
Solving Equations with Sequence Variables

and Sequence Functions 1

Temur Kutsia

Research Institute for Symbolic Computation, Johannes Kepler University,
A-4040 Linz, Austria.

Abstract

Term equations involving individual and sequence variables and sequence function
symbols are studied. Function symbols can have either fixed or flexible arity. A
sequence variable can be instantiated by any finite sequence of terms. A sequence
function abbreviates a finite sequence of functions all having the same argument
lists. It is proved that solvability of systems of equations of this form is decidable.
A new unification procedure that enumerates a complete almost minimal set of
solutions is presented, together with variations for special cases. The procedure
terminates if the solution set is finite. Applications in various areas of artificial
intelligence, symbolic computation, and programming are discussed.

1 Introduction

We study term equations with individual and sequence variables and func-
tion symbols. A sequence variable can be instantiated by any finite sequence
of terms, including the empty sequence. A sequence function abbreviates a
finite sequence of functions all having the same argument lists. Semantically,
sequence functions can be interpreted as multi-valued functions. Individual
variables and function symbols are just the ordinary ones.

Sequence variables add expressiveness and elegance to the language. For in-
stance, the property of a function being “orderless” can be easily defined using
sequence variables: f(x, x, y, y, z) = f(x, y, y, x, z) specifies that the order of
arguments in terms with the head f and with any number of arguments does
not matter. Here x and y are individual variables and the letters with the

Email address: Temur.Kutsia@risc.uni-linz.ac.at (Temur Kutsia).
1 Supported by the Austrian Science Foundation (FWF) under Project SFB F1302.

Preprint submitted to Elsevier Science 29 December 2006

overbar are sequence variables. Without them one would need the permuta-
tion function to express the same property. Note that the function symbol f
has a flexibly arity. Sequence variables are normally used with flexible arity
function or predicate symbols.

List concatenation is another example. Here sequence variables help to avoid
recursive definition: 〈x〉 ³ 〈y〉 = 〈x, y〉. Furthermore, some proofs become
simpler, e.g., associativity of concatenation can be proved without induction.

Sequence variables provide a natural way to formalize and implement sequent
calculi. For instance, in the rule

Γ, A, B, ∆ → Λ

Γ, A ∧B, ∆ → Λ

Γ, ∆, and Λ can be implemented as sequence variables and A and B as indi-
vidual variables.

Sequence variables in programming help to write an elegant, short code. The
following rule-based implementation of bubble sort is a good example:

sort(〈x, x, y, y, z〉) :=sort(〈x, y, y, x, z〉) if x > y

sort(〈x〉) :=〈x〉.

Sequence variables can be used to query semistructured data. In particular,
they can be useful in XML querying and processing.

Bringing sequence functions into the language allows Skolemization over se-
quence variables: Let x, y be individual variables, x be a sequence variable,
and p be a flexible arity predicate symbol. Then ∀x∀y∃x.p(x, y, x) Skolemizes
to ∀x∀y.p(x, y, f(x, y)), where f is a binary Skolem sequence function symbol.
Another example, ∀y∃x.p(y, x), where y is a sequence variable, after Skolem-
ization introduces a flexible arity sequence function symbol g: ∀y.p(y, g(y)).
The integer division function div(x, y) is an instance of a sequence function. It
abbreviates the sequence of quotient and remainder functions: q(x, y), r(x, y).

Note that sequence functions are interpreted as multi-valued functions where
number of values is not fixed. Modeling functions with a fixed number n
of values is trivial: we could just replace a “macro” f(t1, . . . , tm) by an n-
ary sequence f1(t1, . . . , tm), . . . , fn(t1, . . . , tm). Similarly, the length of possible
values for a sequence variable is not fixed. Otherwise we could simply replace
the sequence variable by a sequence of individual variables of the corresponding
length.

Equation solving with sequence variables has applications in various areas of
artificial intelligence, symbolic computation, and programming. At the end of
the paper we briefly review some of the related work.

2

We contribute to this area by introducing a new unification procedure for
solving equations in the free theory with individual and sequence variables
and function symbols. Function symbols have either fixed or flexible arity.
The procedure enumerates an almost minimal complete set of solutions and
terminates if the set is finite. We prove that solvability of systems of equations
of this form is decidable. Omitting the decision algorithm and adding extra
rules for failure, we obtain a “lighter” version of the unification procedure. It
is still sound and complete, easier to implement, but for some failing cases
might not terminate. We implemented the “light” procedure in Mathematica
(Wolfram, 2003).

It should be noted that some of the techniques we use are similar to those
known from general associative unification (Plotkin, 1972) and word equa-
tions (e.g., Schulz, 1993). We discuss the relation to this problems in the
section about the related work.

Equation solving in the free theory with individual and sequence variables and
function symbols can be considered as a special case of order-sorted higher-
order E-unification. However, it does not make the problem easier, because, to
the best of our knowledge, order-sorted higher-order E-unification is a problem
that still waits for its solution.

The paper is organized as follows: In Section 2 basic notions are introduced.
In Section 3 decidability of unification with individual and sequence variables
and function symbols is proved. In Section 4 the unification procedure is in-
troduced and its soundness, completeness, and almost minimality are proved.
The “light” procedure is introduced in Section 5 and its termination issues
are addressed in Section 6. The implementation is briefly described in Sec-
tion 7. A relation with order-sorted higher-order E-unification is discussed in
Section 8. Some of the related work is reviewed in Section 9.

This work is an extension and a refinement of our previous results on unifica-
tion with sequence variables (Kutsia, 2002a,b, 2004).

2 Preliminaries

We assume that the reader is familiar with the standard notions of unification
theory (Baader and Snyder, 2001).

3

2.1 Syntax and Substitutions

We assume fixed pairwise disjoint sets of symbols: individual variables VI ,
sequence variables VS, fixed arity individual function symbols F ix I , flexible
arity individual function symbols F lex I , fixed arity sequence function sym-
bols F ixS, flexible arity sequence function symbols F lexS. Each set of variables
and sequence function symbols is countable. Each set of individual function
symbols is finite or countable. Additionally, we define:

FI := F ix I ∪ F lex I , F ix := F ix I ∪ F ixS, F := FI ∪ FS,

FS := F ix I ∪ F lexS, F lex := F lex I ∪ F lexS, V := VI ∪ VS.

The arity of f ∈ F ix is denoted by Ar(f). A function symbol c ∈ F ix is
called a constant if Ar(c) = 0.

If not otherwise stated, we use x, y, z for individual variables, x, y, z for
sequence variables, f , g, h for individual function symbols, f , g, h for sequence
function symbols, a, b, c for individual constants, and a, b, c for sequence
constants. Moreover, v will be used for (individual or sequence) variables,
and l (in some cases) for variables or sequence function symbols. The meta-
variables may come with indices.

Terms over F and V are constructed using the following grammar:

t ::= it | st

where it is an individual term and st is a sequence term. They are constructed
as follows:

it ::= x | f(it1, . . . , itn) | g(t1, . . . , tm)

st ::= x | f(it1, . . . , itn) | g(t1, . . . , tm)

where f, f ∈ F ix with Ar(f) = Ar(f) = n, and g, g ∈ F lex .

We denote by T (F ,V), TI(F ,V), and TS(F ,V), respectively, the sets of all
terms, all individual terms, and all sequence terms over F and V .

Equations are defined as pairs of individual terms 〈it1, it2〉. We use more
conventional notation for equations, writing it1 ≈ it2 for 〈it1, it2〉. We do
not define equations between sequence terms, because they can be encoded
as equations between individual terms using flexible arity individual function
symbols.

The head of an individual term t = f(t1, . . . , tn) (resp. of a sequence term
t = f(t1, . . . , tn)), n ≥ 0, denoted by Head(t), is the individual function

4

symbol f (resp. the sequence function symbol f). For T being either a term,
a sequence of terms, or a set of terms, we denote

• the set of all individual variables occurring in T by VI(T);
• the set of all sequence variables occurring in T by VS(T);
• the set VI(T) ∪ VS(T) by V(T);
• the set of all individual function symbols occurring in T by FI(T);
• the set of all sequence function symbols occurring in T by FS(T);
• the set of all fixed arity function symbols occurring in T by F ix (T);
• the set of all flexible arity function symbols occurring in T by F lex (T).

A term t is called ground if V(t) = ∅. We use the letters s, t, r, and q, maybe
with indices, for terms.

Below we do not distinguish between a singleton sequence and its sole element.

A substitution is a mapping from individual variables to individual terms, from
sequence variables to finite, possibly empty sequences of terms, and from se-
quence function symbols to finite nonempty sequences of sequence function
symbols, such that all but finitely many individual variables, sequence vari-
ables, and sequence function symbols are mapped to themselves, and sequence
function symbol mapping preserves arity. The last condition means the fol-
lowing: If σ(f) = pg1, . . . , gnq 2 for a substitution σ, then Ar(g1) = · · · =
Ar(gn) = Ar(f) if f ∈ F ix , and g1, . . . , gn ∈ F lex if f ∈ F lex .

We will use the traditional notation for substitutions representing them as
finite sets of bindings

{x1 7→ it1, . . . , xn 7→ itn, x1 7→ ps1
1, . . . , s

1
k1

q, . . . , xm 7→ psm
1 , . . . , sm

km
q,

f1 7→ pg1
1, . . . , g

1
l1
q, . . . , fr 7→ pgr

1, . . . , g
r
lr
q}.

Lower case Greek letters are used to denote substitutions. The empty substi-
tution is denoted by ε.

Substitutions are extended to terms as follows:

xσ = σ(x), f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ),

xσ = σ(x), f(t1, . . . , tn)σ = σ(f)[t1σ, . . . , tnσ],

where the notation pg1, . . . , gmq[t1, . . . , tn] is just a shortcut for the sequence
pg1(t1σ, . . . , tnσ), . . . , gm(t1σ, . . . , tnσ)q. For a term t and a substitution σ,
we call tσ an instance of t with respect to σ. Substitutions are extended to
sequences of terms, sequences of sequence function symbols, and equations in
the standard way.

2 For better readability we write sequences between the symbols p and q.

5

Example 1 Let σ = {x 7→ a, y 7→ f(x), x 7→ pq, y 7→ pa, f(x), bq, g 7→
pg1, g2q}. Then f(x, x, g(y), y)σ = f(a, g1(f(x)), g2(f(x)), a, f(x), b).

A nonstandard feature with term instances is that a ground term can be
further instantiated. For example, f(g(a)){g 7→ pg1, g2q} = f(g1(a), g2(a)).
However, such an instantiation only “splits” sequence terms and the obtained
instance remains ground.

The domain of a substitution σ is the set of variables and sequence function
symbols Dom(σ) := {l | lσ 6= l}. The codomain of σ, denoted Cod(σ), is the
set of terms and sequence function symbols defined as follows:

Cod(σ) = {t | there exists x ∈ Dom(σ) such that t = xσ, or

there exist x ∈ Dom(σ) and terms t1, . . . , tn, n ≥ 0,

such that pt1, . . . , t, . . . , tnq = xσ}∪
{f | there exist g ∈ Dom(σ) and sequence function symbols

f 1, . . . , fn, n ≥ 0, such that pf 1, . . . , f , . . . , fnq = gσ}.

