallel-Algorithmen und Rechnerstrukturen, Nr. 12, July 1993.

Karatsuba, A., Ofman, Yu (1962). Multiplication of multidigit numbers on automata. Sov. Phys. Dokl.,
7:595 596.

Knuth, D. E. (1981). The Art of Computer Programming, volume 2. Addison-Wesley, 2nd edition.
Seminumerical Algorithms.

Krandick, W.,; Jebelean, T. (1994). Bidirectional exact integer division. Tn Hong, H., editor, First
International Symposium on Parallel Symbolic Computation (PASC0’94), pages 264 272, Hagen-
berg/Tinz, Austria, September. World Scientific Publishing Co.

Krandick, W., Johnson, 1. R. (1993). Efficient multiprecision floating point multiplication with optimal
directional rounding. Tn Swartzlander, Earl, Jr., Trwin, Mary Jane, Jullien, Graham, editors, Pro-
ceedings of the 11th TEEFE Symposium on Computer Arithmetic, pages 228 233, Windsor, Ontario.
TEEFE Computer Society Press.

Krandick, W., Johnson, J. R. (1993). Efficient multiprecision floating point multiplication with exact
rounding. Technical Report 93-76, RISC-l.inz, RISC-T.inz, Johannes Kepler University, A-4040 l.inz,
Austria.

Lakshmivarahan, S., Dhall, S. K. (1990). Analysis and design of parallel algorithms: Arithmetic and
matriz problems. McGraw-Hill.

Schonhage, AL, Strassen, V. (1971). Schnelle Multiplikation grosser Zahlen. Computing, 7:281 292.

Schonhage, A ., Vetter, E. (1994). A new approach to resultant computations and other algorithms with
exact division. In van lL.eeuwen, Jan, editor, Proceedings of the 2nd Annual Furopean Symposium on
Algorithms, Lecture Notes in Computer Science, vol. 855, pages 448 459, Utrecht, The Netherlands,
September. Springer-Verlag.

Schonhage, A., Grotefeld, A. F. W., Vetter, F. (1994). Fast Algorithms: A Multitape Turing Machine
Implementation. B. 1. Wissenschaftsverlag, Mannheim.

Swartzlander, E. E., editor. Computer Arithmetic, volume 1, part TV, and volume 2. TEEE Computer
Society Press.

Vicariu, C. T. (1992). Method and symmetrical architecture circuit for performing the exact division
through step by step approximation, in various ways and formats (in German). Patent Application

892/92, Vienna: Osterreichisches Patentamt.