For instance, Cod({x 7→ pq}) = ∅ and Cod({x 7→ f(a), x 7→ pa, a, bq, a 7→
pb, cq}) = {f(a), a, b(), b, c}. Note that in codomains, omitting parentheses in
sequence terms with the empty list of arguments might lead to a confusion:
One can not distinguish such a term from its head (a sequence function sym-
bol). To avoid this, in codomains we write such terms with parentheses. This
is why we have both b() and b in the codomain in the second example above:
b() comes from the binding for x and b comes from the binding for a.

The range of σ is the set of variables Ran(σ) := V(Cod(σ)). A substitution σ
is called ground if Ran(σ) = ∅.

The restriction of a substitution σ to a set of variables and sequence function
symbols S, denoted σ|S, is the substitution defined by lσ|S = lσ if l ∈ S,
and lσ|S = l otherwise. Besides, we define VDom(σ) := Dom(σ) ∩ V and
FDom(σ) := Dom(σ) ∩ F . We write the composition of two substitutions σ
and ϑ as σϑ. The following example illustrates composition of substitutions:

σ = {x 7→ y, x 7→ py, xq, y 7→ pf(a, b), y, g(x)q, f 7→ pg, hq}.
ϑ = {y 7→ x, y 7→ x, x 7→ pq, g 7→ pg1, g2q}.

σϑ = {y 7→ x, y 7→ pf(a, b), x, g1(), g2()q, f 7→ pg1, g2, hq, g 7→ pg1, g2q}.

2.2 Technical Notions

Given a set E of equations over F and V we denote by ≈E the least con-
gruence relation on T (F ,V) that is closed under substitution application

6

and contains E. To be more precise, ≈E contains E, satisfies reflexivity,
symmetry, transitivity, congruence, and a special form of substitutivity: For
all s, t ∈ T (F ,V), if s ≈E t and sσ, tσ ∈ T (F ,V) for some σ, then sσ ≈E tσ.
Substitutivity in this form only affects situations where sσ and tσ are terms.
The set ≈E is called an equational theory defined by E. We will also call the set
E an equational theory or an E-theory. The signature of E, denoted Sig(E),
is the set of all individual function symbols occurring in E.

In the rest of the paper, if not otherwise stated, E stands for an equational
theory, X for a finite set of variables, and Q for a finite set of sequence function
symbols.

Definition 2 A substitution σ is called erasing on X modulo E if either there
exist f ∈ Sig(E) and v ∈ X such that f(v)σ ≈E f() or there exists x ∈ X
such that xσ = pq. We say that σ is non-erasing on X modulo E if σ is not
erasing on X modulo E.

The notion of erasing substitution will be needed in defining the notions of
minimal and almost minimal sets of substitutions later.

Example 3 (1) Let E = ∅ and X = {x, x}. Then any substitution that
maps x to the empty sequence is erasing on X modulo E.

(2) Let E = {f(x, f(y), z) ≈ f(x, y, z)} and X = {x, x}. Then any substitu-
tion that maps x to f(), or maps x to a (possibly empty) sequence of f()’s
is erasing on X modulo E.

Definition 4 A substitution σ agrees with a substitution ϑ on X and Q mod-
ulo E, denoted σ =X ,Q

E ϑ, if

(1) for all x ∈ X , there exist t1, . . . , tn, s1, . . . , sn ∈ T (F ,V), n ≥ 0, such that
xσ = pt1, . . . , tnq, xϑ = ps1, . . . , snq, and ti ≈E si for each 1 ≤ i ≤ n;

(2) for all x ∈ X , xσ ≈E xϑ;
(3) for all f ∈ Q, fσ = fϑ.

Definition 5 A substitution ϕ matches a substitution σ with a substitution ϑ
on X and Q modulo E, if σϕ =X ,Q

E ϑ.

Example 6 Let σ = {x 7→ a}, ϑ = {x 7→ pb, cq, a 7→ pb, cq} and ϕ = {x 7→
pb, cq, a 7→ pb, cq}. Let also X = {x}, Q = {a}, and E = ∅. Then σϕ =X ,Q

E ϑ.

Definition 7 A substitution σ is more general (resp. strongly more general)
than a substitution ϑ on sets X and Q modulo E, denoted σ ≤·X ,Q

E ϑ (resp.
σ EX ,Q

E ϑ), if there exists a substitution (resp. a substitution non-erasing on
X modulo E) ϕ such that σϕ =X ,Q

E ϑ.

Example 8 Let σ = {x 7→ y}, ϑ = {x 7→ pa, bq, y 7→ pa, bq}, η = {x 7→

7

pq, y 7→ pq}.

(1) If X = {x, y}, then σ ≤·X ,∅
∅ ϑ, σ EX ,∅

∅ ϑ, σ ≤·X ,∅
∅ η, σ 5X ,∅

∅ η.

(2) If X = {x}, then σ ≤·X ,∅
∅ ϑ, σ EX ,∅

∅ ϑ, σ ≤·X ,∅
∅ η, σ EX ,∅

∅ η.

From Definition 7 it follows that EX ,Q
E ⊆≤·X ,Q

E . A substitution ϑ is an E-
instance (resp. strong E-instance) of a substitution σ on X and Q if σ ≤·X ,Q

E ϑ
(resp. σ EX ,Q

E ϑ). The equivalence associated with ≤·X ,Q
E (resp. with EX ,Q

E)
is denoted by

.
=X ,Q

E (resp. by ,X ,Q
E). If σϕ =X ,Q

E ϑ, then σϕ
.
=X ,Q

E ϑ. If, in
addition, ϕ is non-erasing on X and Q modulo E, then σϕ ,X ,Q

E ϑ.

Definition 9 A set of substitutions S is called minimal (resp. almost mini-
mal) with respect to X and Q modulo E if two distinct elements of S are in-
comparable with respect to ≤·X ,Q

E (resp. EX ,Q
E), i.e., for all σ, ϑ ∈ S, σ ≤·X ,Q

E ϑ
(resp. σ EX ,Q

E ϑ) implies σ = ϑ.

Minimality implies almost minimality, but not vice versa: A counterexample
is the set {σ, η} and X = {x, y} from Example 8.

Definition 10 A set of substitutions S is called disjoint (resp. almost dis-
joint) with respect to X and Q modulo E if two distinct elements of S have
no common E-instance (resp. strong E-instance) on X and Q, i.e., for all
σ, ϑ ∈ S, if there exists ϕ such that σ ≤·X ,Q

E ϕ (resp. σ EX ,Q
E ϕ) and ϑ ≤·X ,Q

E ϕ
(resp. ϑ EX ,Q

E ϕ), then σ = ϑ.

Disjointness implies almost disjointness, but not vice versa: Consider again
the set {σ, η} and X = {x, y} in Example 8.

Proposition 11 If a set of substitutions S is disjoint (resp. almost disjoint)
with respect to X and Q modulo E, then it is minimal (resp. almost minimal)
with respect to X and Q modulo E.

PROOF. Assume that σ, ϑ ∈ S and σ ≤·X ,Q
E ϑ. Since ϑ ≤·X ,Q

E ϑ, by disjoint-
ness of S with respect to X and Q modulo E we get σ = ϑ, which implies
minimality of S with respect to X and Q modulo E. Almost minimality can
be proved in the same way. 2

However, almost disjointness does not imply minimality: Again, consider the
set {σ, η} and X = {x, y} in Example 8. On the other hand, minimality does
not imply almost disjointness: Let σ = {x 7→ f(a, y)}, ϑ = {x 7→ f(y, b)}, X =
{x}, Q = ∅, and E = ∅. Then {σ, ϑ} is minimal but not almost disjoint with
respect to X and Q modulo E, because σ EX ,Q

E ϕ and ϑ EX ,Q
E ϕ, where ϕ =

{x 7→ f(a, b)}, but σ 6= ϑ. The same example can be used to show that almost
minimality does not imply almost disjointness either. From these observations

8

we can also conclude that neither minimality nor almost minimality imply
disjointness.

Definition 12 A substitution σ is disjointness preserving (resp. almost-dis-
jointness preserving) with respect to X and Q modulo E if for any two substi-
tutions ϑ1 and ϑ2, disjointness (resp. almost disjointness) of the set {ϑ1, ϑ2}
with respect to the set of variables ∪v∈X V(vσ) and sequence function symbols
∪f∈QFS(fσ) modulo E implies disjointness (resp. almost disjointness) of the
set {σϑ1, σϑ2} with respect to X and Q modulo E.

2.3 Unification Problems

Solving equations in an equational theory E is called E-unification. The fact
that the equation s ≈ t has to be solved in an E-theory is written as s≈?

Et.

First, we define the notion of substitution linearizing away from a set of se-
quence function symbols. As we will see later, it plays an important role in
defining the notion of a solution of an equation. Roughly, it will be used to
guarantee that term equations with two ground sides that are not E-equal to
each other can not be solved in the E-theory.

Definition 13 A substitution σ is called linearizing away from a finite set of
sequence function symbols Q if the following three conditions hold:

(1) Cod(σ) ∩Q = ∅.
(2) For all f, g ∈ FDom(σ) ∩Q, if f 6= g, then {fσ} ∩ {gσ} = ∅.
(3) If fσ = pg1 . . . , gnq and f ∈ Q, then gi 6= gj for all 1 ≤ i < j ≤ n.

(A remark about the notation {fσ}: If fσ = pf 1, . . . , fnq, then {fσ} is a set of
sequence function symbols {f 1, . . . , fn}.) Intuitively, a substitution linearizing
away from Q either leaves a sequence function symbol in Q “unchanged”
or “moves it away from” Q, binding it with a sequence of distinct sequence
function symbols that do not occur in Q, and maps different sequence function
symbols to disjoint sequences.

Definition 14 Let E be an equational theory and let F contain Sig(E).
An E-unification problem over F is a finite set of equations Γ = {s1 ≈?

E

t1, . . . , sn ≈?
E tn} over F and V. An E-quasi-unifier, or an E-quasi-solution,

of Γ is a substitution σ such that siσ ≈E tiσ for all 1 ≤ i ≤ n. The set of all
E-quasi-unifiers of Γ is denoted by QUE(Γ). An E-unifier, or an E-solution,
of Γ is an E-quasi-unifier of Γ that is linearizing away from FS(Γ). The set of
all E-unifiers of Γ is denoted by UE(Γ), and Γ is E-unifiable, or E-solvable,
if UE(Γ) 6= ∅.

9

Note that if Γ = {s1 ≈?
E t1, . . . , sn ≈?

E tn} is an E-unification problem, then
all s1, . . . , sn, t1, . . . , tn ∈ TI(F ,V). The equational theory E is often not men-
tioned explicitly if the context makes it clear.

Note that if we did not require bindings of sequence function symbols in substi-
tutions to be nonempty, the unification problem {f(x) ≈?

∅ f(g(x))} would be
solvable (with {x 7→ pq, g 7→ pq}), which is in contrast to the fact that the cor-
responding positive sentence ∃x∀y f(x) ≈ f(y) (from which f(x) ≈?

∅ f(g(x))
is obtained by Skolemization) is not valid; see (Kutsia and Buchberger, 2004).

The following example shows the importance of the condition that an unifier
of an E-unification problem Γ should be linearizing away from FS(Γ).

Example 15 Let Γ = {f(a) ≈?
∅ f(b)}. Then U∅(Γ) = ∅. Intuitively, it is

justified, because f(a) and f(b) are two ground terms such that f(a) 6≈∅ f(b),
or, equivalently, because the corresponding positive sentence ∀x∀y f(x) ≈ f(y)
is not valid. Note that QU∅(Γ) 6= ∅, e.g., {a 7→ b} ∈ QU∅(Γ).

Definition 16 Let Γ be a E-unification problem over F , X = V(Γ), and
Q = FS(Γ). A complete set of E-unifiers of Γ is a set S of substitutions such
that

(1) S ⊆ UE(Γ), i.e., each element of S is an E-unifier of Γ,
(2) for each ϑ ∈ UE(Γ) there exists σ ∈ S such that σ ≤·X ,Q

E ϑ.

The set S is a minimal (resp. almost minimal) complete set of E-unifiers of Γ,
if it is a complete set that is minimal (resp. almost minimal) with respect to
X and Q modulo E.

A minimal (resp. almost minimal) complete set of E-unifiers of Γ, if it exists,
is unique up to the equivalence

.
=X ,Q

E (resp. ,X ,Q
E), where X = V(Γ) and

Q = FS(Γ). That is, if S1 and S2 are minimal (resp. almost minimal) complete
sets of E-unifiers of Γ, then for each σ1 ∈ S1 there exists exactly one σ2 ∈ S2

such that σ1
.
=X ,Q

E σ2 (resp. σ1 ,X ,Q
E σ2). We will use this fact and denote

by mcuE(Γ) (resp. by amcuE(Γ)) a minimal (resp. almost minimal) complete
set of unifiers, and interpret an equality mcuE(Γ) = S (resp. amcuE(Γ) = S)
as equality up to the equivalence

.
=X ,Q

E (resp. ,X ,Q
E), where X = V(Γ) and

Q = FS(Γ).

A substitution σ is a most general E-unifier of a unification problem Γ if
mcuE(Γ) = {σ}.

Proposition 17 An E-unification problem Γ has an almost minimal complete
set of E-unifiers if and only if it has a minimal complete set of E-unifiers.

10

PROOF. (⇒) Let X = V(Γ), Q = FS(Γ), and let S be an almost minimal
complete set of E-unifiers of Γ. Then the set

S \ {ϑ |ϑ ∈ S and there exists σ ∈ S, with σ 6= ϑ and σ ≤·X ,Q
E ϑ}

is a minimal complete set of E-unifiers of Γ.

(⇐) Every minimal complete set of E-unifiers of Γ is itself an almost minimal
complete set of E-unifiers of Γ. 2

Example 18 Let E = ∅.

(1) Γ = {f(x) ≈?
E f(y)}. Then

mcuE(Γ) = {{x 7→ y}}.
amcuE(Γ) = {{x 7→ y}, {x 7→ pq, y 7→ pq}}.

(2) Γ = {f(x, x, y) ≈?
E f(f(x), x, a, b)}. Then

mcuE(Γ) = {{x 7→ f(), x 7→ pq, y 7→ pf(), a, bq}}.
amcuE(Γ) =mcuE(Γ).

(3) Γ = {f(x, x, y) ≈?
E f(a, x, b)}. Then

mcuE(Γ) = {{x 7→ a, y 7→ b}, {x 7→ a, x 7→ pq, y 7→ pa, bq},
{x 7→ b, x 7→ pa, bq, y 7→ pq}}.

amcuE(Γ) =mcuE(Γ).

(4) Γ = {f(a, x) ≈?
E f(x, a)}. Then

mcuE(Γ) = {{x 7→ pq}, {x 7→ a}, {x 7→ pa, aq}, . . .}
amcuE(Γ) =mcuE(Γ).

(5) Γ = {f(x, y, x) ≈?
E f(c, a)}. Then

mcuE(Γ) = {{x 7→ pq, y 7→ c, x 7→ a}, {x 7→ c, y 7→ pq, x 7→ a},
{x 7→ c1, y 7→ c2, x 7→ a, c 7→ pc1, c2q}}.

amcuE(Γ) =mcuE(Γ).

(6) Γ = {f(a) ≈?
E f(b)}. Then mcuE(Γ) = amcuE(Γ) = ∅.

Definition 19 Let E be an equational theory and let Γ be an E-unification
problem over F . The problem Γ has type unitary (finitary, infinitary) if it
has a minimal complete set of E-unifiers of cardinality 1 (finite cardinality,
infinite cardinality). If Γ does not have a minimal complete set of E-unifiers,
then it is of type zero, or nullary. We abbreviate type unitary by 1, type finitary

11

by ω, type infinitary by ∞, and type nullary by 0, and order these types as
follows: 1 < ω < ∞ < 0.

The unification type of E with respect to F is the maximal type of an E-
unification problem over F .

Definition 20 Let E be an equational theory, Γ be an E-unification problem
over F , and FI be the set of individual function symbols in F .

(1) Γ is an elementary E-unification problem if FI = Sig(E).
(2) Γ is an E-unification problem with constants if FI \ Sig(E) is a set of

individual constant symbols (called free constants).
(3) Γ is a general E-unification problem if FI \ Sig(E) contains arbitrary

individual function symbols (called free function symbols).

The equational theory E = ∅ is called the free theory with individual and
sequence variables and function symbols. We call unification in the free theory
the syntactic sequence unification.

Three main questions that arise in unification theory are:

• Decidability: Is it decidable whether a unification problem is solvable?
• Unification type: What is the unification type?
• Unification procedure: How can we obtain a (preferably minimal) unification

procedure?

Elementary syntactic sequence unification and syntactic sequence unification
with constants are trivially decidable unitary problems, which can be solved
simply by the Robinson unification algorithm (Robinson, 1965). Therefore,
in the rest of the paper we try to answer these questions only for general
syntactic sequence unification. We assume that the set of individual function
symbols FI is countable. Decidability is shown in Section 3, and the questions
about the procedure and the type are addressed in Section 4.

The equational theory E = {f(x, f(y), z) ≈ f(x, y, z)}, which we encountered
in Example 3, is called the flat theory with individual and sequence variables
and function symbols, where f ∈ F lex I is called a flat symbol. We call unifica-
tion in the flat theory F -unification. Below we use certain properties of the flat
theory in proving decidability of the general syntactic sequence unification.

3 Decidability

To show decidability of a general syntactic sequence unification problem we
design a rule-based decision algorithm that nondeterministically performs at

12

most four steps. Each of these steps preserves solvability. On the first step the
problem is reduced to another general syntactic sequence unification problem
containing no sequence function symbols. The second step gets rid of all free
flexible arity functions, obtaining an F -unification problem whose signature
consists of fixed arity individual functions and one flat flexible arity individ-
ual function. The third step replaces all sequence variables with individual
variables. On the fourth step the F -unification problem is represented as a
combination of word equations and Robinson unification whose decidability is
proved by the Baader–Schulz combination method (Baader and Schulz, 1996).

We start with two lemmata that characterize solutions of general syntactic
sequence unification problems.

Lemma 21 If a general syntactic sequence unification problem Γ is solvable,
then there exists a solution σ of Γ such that FDom(σ) = ∅.

PROOF. Let ϑ0 be a solution of Γ and let f 7→ pg1, . . . , gnq ∈ ϑ0. Assume
without loss of generality that f ∈ FS(Γ). Since ϑ0 is linearizing away from
FS(Γ), we have that the sequence function symbols g1, . . . , gn /∈ FS(Γ), they
are all distinct, and do not appear in ϑ0 in the bindings of any other sequence
function symbol. Let ϑ1 be a substitution obtained from ϑ0 by

• deleting the binding f 7→ pg1, . . . , gnq from ϑ0,
• replacing each binding x 7→ t in ϑ0 with x 7→ s, where the term s is obtained

from t by deleting all subterms of the form gi(r1, . . . , rm), 2 ≤ i ≤ n, m ≥ 0,
and replacing all occurrences of the sequence function symbol g1 with f ,

• replacing each binding x 7→ pt1, . . . , tkq, k ≥ 1, in ϑ0 with the binding
x 7→ ps1, . . . , slq, l ≥ 0, where the sequence ps1, . . . , slq is obtained from
the sequence pt1, . . . , tkq by deleting all subterms of the form gi(r1, . . . , rm),
2 ≤ i ≤ n, m ≥ 0, and replacing all occurrences of the sequence function
symbol g1 with f .

The substitution ϑ1 contains no occurrences of g1, . . . , gn. Intuitively, what
the transformation from ϑ0 to ϑ1 does is to “undo” splitting f into g1, . . . , gn.
Since the g’s occur neither in Γ nor in ϑ1, we can conclude that ϑ1 is still a
solution of Γ that contains no binding for f . Repeating this transformation for
each binding for sequence function symbols in ϑ1, we arrive at the substitution
σ with the property FDom(σ) = ∅ and σ is a solution of Γ. 2

Lemma 22 If a general syntactic sequence unification problem Γ is solvable,
then there exists a solution of Γ that introduces no new function symbol and
does not instantiate any sequence function symbol.

PROOF. Let ϑ be a solution of Γ. By Lemma 21 we can assume that

13

FDom(ϑ) = ∅. If we replace in ϑ every individual (resp. sequence) term whose
head does not occur in Γ with a new individual (resp. sequence) variable we
get a substitution σ that still is a solution of Γ, but does not introduce any
new function symbol. 2

Now we start defining inference rules for the decision algorithm. We will for-
mulate them for general syntactic sequence unification problems consisting of
a single equation only. For general unification it is not a restriction, because
the problems {s1 ≈?

∅ t1, . . . , sn ≈?
∅ tn} and {f(s1, . . . , sn) ≈?

∅ f(t1, . . . , tn)},
where f ∈ FI , have the same set of solutions, and we can always take such
an f . Below we will use the unification problem

{f0(x, x, y, z, f0(u, x)) ≈?
∅ f0(g0(x), x, a, f0(g0(x), u))} (1)

as an example to demonstrate the steps of the decision algorithm.

The first inference rule eliminates sequence function symbols:

SFE: Sequence Function Elimination

{s ≈?
∅ t} =⇒ {f(s′, x1, . . . , xn) ≈?

∅ f(t′, r1, . . . , rn)},
where

• s or t contains sequence function symbols,
• f is a new n + 1-ary individual function symbol,
• s′ and t′ are terms obtained respectively from s and t by replacing each

sequence function symbol g with a new individual function symbol gg that
has the same arity as g,

• x1, . . . , xn is an enumeration of all individual variables in s ≈?
∅ t,

• each ri is either a new individual constant c, an individual term of the form
h(y1, . . . , ym), or an individual term of the form h(y), where h ∈ FI(s, t), yi’s
are fresh distinct individual variables, and y is a fresh sequence variable.
h(y1, . . . , ym) is used when h is m-ary, and h(y) is used when h has a flexible
arity.

We assume that for the given s and t we have the function symbol f , the
terms s′ and t′, the enumeration of variables x1, . . . , xn, and the constant c
fixed. However, we have a nondeterministic choice of the function symbols
that define the ri’s, which makes SFE a nondeterministic rule.

In general, there are (k + 1)n different ways to apply SFE on a unification
problem Γ, where k is the number of elements in FI(Γ), and n is the number of
elements in VI(Γ). We can restrict this choice in particular cases. For instance,
if Γ is {f(s1, . . . , sm) ≈?

∅ f(t1, . . . , tl)}, where f occurs neither in si’s nor in ti’s,
then there is no point to consider it as a head of one of the ri’s. In this case

14

we will have kn alternatives for applying SFE. One can come up with more
ways to restrict applications of the SFE rule, but it is not in the scope of this
paper.

Example 23 From the unification problem (1), by the rule SFE, we obtain
the following three unification problems:

{f1(f0(x, x, y, z, f0(u, x)), x) ≈?
∅ f1(f0(g0(x), x, aa, f0(g0(x), u)), c1)} (2)

{f1(f0(x, x, y, z, f0(u, x)), x) ≈?
∅ f1(f0(g0(x), x, aa, f0(g0(x), u)), g0(v1))} (3)

{f1(f0(x, x, y, z, f0(u, x)), x) ≈?
∅ f1(f0(g0(x), x, aa, f0(g0(x), u)), f0(v1))} (4)

We may use the rule name abbreviation as a subscript. For instance, we may
write Γ =⇒SFE ∆ to indicate that ∆ is obtained from Γ by an application of
the SFE rule. The next lemma shows that SFE preserves solvability.

Lemma 24 Let Γ be a general syntactic sequence unification problem that
contains sequence function symbols. Then Γ is solvable if and only if there
exists a general syntactic sequence unification problem ∆ without sequence
function symbols such that Γ =⇒SFE ∆ and ∆ is solvable.

PROOF. (⇒) Let Γ be {s ≈?
∅ t} and let σ be a solution of Γ. By Lemma 22

we can assume that σ does not bind any sequence function symbol and does
not introduce any new function symbol. Let σ′ be a substitution obtained from
σ by replacing each sequence function symbol g by the corresponding gg. We
take ∆ of the form {f(s′, x1, . . . , xn) ≈?

∅ f(t′, r1, . . . , rn)} that is obtained from
Γ by the SFE rule with ri’s selected in the following way: If xiσ

′ is a variable,
then ri = c. If xiσ

′ = h(s1, . . . , sm), where m ≥ 0, then ri = h(y1, . . . , ym) if h
is an m-ary individual function symbol, and ri = h(y) if h is a flexible arity
individual function symbol. All yi’s are distinct fresh individual variables, and
y is a fresh sequence variable. ∆ does not contain sequence function symbols.

We now construct a solution of ∆. It is easy to see that s′σ′ ≈∅ t′σ′. Let now ϑ
be a substitution defined as follows: For each xi, if xiσ

′ = y for some y, then
y 7→ c ∈ ϑ; if xiσ

′ has a form h(s1, . . . , sm), where m ≥ 0, then depending
whether h is an m-ary or a flexible arity symbol we have two cases: If h is
m-ary, then yj 7→ sj ∈ ϑ for all 1 ≤ j ≤ m, where h(y1, . . . , ym) = ri. If h has
a flexible arity, then y 7→ ps1, . . . , smq ∈ ϑ, where h(y) = ri. We take ϑ′ = ϑϑ.
Then s′σ′ϑ′ ≈∅ t′σ′ϑ′ and xiσ

′ϑ′ ≈∅ riσ
′ϑ′ for each xi. It implies that σ′ϑ′ is a

solution of ∆. 3

3 Note that taking ϑ instead of ϑ′ is not enough because ϑ can contain bindings
y 7→ c and yj 7→ sj with y ∈ VI(sj), and therefore, σ′ϑ can not be a solution of ∆.
Just take s′ = f(x), t′ = f(g(g(y))), ∆ = {h(f(x), x, y) ≈?

∅ h(f(g(g(y))), g(y1), c)},
σ′ = {x 7→ g(g(y))}, and ϑ = {y 7→ c, y1 7→ g(y)} as a counterexample.

15

(⇐) From a solution of ∆ we can get a solution of Γ replacing each individual
function symbol gg introduced by the rule SFE by the corresponding symbol
g ∈ FS(Γ). 2

Remark 25 Note that had we formulated SFE as {s ≈?
∅ t} =⇒ {s′ ≈?

∅ t′}
(with the same conditions on s, t, s′, and t′ as in SFE), Lemma 24 would not
hold. A simple counterexample is the unsolvable problem {f(x) ≈?

∅ f(a)} that
in this case would have been transformed into {f(x) ≈?

∅ f(aa)} that is solved
by {x 7→ aa}.

Remark 26 If Γ =⇒SFE ∆, then, in general, there is no one-to-one correspon-
dence between the sets amcu∅(Γ) and amcu∅(∆) or between the sets mcu∅(Γ)
and mcu∅(∆). For instance, if Γ = {g(x, y) ≈?

∅ g(a)}, then ∆ = {f(g(x, y)) ≈?
∅

f(g(aa))} and

mcu∅(Γ) = amcu∅(Γ) = {{x 7→ pq, y 7→ a}, {x 7→ a, y 7→ pq},
{x 7→ a1, y 7→ a2, a 7→ pa1, a2q}}.

mcu∅(∆) = amcu∅(∆) = {{x 7→ pq, y 7→ aa}, {x 7→ aa, y 7→ pq}}.

The next inference rule eliminates free flexible arity symbols and reduces a
general syntactic sequence unification problem to an F -unification problem.

FlexE: Flexible Arity Function Elimination

{s ≈?
∅ t} =⇒ {f(s′, x1, . . . , xn) ≈?

F f(t′, r1, . . . , rn)},

where

• s and t contain no sequence function symbols,
• s or t contains (free) flexible arity function symbols,
• f is a new n + 1-ary individual function symbol,
• s′ and t′ are terms obtained respectively from s and t by recursively re-

placing each term g(s1, . . . , sm), where g ∈ F lex and is free, with a term
hg(seq(s1, . . . , sm)), where hg ∈ F ix is unary and seq ∈ F lex is flat. Neither
hg nor seq occur in s or in t,

• x1, . . . , xn is an enumeration of all individual variables in s ≈?
∅ t,

• each ri is either a new individual constant c or an individual term of the
form h(y1, . . . , ym), where h ∈ FI(s

′, t′) \ {f, seq} is m-ary and yi’s are fresh
distinct individual variables.

Like we did for SFE, we assume also for FlexE that for the given s and t the
function symbol f , the terms s′ and t′, the enumeration of variables x1, . . . , xn,
and the constant c are fixed, as well as the function symbol seq . However, we
have a nondeterministic choice of the function symbols that define the ri’s,
which makes FlexE a nondeterministic rule. If Γ =⇒FlexE ∆, then all function

16

symbols except seq that occur in ∆ are fixed arity individual function symbols.
All sequence variables in ∆ are arguments of terms whose head is seq .

In general, there are (k + 1)n different ways to transform a unification prob-
lem Γ into another unification problem ∆ by FlexE, where k is the number of
elements in FI(Γ) and n is the number of elements in VI(Γ). Like for SFE, the
number of alternatives for FlexE can be reduced in particular cases.

Example 27 Applying the rule FlexE to the unification problem (2), we obtain
the following F -unification problems:

{f2(s
′, x) ≈?

F f2(t
′, c2)} (5)

{f2(s
′, x) ≈?

F f2(t
′, aa)} (6)

{f2(s
′, x) ≈?

F f2(t
′, c1)} (7)

{f2(s
′, x) ≈?

F f2(t
′, hg0(y2))} (8)

{f2(s
′, x) ≈?

F f2(t
′, hf0(y2))} (9)

{f2(s
′, x) ≈?

F f2(t
′, f1(y2, z2))} (10)

where

s′ = f1(hf0(seq(x, x, y, z, hf0(seq(u, x)))), x),

t′ = f1(hf0(seq(hg0(seq(x)), x, aa, hf0(seq(hg0(seq(x)), u)))), c1).

Similarly, from (3) by FlexE we obtain:

{f2(s
′, x) ≈?

F f2(t
′, c2)} (11)

{f2(s
′, x) ≈?

F f2(t
′, aa)} (12)

{f2(s
′, x) ≈?

F f2(t
′, hg0(y2))} (13)

{f2(s
′, x) ≈?

F f2(t
′, hf0(y2))} (14)

{f2(s
′, x) ≈?

F f2(t
′, f1(y2, z2))} (15)

where

s′ = f1(hf0(seq(x, x, y, z, hf0(seq(u, x)))), x),

t′ = f1(hf0(seq(hg0(seq(x)), x, aa, hf0(seq(hg0(seq(x)), u)))), hg0(seq(v1))).

The equations obtained from (4) by FlexE are similar to the equations (11)-(15)
with he difference that t′ there is

f1(hf0(seq(hg0(seq(x)), x, aa, hf0(seq(hg0(seq(x)), u)))), hf0(seq(v1))).

Lemma 28 Let Γ be a general syntactic sequence unification problem with
flexible arity functions but without sequence functions. Then Γ is solvable if
and only if there exists an F -unification problem ∆ without sequence functions
and free flexible arity functions such that Γ =⇒FlexE ∆ and ∆ is solvable.

17

PROOF. (⇒) Let Γ be {s ≈?
∅ t} and let σ be a solution of Γ. By Lemma 22

we can assume that σ does not introduce any new function symbol. Let σ′ be a
substitution obtained from σ by (recursively) replacing each term g(s1, . . . , sm),
where g ∈ F lex and is free, by the corresponding term hg(seq(s1, . . . , sm)) and
by replacing each binding x 7→ ps1, . . . , smq by x 7→ seq(s1, . . . , sm). We take
∆ of the form {f(s′, x1, . . . , xn) ≈?

F f(t′, r1, . . . , rn)} that is obtained from Γ
by the FlexE rule with ri’s selected in the following way: If xiσ

′ is a variable,
then ri = c. If xiσ

′ = h(s1, . . . , sm), where m ≥ 0, then ri = h(y1, . . . , ym) if h
is an m-ary individual function symbol, and ri = hh(seq(y)) if h is a flexible
arity individual function symbol. All yi’s are distinct fresh individual variables,
and y is a fresh sequence variable. ∆ does not contain flexible arity function
symbols except flat seq . There are no sequence function symbols in ∆.

We now construct a solution of ∆. It is easy to see that s′σ′ ≈F t′σ′. Let now ϑ
be a substitution defined as follows: For each xi, if xiσ

′ = y for some y, then
y 7→ c ∈ ϑ; if xiσ

′ has a form h(seq(s1, . . . , sm)), then y 7→ seq(s1, . . . , sm) ∈ ϑ,
where h(seq(y)) = ri; otherwise, if xiσ

′ has a form h(s1, . . . , sm), where m ≥ 0,
then yj 7→ sj ∈ ϑ for all 1 ≤ j ≤ m, where h(y1, . . . , ym) = ri. We take ϑ′ = ϑϑ.
Then s′σ′ϑ′ ≈F t′σ′ϑ′ and xiσ

′ϑ′ ≈F riσ
′ϑ′ for each xi. It implies that σ′ϑ′ is

a solution of ∆. 4

(⇐) From a solution of ∆ we get a solution of Γ replacing each unary symbol hg

and each term seq(s1, . . . , sm) introduced by the rule FlexE by the correspond-
ing symbol g ∈ F lex (Γ) and by the sequence s1, . . . , sm, respectively. 2

Remark 29 Like for the rule SFE above, it is not enough to formulate FlexE
as {s ≈?

∅ t} =⇒ {s′ ≈?
F t′} where s, t, s′, and t′ satisfy the conditions from

FlexE. In this case the unsolvable problem {f(x) ≈?
∅ f(a, b)} would be trans-

formed into {hf (seq(x)) ≈?
F hf (seq(a, b))}, that can be solved by the substitu-

tion {x 7→ seq(a, b)} because hf (seq(seq(a, b))) ≈F hf (seq(a, b)).

The next inference rule replaces sequence variables with individual variables:

SVR: Sequence Variable Replacement

Γ =⇒ ∆,

where

• Γ is a F -unification problem,
• Γ contains no sequence function symbols,
• the only flexible arity function symbol that occurs in Γ is flat seq ,
• Γ contains sequence variables,

4 Again, it is not enough to take just ϑ instead of ϑ′. See the footnote in the proof
of Lemma 24.

18

• ∆ is obtained from Γ by replacing each sequence variable x with a new
individual variable xΓ.

We assume that the choice of individual variables xΓ’s is fixed for each Γ. This
assumption makes SVR a deterministic rule: There is only one way to get ∆
from Γ by SVR. If Γ =⇒SVR ∆, then ∆, like Γ, is an F -unification problem that
contains no sequence function symbols and no flexible arity function symbols
except seq . Moreover, unlike Γ, there are no sequence variables in ∆.

Example 30 Here we only show the result of application of the rule SVR to
the problem (13):

{f2(f1(hf0(seq(zx, x, zy, zz, hf0(seq(zu, x)))), x), x) ≈?
F

f2(f1(hf0(seq(hf0(seq(zx)), x, aa, hf0(seq(hg0(seq(zx)), zu)))),

hg0(seq(zv1))), hg0(y2))} (16)

Lemma 31 Let Γ be an F -unification problem with sequence variables but
without sequence function symbols whose only flexible arity function symbol is
flat seq and let ∆ be obtained from Γ by SVR. Then Γ is solvable if and only
if ∆ is solvable.

PROOF. (⇒) From a solution of Γ we obtain a solution of ∆ in two steps:
First, we replace each sequence variable x with the corresponding xΓ. Second,
we replace each expression xΓ 7→ ps1, . . . , snq (if there is any) with the binding
xΓ 7→ seq(s1, . . . , sn).

(⇐) Replacing each individual variable xΓ with x in a solution of ∆ yields a
solution of Γ. 2

The last rule makes the decision step:

DS: Decision Step

Γ =⇒ ∆,

where

• Γ is a F -unification problem,
• the only flexible arity function symbol that occurs in Γ is flat seq ,
• Γ contains no sequence function symbols and sequence variables.
• ∆ is > if Γ is solvable. Otherwise, ∆ is ⊥.

To justify DS we need the combination method:

Theorem 32 (Combination Method (Baader and Schulz, 1996)) Let
E1, . . . , En be equational theories over disjoint signatures such that solvability

19

of Ei-unification problems with linear constant restrictions is decidable for each
1 ≤ i ≤ n. Then solvability of elementary unification problems is decidable for
the combined theory E1 ∪ . . . ∪ En.

Linear constant restrictions, LCV in short, are induced by a linear order < on
the set of variables and constants demanding that, for a unifier σ, a constant c,
and a variable x, c must not occur in xσ if x < c.

Lemma 33 Let Γ be a F -unification problem without sequence function sym-
bols and sequence variables whose only flexible arity function symbol is flat
seq. Then solvability of Γ is decidable.

PROOF. Let F1 = {seq} and F2 = F ix (Γ) be two disjoint signatures. Let E1

be a flat theory over F1 and VI and let E2 be a free theory over F2 and VI .
Then Γ can be considered as an elementary unification problem in the com-
bined theory E1∪E2. Then, by Theorem 32, we need to prove that solvability
of E1- and E2-unification problems with LCV is decidable. E1-unification prob-
lems are, in fact, word equations, while E2-unification is the Robinson unifi-
cation. Decidability of word equations with LCV, and of Robinson unification
with LCV was proved by Baader and Schulz (1991). 2

Lemma 33 shows that the rule DS always gives the output: for any Γ that
fulfils the conditions of DS, application of DS yields either > or ⊥.

Example 34 The rule DS gives > when applied to (16). This problem, in
fact, has an infinite minimal complete set of F -unifiers. One of the unifiers
is {zx 7→ seq(), x 7→ hg0(seq()), zy 7→ hg0(seq()), zz 7→ aa, zu 7→ seq(), zv1 7→
seq(), y2 7→ seq()}, from which we can reconstruct a solution of (1): {x 7→
pq, x 7→ g0(), y 7→ g0(), z 7→ a, u 7→ pq}.

The decision algorithm D takes a general syntactic sequence unification prob-
lem Γ as an input, turns it into a single equation problem if necessary, and
uses the inference rules SFE, FlexE, SVR, and DS in all possible ways to gen-
erate a decision tree whose root is labeled with Γ, internal nodes are labeled
with unification problems (obtained from their ancestors by SFE, FlexE, or
SVR), and leaves are labeled either with > or with ⊥ (obtained from their
ancestors by DS). The decision tree is finite: The conditions of inference rules
guarantee that, first, the depth of the tree is maximum four (on each branch
there is maximum one application of each rule). Second, it is finitely branch-
ing: Each rule can be applied only finitely many times. Lemma 24, Lemma 28,
Lemma 31, and Lemma 33, together with the construction of the decision tree
guarantee soundness and completeness of D. A unification problem Γ is solv-
able if a decision tree with the root Γ contains a leaf labeled with >, and Γ is

20

unsolvable if all leaves are labeled with ⊥. It implies the main result of this
section:

Theorem 35 (Decidability) General syntactic sequence unification is de-
cidable.

4 Unification Procedure

In the rest of the paper, unless otherwise stated, the term “unification prob-
lem” stands for general syntactic sequence unification problem.

We now present inference rules for deriving solutions for unification problems.
A system is either the symbol ⊥ (representing failure) or a pair 〈Γ; σ〉, where Γ
is a unification problem and σ is a substitution. The inference system I consists
of the transformation rules on systems listed below. In the Splitting rule f1

and f2 are new sequence function symbols of the same arity as f in the same
rule. We assume that the indices n,m, k, l ≥ 0.

P: Projection

〈Γ; σ〉 =⇒ 〈Γϑ; σϑ〉,
where ϑ 6= ε, Dom(ϑ) ⊆ VS(Γ), and Cod(ϑ) = ∅.

T: Trivial

〈{s ≈?
∅ s} ∪ Γ′; σ〉 =⇒ 〈Γ′; σ〉.

O1: Orient 1

〈{s ≈?
∅ x} ∪ Γ′; σ〉 =⇒ 〈{x ≈?

∅ s} ∪ Γ′; σ〉, if s /∈ VI .

O2: Orient 2

〈{f(s, s1, . . . , sn) ≈?
∅ f(x, t1, . . . , tm)} ∪ Γ′; σ〉

=⇒ 〈{f(x, t1, . . . , tm) ≈?
∅ f(s, s1, . . . , sn)} ∪ Γ′; σ〉, if s /∈ VS.

S: Solve

〈{x ≈?
∅ t} ∪ Γ′; σ〉 =⇒ 〈Γ′ϑ; σϑ〉, if x /∈ VI(t) and ϑ = {x 7→ t}.

TD: Total Decomposition

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tn)} ∪ Γ′; σ〉

=⇒ 〈{s1 ≈?
∅ t1, . . . , sn ≈?

∅ tn} ∪ Γ′; σ〉,
if f(s1, . . . , sn) 6= f(t1, . . . , tn) and si, ti ∈ TI(F ,V) for all 1 ≤ i ≤ n.

21

PD1: Partial Decomposition 1

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tm)} ∪ Γ′; σ〉 =⇒

〈{s1 ≈?
∅ t1, . . . , sk−1 ≈?

∅ tk−1, f(sk, . . . , sn) ≈?
∅ f(tk, . . . , tm)} ∪ Γ′; σ〉,

if f(s1, . . . , sn) 6= f(t1, . . . , tm), for some 1 < k ≤ min(n, m) either sk ∈
TS(F ,V) or tk ∈ TS(F ,V), and si, ti ∈ TI(F ,V) for all 1 ≤ i < k.

PD2: Partial Decomposition 2

〈{f(f(r1, . . . , rk), s1, . . . , sn) ≈?
∅ f(f(q1, . . . , ql), t1, . . . , tm)} ∪ Γ′; σ〉 =⇒

〈{f(r1, . . . , rk) ≈?
∅ f(q1, . . . , ql), f(s1, . . . , sn) ≈?

∅ f(t1, . . . , tm)} ∪ Γ′; σ〉,
if f(f(r1, . . . , rk), s1, . . . , sn) 6= f(f(q1, . . . , ql), t1, . . . , tm).

SVE1: Sequence Variable Elimination 1

〈{f(x, s1, . . . , sn) ≈?
∅ f(x, t1, . . . , tm)} ∪ Γ′; σ〉

=⇒ 〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tm)} ∪ Γ′; σ〉,

if f(x, s1, . . . , sn) 6= f(x, t1, . . . , tm).

SVE2: Sequence Variable Elimination 2

〈{f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ′; σ〉

=⇒ 〈{f(s1, . . . , sn)ϑ ≈?
∅ f(t1, . . . , tm)ϑ} ∪ Γ′ϑ; σϑ〉,

if x /∈ VS(t) and ϑ = {x 7→ t}.
W1: Widening 1

〈{f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ′; σ〉

=⇒ 〈{f(x, s1ϑ, . . . , snϑ) ≈?
∅ f(t1ϑ, . . . , tmϑ)} ∪ Γ′ϑ; σϑ〉,

if x /∈ VS(t) and ϑ = {x 7→ pt, xq}.
W2: Widening 2

〈{f(x, s1, . . . , sn) ≈?
∅ f(y, t1, . . . , tm)} ∪ Γ′; σ〉

=⇒ 〈{f(s1ϑ, . . . , snϑ) ≈?
∅ f(y, t1ϑ, . . . , tmϑ)} ∪ Γ′ϑ; σϑ〉,

where ϑ = {y 7→ px, yq}.
Sp: Splitting

〈{f(x, s1, . . . , sn) ≈?
∅ f(f(r1, . . . , rk), t1, . . . , tm)} ∪ Γ′; σ〉

=⇒ 〈{f(s1, . . . , sn)ϑ ≈?
∅ f(f2(r1, . . . , rk), t1, . . . , tm)ϑ} ∪ Γ′ϑ; σϑ〉,

if x /∈ VS(f(r1, . . . , rk)) and ϑ = {x 7→ f1(r1, . . . , rk)}{f 7→ pf1, f2q}.

We write ϑ = {x 7→ f1(r1, . . . , rk)}{f 7→ pf1, f2q} in the Sp rule because
r1, . . . , rk can contain f . In the rule PD2 we replace f with f to guarantee
that the transformation yields a system again. Besides using the rule name
abbreviations as subscripts, we may also write 〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 to in-
dicate that 〈Γ1; σ1〉 was transformed to 〈Γ2; σ2〉 by some basic transformation
(i.e., non-projection) rule. We denote the transitive closure of =⇒ by =⇒+.

Projection can be applied to the same system in (finitely many) different ways.

22

Example 36 Projection rule transforms the system 〈{f(x, a) ≈?
∅ f(a, y)}; ε〉

in the following three different ways:

〈{f(x, a) ≈?
∅ f(a, y)}; ε〉 =⇒P 〈{f(a) ≈?

∅ f(a, y)}; {x 7→ pq}〉.
〈{f(x, a) ≈?

∅ f(a, y)}; ε〉 =⇒P 〈{f(x, a) ≈?
∅ f(a)}; {y 7→ pq}〉.

〈{f(x, a) ≈?
∅ f(a, y)}; ε〉 =⇒P 〈{f(a) ≈?

∅ f(a)}; {x 7→ pq, y 7→ pq}〉.

The rules SVE2, W1, W2, and Sp can be applied to the same equation.

Example 37 SVE2 and W1 transform the system 〈{f(x, a) ≈?
∅ f(a, y)}; ε〉:

〈{f(x, a) ≈?
∅ f(a, y)}; ε〉 =⇒SVE2 〈{f(a) ≈?

∅ f(y)}; {x 7→ a}〉.
〈{f(x, a) ≈?

∅ f(a, y)}; ε〉 =⇒W1 〈{f(x, a) ≈?
∅ f(y)}; {x 7→ pa, xq}〉.

SVE2, W1, and Sp transform the system 〈{f(x, y, a) ≈?
∅ f(a, z)}; ε〉:

〈{f(x, y, a) ≈?
∅ f(a, z)}; ε〉 =⇒SVE2 〈{f(y, a) ≈?

∅ f(z)}; {x 7→ a}〉.
〈{f(x, y, a) ≈?

∅ f(a, z)}; ε〉 =⇒W1 〈{f(x, y, a) ≈?
∅ f(z)}; {x 7→ pa, xq}〉.

〈{f(x, y, a) ≈?
∅ f(a, z)}; ε〉 =⇒Sp 〈{f(y, a1, a2) ≈?

∅ f(a2, z)};
{x 7→ a1, a 7→ pa1, a2q}〉.

SVE2, W1, and W2 transform the system 〈{f(x, a) ≈?
∅ f(z, y)}; ε〉:

〈{f(x, a) ≈?
∅ f(z, y)}; ε〉 =⇒SVE2 〈{f(a) ≈?

∅ f(y)}; {x 7→ z}〉.
〈{f(x, a) ≈?

∅ f(z, y)}; ε〉 =⇒W1 〈{f(x, a) ≈?
∅ f(y)}; {x 7→ pz, xq}〉.

〈{f(x, a) ≈?
∅ f(z, y)}; ε〉 =⇒W2 〈{f(a) ≈?

∅ f(z, y)}; {z 7→ px, zq}〉.

A derivation is a sequence 〈Γ1; σ1〉 =⇒ 〈Γ2; σ2〉 =⇒ · · · of system trans-
formations. A selection strategy S is a function which given a derivation
〈Γ1; σ1〉 =⇒ · · · =⇒ 〈Γn; σn〉 returns an equation, called a selected equation,
from Γn. A derivation is via a selection strategy S if in the derivation all
choices of selected equations, being transformed by the transformation rules,
are performed according to S.

In the definition below we need two versions of the decision algorithm D.
One, denoted by Dm, calls in the DS step (as one of the ingredients of the
combination method it uses) the decision algorithm for solving equations in a
free monoid (Abdulrab and Pécuchet, 1990). The other one, denoted Ds, uses
the decision algorithm for solving equations in a free semigroup (Makanin,
1977).

Definition 38 A syntactic sequence unification procedure U is any program
that takes a system 〈Γ; ε〉 and a selection strategy S as an input and uses the

23

transformation rules of the inference system I to generate a tree of derivations
via S, called the unification tree for Γ via S, in the following way:

(1) The root of the tree is labeled with 〈Γ; ε〉;
(2) Each branch of the tree is a derivation via S of the form

〈Γ; ε〉 =⇒¦ 〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · ,

where ¦ is either P or BT. The nodes in the tree are systems.
(3) If different instances of the projection rule are applicable to the root node

in the tree, they are applied concurrently.
(4) If several basic transformation rules are applicable to the selected equation

in a node in the tree, they are applied concurrently.
(5) The decision algorithm Dm is applied to the root. If the problem Γ in the

root is unsolvable, then the branch is extended by 〈Γ; ε〉 =⇒DAm ⊥ and
the procedure stops with failure. Otherwise, the decision algorithm Ds is
applied to the root and to each node generated by P, SVE2, W1, W2, and
Sp, to decide whether the node contains a unification problem that can be
solved without replacing any sequence variable with the empty sequence.
If ∆ in a node 〈∆; δ〉 can not be solved under this restriction, then the
branch is extended only by 〈∆; δ〉 =⇒DAs ⊥.

The unification tree for Γ via S, generated by U, is denoted UT S
U(Γ). We will

often omit S and write just UT U(Γ).

The leaves of UT U(Γ) are labeled either with the systems of the form 〈∅; σ〉
or with the system ⊥. The branches of UT U(Γ) that end with leaves of the
form 〈∅; σ〉 are called successful branches, and those with the leaves ⊥ are
failed branches. We denote by SolU(Γ) the solution set for Γ generated by U,
i.e., the set of all substitutions σ such that 〈∅; σ〉 is a leaf of UT U(Γ).

Example 39 Let Γ = {f(x, x, y) ≈?
∅ f(f(x), x, a, b)}. DAm reports that Γ is

solvable. Then the unification procedure generates the following seven deriva-
tions:

〈{f(x, x, y) ≈?
∅ f(f(x), x, a, b)}; ε〉 =⇒DAs ⊥

〈{f(x, x, y) ≈?
∅ f(f(x), x, a, b)}; ε〉

=⇒P 〈{f(x) ≈?
∅ f(f(), x, a, b)}; {x 7→ pq, y 7→ pq}〉

=⇒DAs ⊥

〈{f(x, x, y) ≈?
∅ f(f(x), x, a, b)}; ε〉

=⇒P 〈{f(x, x) ≈?
∅ f(f(x), x, a, b)}; {y 7→ pq}〉

=⇒DAs ⊥

〈{f(x, x, y) ≈?
∅ f(f(x), x, a, b)}; ε〉

24

=⇒P 〈{f(x, y) ≈?
∅ f(f(), x, a, b)}; {x 7→ pq}〉

=⇒PD1 〈{x ≈?
∅ f(), f(y) ≈?

∅ f(x, a, b)}; {x 7→ pq}〉
=⇒S 〈{f(y) ≈?

∅ f(f(), a, b)}; {x 7→ pq, x 7→ f()}〉
=⇒SVE2 〈{f() ≈?

∅ f(a, b)}; {x 7→ pq, x 7→ f(), y 7→ f()}〉
=⇒DAs ⊥

〈{f(x, x, y) ≈?
∅ f(f(x), x, a, b)}; ε〉

=⇒P 〈{f(x, y) ≈?
∅ f(f(), x, a, b)}; {x 7→ pq}〉

=⇒PD1 〈{x ≈?
∅ f(), f(y) ≈?

∅ f(x, a, b)}; {x 7→ pq}〉
=⇒S 〈{f(y) ≈?

∅ f(f(), a, b)}; {x 7→ pq, x 7→ f()}〉
=⇒W1 〈{f(y) ≈?

∅ f(a, b)}; {x 7→ pq, x 7→ f(), y 7→ pf(), yq}〉
=⇒SVE2 〈{f() ≈?

∅ f(b)}; {x 7→ pq, x 7→ f(), y 7→ pf(), aq}〉
=⇒DAs ⊥

〈{f(x, x, y) ≈?
∅ f(f(x), x, a, b)}; ε〉

=⇒P 〈{f(x, y) ≈?
∅ f(f(), x, a, b)}; {x 7→ pq}〉

=⇒PD1 〈{x ≈?
∅ f(), f(y) ≈?

∅ f(x, a, b)}; {x 7→ pq}〉
=⇒S 〈{f(y) ≈?

∅ f(f(), a, b)}; {x 7→ pq, x 7→ f()}〉
=⇒W1 〈{f(y) ≈?

∅ f(a, b)}; {x 7→ pq, x 7→ f(), y 7→ pf(), yq}〉
=⇒W1 〈{f(y) ≈?

∅ f(b)}; {x 7→ pq, x 7→ f(), y 7→ pf(), a, yq}〉
=⇒SVE2 〈{f() ≈?

∅ f()}; {x 7→ pq, x 7→ f(), y 7→ pf(), a, bq}〉
=⇒T 〈∅; {x 7→ pq, x 7→ f(), y 7→ pf(), a, bq}〉

〈{f(x, x, y) ≈?
∅ f(f(x), x, a, b)}; ε〉

=⇒P 〈{f(x, y) ≈?
∅ f(f(), x, a, b)}; {x 7→ pq}〉

=⇒PD1 〈{x ≈?
∅ f(), f(y) ≈?

∅ f(x, a, b)}; {x 7→ pq}〉
=⇒S 〈{f(y) ≈?

∅ f(f(), a, b)}; {x 7→ pq, x 7→ f()}〉
=⇒W1 〈{f(y) ≈?

∅ f(a, b)}; {x 7→ pq, x 7→ f(), y 7→ pf(), yq}〉
=⇒W1 〈{f(y) ≈?

∅ f(b)}; {x 7→ pq, x 7→ f(), y 7→ pf(), a, yq}〉
=⇒W1 〈{f(y) ≈?

∅ f()}; {x 7→ pq, x 7→ f(), y 7→ pf(), a, b, yq}〉
=⇒DAs ⊥

Therefore, SolU(Γ) = {{x 7→ pq, x 7→ f(), y 7→ pf(), a, bq}}.

Example 40 Let Γ = {f(x, a, x) ≈?
∅ f(a, x, a)}. Then the unification proce-

dure generates the following derivations:

〈{f(x, a, x) ≈?
∅ f(a, x, a)}; ε〉

=⇒P 〈{f(a) ≈?
∅ f(a, a)}; {x 7→ pq}〉

=⇒DAs ⊥

〈{f(x, a, x) ≈?
∅ f(a, x, a)}; ε〉

=⇒SVE2 〈{f(a, a) ≈?
∅ f(a, a)}; {x 7→ a}〉

=⇒T 〈∅; {x 7→ a}〉

〈{f(x, a, x) ≈?
∅ f(a, x, a)}; ε〉

25

=⇒W1 〈{f(x, a, a, x) ≈?
∅ f(a, x, a)}; {x 7→ pa, xq}〉

=⇒DAs ⊥

Therefore, SolU(Γ) = {{x 7→ a}}.

Example 41 Let Γ = {f(x, a) ≈?
∅ f(a, x)}. Then the unification procedure

generates infinitely many derivations:

〈{f(x, a) ≈?
∅ f(a, x)}; ε〉

=⇒P 〈{f(a) ≈?
∅ f(a)}; {x 7→ pq}〉

=⇒T 〈∅; {x 7→ pq}〉

〈{f(x, a) ≈?
∅ f(a, x)}; ε〉

=⇒SVE2 〈{f(a) ≈?
∅ f(a)}; {x 7→ a}〉

=⇒T 〈∅; {x 7→ a}〉

〈{f(x, a) ≈?
∅ f(a, x)}; ε〉

=⇒W1 〈{f(x, a) ≈?
∅ f(a, x)}; {x 7→ pa, xq}〉

=⇒SVE2 〈{f(a) ≈?
∅ f(a)}; {x 7→ pa, aq}〉

=⇒T 〈∅; {x 7→ pa, aq}〉

and so on. SolU(Γ) = {{x 7→ pq}, {x 7→ a}, {x 7→ pa, aq}, . . .}.

4.1 Soundness

In this subsection we will show soundness of U: for any general syntactic
sequence unification problem Γ, every substitution in the solution set SolU(Γ)
is a syntactic unifier of Γ.

Below Γ and ∆ are general syntactic sequence unification problems.

Lemma 42 If QU∅(Γ) = QU∅(∆), then QU∅(Γϑ) = QU∅(∆ϑ) for any sub-
stitution ϑ.

PROOF. σ ∈ QU∅(Γϑ) if and only if ϑσ ∈ QU∅(Γ) if and only if ϑσ ∈
QU∅(∆) if and only if σ ∈ QU∅(∆ϑ). 2

Lemma 43 If 〈Γ; σ〉 =⇒ 〈∆; σϑ〉, then QU∅(∆) = QU∅(Γϑ).

PROOF. The nontrivial cases concern the rules S, SVE2, W1, W2, and Sp.

S: If x /∈ VI(t), then xθ ≈ tθ for θ = {x 7→ t}, and Γθ = {xθ ≈?
∅ tθ} ∪ Γ′θ and

∆ = Γ′θ have the same set of quasi-unifiers. SVE2 is similar to S.

26

W1: Let Γ = {f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ′ such that x /∈ VS(t).

By W1 we get ∆ = {f(x, s1ϑ, . . . , snϑ) ≈?
∅ f(t1ϑ, . . . , tmϑ)} ∪ ∆′, where ϑ =

{x 7→ pt, xq}. Then Γϑ and ∆ have exactly the same set of quasi-unifiers. W2
is similar to W1.

Sp: Let Γ = {f(x, s1, . . . , sn) ≈?
∅ f(g(r1, . . . , rk), t1, . . . , tm)}∪Γ′ such that x /∈

VS(g(r1, . . . , rk)). Then by Sp we get a new problem ∆ = {f(s1, . . . , sn)ϑ ≈?
∅

f(g2(r1, . . . , rk), t1, . . . , tm)ϑ} ∪ ∆′, where ϑ = {x 7→ g1(r1, . . . , rk)}{g 7→
pg1, g2q}. Then Γθ and ∆ have exactly the same set of quasi-unifiers. 2

Lemma 44 If 〈Γ; σ〉 =⇒+ 〈∆; σϑ〉, then QU∅(∆) = QU∅(Γϑ).

PROOF. By induction on the derivation length. Lemma 43 proves the case
when the length is 1. Now assume that the lemma holds for the derivation
length n. We have to show that it holds for the length n+1. Let the derivation
have a form 〈Γ; σ〉 =⇒ 〈∆1; σδ1〉 =⇒ · · · =⇒ 〈∆n+1; σδ1δ2 · · · δn+1〉 where
ϑ = δ1δ2 · · · δn+1. By the induction hypothesisQU∅(∆n) = QU∅(Γδ1 · · · δn). By
Lemma 43 QU∅(∆n+1) = QU∅(∆nδn+1). Therefore, by Lemma 42 we obtain
QU∅(∆n+1) = QU∅(Γδ1 · · · δnδn+1) = QU∅(Γϑ). 2

Lemma 45 If 〈Γ; ε〉 =⇒+ 〈∅; ϑ〉, then ϑ ∈ U∅(Γ).

PROOF. By Lemma 44 we have QU∅(∅) = QU∅(Γϑ). Since ε ∈ QU∅(∅), we
get ε ∈ QU∅(Γϑ) and, hence, ϑ ∈ QU∅(Γ). Moreover, ϑ is linearizing away
from FS(Γ), because all the bindings for sequence function symbols introduced
during the derivation (by Sp) introduce fresh distinct sequence function sym-
bols. Hence, ϑ ∈ U∅(Γ). 2

From Lemma 45 and Definition 38 we immediately get soundness of U:

Theorem 46 (Soundness of U) Let Γ be a general syntactic sequence uni-
fication problem. Then SolU(Γ) ⊆ U∅(Γ).

4.2 Completeness

Proving completeness is more involved than the soundness proof. In this sec-
tion we prove completeness by showing that for any solution ϑ of a unification
problem Γ there exists a derivation from 〈Γ; ε〉 that terminates with success
and the substitution in the last system of the derivation is strongly more gen-
eral than ϑ. For the termination proof, we need to define a complexity measure

27

on the systems, introduce a well-founded ordering on the measures, and show
that every step in the derivation strictly decreases the measure.

First, we introduce notions needed later to define complexity measures.

Definition 47 The length of the image of a set of variables X with respect
to a substitution σ, denoted Len(X , σ), is defined as

∑
v∈X len(vσ), where

len(vσ) is 1 if vσ is a single term, and is n if vσ = pt1, . . . , tnq for some
terms t1, . . . , tn, n ≥ 0.

The following lemma is an easy consequence of Definition 47 and Definition 7:

Lemma 48 For all σ, ϑ, X , and Q, if Ran(σ) ⊆ X and σ EX ,Q
∅ ϑ, then

Len(X , σ) ≤ Len(X , ϑ).

We denote by Dif (X , ϑ, σ) the length difference Len(X , ϑ)−Len(X , σ). Ob-
viously, Dif (X , ϑ, σ) = Dif (VS(X), ϑ, σ).

Lemma 49 Let Γ be a unification problem, X = V(Γ), Q = FS(Γ), and
ϑ ∈ U∅(Γ). Let S be a selection strategy. If ϑ is non-erasing on X , then there
exists a derivation via S of the form 〈Γ1; σ1〉 =⇒+

BT 〈∅, σk〉 with Γ1 = Γ and
σ1 = ε such that σk EX ,Q

∅ ϑ.

PROOF. We prove the lemma in two steps. First, we construct a derivation
of the form 〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · with Γ1 = Γ and σ1 = ε such
that σi EX ,Q

∅ ϑ for all i ≥ 1, and then we show that it terminates with success.

Step 1: Construction. We construct the derivation recursively. We take Γ1 = Γ,
σ1 = ε, and start the derivation from 〈Γ1; σ1〉. Obviously, σ1 EX ,Q

∅ ϑ.

We assume that 〈Γn; σn〉, n ≥ 1, Γn 6= ∅ belongs to the derivation. We have
to find a system 〈Γn+1; σn+1〉 such that 〈Γn; σn〉 =⇒BT 〈Γn+1; σn+1〉 and
σn+1 EX ,Q

∅ ϑ.

Since 〈Γn; σn〉 belongs to the derivation, we have σn EX ,Q
∅ ϑ, i.e., there ex-

ists ϕ, non-erasing on X , such that σnϕ =X ,Q
∅ ϑ. Let σ′n be the restriction

of σn to X and Q. Moreover, we can assume without loss of generality that
FDom(ϕ) ⊆ FS(Γn), because any sequence function symbol in FS(Γn) either
belongs to Q′ = Q\FDom(σ′n) or is introduced by applying σ′n to an element
of Q. Then σ′nϕ =X ,Q

∅ ϑ holds. Our goal is first to prove that ϕ ∈ U∅(Γn) and
then to extend the derivation with the help of ϕ.

From σ′nϕ =X ,Q
∅ ϑ we have σ′nϕ ∈ U∅(Γ1) ⊆ QU(Γ1) and therefore ϕ ∈

QU∅(Γ1σ
′
n). Moreover, by Lemma 44 we have QU∅(Γ1σ

′
n) = QU∅(Γn). There-

fore, ϕ ∈ QU∅(Γn).

28

Now we show that ϕ is linearizing away from FS(Γn) that will imply ϕ ∈
U∅(Γn). Assume by contradiction that it is not. Then we have the following
three cases:

(1) Cod(ϕ) ∩ FS(Γn) 6= ∅. Assume f 7→ p. . . , g, . . .q ∈ ϕ with g ∈ FS(Γn).
Since FDom(ϕ) ⊆ FS(Γn), and any sequence function symbol in FS(Γn)
either belongs to Q′ or is introduced by applying σ′n to an element of Q,
we have one of the possible four cases: (i) f, g ∈ Q′, (ii) f ∈ Cod(σ′n)
and g ∈ Q′, (iii) f ∈ Q′ and g ∈ Cod(σ′n), or (iv) f, g ∈ Cod(σ′n). In the
first two cases Cod(σ′nϕ) ∩Q 6= ∅, which contradicts the fact that σ′nϕ is
linearizing away from Q (because σ′nϕ ∈ U∅(Γ1)). In the last two cases
there exist h1, h2 ∈ FDom(σ′nϕ)∩Q such that h1σ

′
nϕ and h2σ

′
nϕ share a

common sequence function symbol, which also violates the condition on
σ′nϕ being linearizing away from Q.

(2) There exist two distinct sequence function symbols f, g ∈ FDom(ϕ) ∩
FS(Γn) such that the sequences fϕ and gϕ share a common sequence
function symbol. Then there exist h1, h2 ∈ FDom(σ′nϕ) ∩ Q such that
h1σ

′
nϕ and h2σ

′
nϕ share a common sequence function symbol, which is a

contradiction to the fact that σ′nϕ is linearizing away from Q.
(3) There exists f ∈ FS(Γn) such that fϕ = pg1, . . . , gmq and gi = gj for

some 1 ≤ i < j ≤ m. Then there exists h ∈ Q such that the sequence
hσ′nϕ contains two equal elements gi and gj. Again a contradiction.

Hence, all three cases contradict the fact that σ′nϕ is linearizing away from Q.
It implies that ϕ is linearizing away from FS(Γn) and, therefore, ϕ ∈ U∅(Γn).

Let s ≈?
∅ t be an equation in Γn selected by S. We represent Γn as {s ≈?

∅ t}∪Γ′n.
Depending on the form of the pair 〈s, t〉, we have the following four cases:

Case 1: 〈s, t〉 is a pair of identical terms. We extend the derivation with the
step 〈Γn; σn〉 =⇒T 〈Γ′n; σn〉. Therefore, σn+1 = σn EX ,Q

∅ ϑ.

Case 2: 〈s, t〉 is a pair of distinct individual variables. Let s = x and t = y.
Then xϕ ≈∅ yϕ. Let ψ = {x 7→ y}. Then ψϕ = ϕ. Thus, σnψϕ =X ,Q

∅ ϑ, which

implies σnψ EX ,Q
∅ ϑ. Therefore, we can take Γn+1 = Γ′nψ, σn+1 = σnψ, and

extend the derivation with the step 〈Γn; σn〉 =⇒S 〈Γn+1; σn+1〉.

Case 3: 〈s, t〉 is a pair of an individual variable and a non-variable term. If
s = x and t is a non-variable term that does not contain x, then we proceed as
in the previous case, extending the derivation with the rule S. Note that t can
not contain x, because otherwise it would lead to the contradiction ϕ ∈ ∅. If
t = x and s is a non-variable term, then we take Γn+1 = {x ≈?

∅ s}∪Γ′n, σn+1 =
σn, and extend the derivation with the step 〈Γn; σn〉 =⇒O1 〈Γn+1; σn+1〉.

Case 4: 〈s, t〉 is a pair of distinct non-variable terms. Assume s = f(s1, . . . , sk)
and t = f(t1, . . . , tm). If neither s1 nor t1 is a sequence variable, then we extend

29

the derivation with the step 〈Γn; σn〉 =⇒¦ 〈Γ′n; σn〉, where ¦ is either TD, PD1,
or PD2. Therefore, σn+1 = σn EX ,Q

∅ ϑ. If both s1 and t1 are sequence variables
with s1 = t1, then we extend the derivation with the step 〈Γn; σn〉 =⇒SVE1

〈Γ′n; σn〉 and σn+1 = σn EX ,Q
∅ ϑ. If t1 is a sequence variable and s1 is not, then

the derivation is extended with the step 〈Γn; σn〉 =⇒O2 〈Γ′n; σn〉 and, again,
σn+1 = σn EX ,Q

∅ ϑ.

The only remained case is when s1 ∈ VS, m > 0 and s1 /∈ V(t1). Let s1 be x.
We have the following three cases depending on t1:

If t1 is a sequence variable y, then we define substitutions ψ and ρ in three
different ways as follows: (i) If f(x)ϕ ≈∅ f(y)ϕ, then ψ = {x 7→ y} and
ρ = ϕ. In this case the rule SVE2 will be used; (ii) If there exists a nonempty
sequence of terms r1, . . . , rl such that f(xϕ) ≈∅ f(yϕ, r1, . . . , rl), then ψ =
{x 7→ py, xq} and ρ = {x 7→ pr1, . . . , rlq} ∪ ϕ−, where ϕ− = ϕ|Dom(ϕ)\{x}.
We will use the rule W1; (iii) If there exists a nonempty sequence of terms
r1, . . . , rl such that f(yϕ) ≈∅ f(xϕ, r1, . . . , rl), then ψ = {y 7→ px, yq} and
ρ = {y 7→ pr1, . . . , rlq} ∪ϕ−, where ϕ− = ϕ|Dom(ϕ)\{y}. We will use W2 in this
case. Since ϕ ∈ U∅(Γn), these three cases for ψ are the only possibilities to
get Γn+1 from Γn via the selection strategy S. Thus, we can take σn+1 = σnψ
and extend the derivation either by SVE2, W1 or W2 rules, depending on the
cases for ψ. Since ψρ = ϕ, we have σnψρ =X ,Q

∅ ϑ and therefore σn+1ρ =X ,Q
∅ ϑ.

Moreover, ρ is non-erasing on the set X , which implies σn+1 EX ,Q
∅ ϑ.

If t1 is an individual term, then we can proceed as in the previous case (where
t1 was a sequence variable y). The only difference is that now ψ can have only
two alternatives instead of three. Therefore, we can extend the derivation
either by SVE2 or W1 rule ensuring σn+1 = σnψ EX ,Q

∅ ϑ.

If t1 is a sequence term f(r1, . . . , rl), then we define substitutions ψ and ρ in
three different ways: (i) If f(x)ϕ ≈∅ f(t1)ϕ, then ψ = {x 7→ t1} and ρ = ϕ.
We will use SVE2 here; (ii) If there exists a nonempty sequence of terms
q1, . . . , qj such that f(x)ϕ ≈∅ f(t1ϕ, q1, . . . , qj), then ψ = {x 7→ pt1, xq} and
ρ = {x 7→ pq1, . . . , qjq} ∪ ϕ−, where ϕ− = ϕ|Dom(ϕ)\{x}. The rule W1 will be
used in this case; (iii) If f(x)ϕ = f(f1(r1, . . . , rl))ϕ and f(f(r1, . . . , rl))ϕ =
f(f1(r1, . . . , rl), f2(r1, . . . , rl))ϕ for some sequence function symbols f1 and f2,
then ψ = {x 7→ f1(r1, . . . , rl)}{f 7→ pf1, f2q} and ρ = ϕ|Dom(ϕ)\{f}. In this
case Sp will be used. Since ϕ ∈ U∅(Γn), these three cases for ψ are the only
possibilities to get Γn+1 from Γn via the selection strategy S. Thus, we can
take σn+1 = σnψ and get Γn+1 from Γn either by SVE2, W1 or Sp rules,
depending on the cases for ψ. Since ψρ = ϕ, we have σnψρ =X ,Q

∅ ϑ and

therefore σn+1ρ =X ,Q
∅ ϑ. Moreover, ρ is non-erasing on the set X , which implies

that σn+1 EX ,Q
∅ ϑ. Hence, Case 4 is proved.

Since ϑ is non-erasing on X , none of the cases above involve the projection

30

rule. It implies that the constructed derivation consists of basic transformation
(BT) steps only. It concludes Step 1 of the proof.

Step 2: Termination. We have to show that the constructed derivation termi-
nates with success. We define a complexity measure (with respect to a given
substitution and a set of variables) on systems as a 7-tuple of integers, or-
dered by the lexicographic ordering on tuples of integers as follows: the tuple
〈m1,m2,m3,m4,m5,m6,m7〉 is a complexity measure of a system 〈∆; σ〉 with
respect to a substitution λ and a set of variables Y , if

m1 = the number of distinct variables in ∆;
m2 = Dif (Y , λ, σ);
m3 = the number of symbols in ∆;
m4 = the number of occurrences of sequence function symbols in ∆;
m5 = the number of subterms in ∆ of the form f(s1, . . . , sn), where s1 is not
a sequence term;

m6 = the number of equations in ∆ of the form t ≈?
∅ x, where t is not an

individual variable;
m7 = the number of equations in ∆ that have the form f(s, s1, . . . , sn) ≈?

∅
f(x, t1, . . . , tm), where s is not a sequence variable.

All these numbers except m2 are, indeed, natural numbers. As for m2, de-
pending on λ and σ, it can also be negative. But for each substitution σi

in the derivation constructed above, and for the set X = V(Γ), we have
Ran(σi) ⊆ X because σ1 = ε and no rule in I introduces a new variable.
Therefore, by Lemma 48 we have Dif (X , ϑ, σi) ≥ 0 for each i, i.e., m2 is
a natural number for each 〈Γi; σi〉. Thus, the ordering on complexity mea-
sures of systems (with respect to ϑ and X) in the derivation is well-founded.
Then, each step in the derivation strictly reduces the complexity measure:
T and SVE1 do not increase m1 and m2 and decrease m3. O1 decreases m6

and does not increase the others. O2 decreases m7 and does not increase the
others. S, SVE2, and Sp decrease m1. TD does not increase m1 and m2 and
decreases m3. PD1 does not increase m1, m2, m3, and m4 and decreases m5.
PD2 does not increase m1, m2, and m3 and decreases m4. W1 and W2 do
not increase m1 and decrease m2. Since the case with W1 and W2 is not
as obvious as with the other rules, we show the details for W1: Let the
corresponding step in the derivation be 〈Γi; σi〉 =⇒W1 〈Γi+1; σi+1〉, where
Γi = {f(x, s1, . . . , sn) ≈?

∅ f(t, t1, . . . , tm)} ∪ Γ′i, Γi+1 = {f(x, s1ϕ, . . . , snϕ) ≈?
∅

f(t1ϕ, . . . , tmϕ)}∪Γ′iϕ and σi+1 = σiϕ, with x /∈ VS(t) and ϕ = {x 7→ pt, xq}.
It is clear that the step does not enlarge the number of distinct variables in
the systems. Moreover, x ∈ X , because x ∈ VS(Γi) and VS(Γi) ⊆ X . (The
last inclusion follows from the fact that no rule in the inference system I in-
troduces a new variable.) For all y ∈ X \ {x} we have len(yσi+1) ≥ len(yσi).
As for x itself, if x ∈ VDom(σi), then x ∈ {xσi} (otherwise it would have
been impossible to have x in VS(Γi+1)) and therefore len(xσi+1) > len(xσi).

31

If x /∈ VDom(σi), then len(xσi+1) = 2 > 1 = len(xσi). It means that
Len(X , σi+1) > Len(X , σi), i.e., Dif (X , ϑ, σi) > Dif (X , ϑ, σi+1).

Hence, the derivation terminates. Let 〈Γk, σk〉 be the last system in the deriva-
tion. Then, on the one hand, σk EX ,Q

∅ ϑ. On the other hand, Γk = ∅ (otherwise
we could make another step), which finishes the proof of the lemma. 2

Lemma 50 Let Γ be a unification problem, X = V(Γ), Q = FS(Γ), and
ϑ ∈ U∅(Γ). Let S be a selection strategy. If ϑ is erasing on X , then there exists
a derivation via S of the form 〈Γ0; σ0〉 =⇒P 〈Γ1; σ1〉 =⇒+

BT 〈∅; σn〉 with
Γ0 = Γ and σ0 = ε such that σn EX ,Q

∅ ϑ.

PROOF. Assume x1, . . . , xk ∈ X , k > 0, are all the variables in X that ϑ
maps to the empty sequence. Let σ1 = {x1 7→ pq, . . . , xk 7→ pq}, Γ1 = Γ0σ1,
and make the projection rule the first step of derivation: 〈Γ0; σ0〉 =⇒P

〈Γ1; σ1〉. We have σ1σ1 = σ1. Let ϕ be ϑ|Dom(ϑ)\Dom(σ1). Then ϑ = σ1ϕ =
σ1σ1ϕ ∈ U∅(Γ0). Therefore, σ1ϕ ∈ U∅(Γ0σ1), i.e., ϑ ∈ U∅(Γ1). Moreover, ϑ is
non-erasing on V(Γ1). Then, by Lemma 49, there exists a derivation via S
〈∆1; δ1〉 =⇒+

BT 〈∅; δn〉 such that ∆1 = Γ1, δ1 = ε, and δn EX1,Q1

∅ ϑ, where
X1 = V(Γ1) and Q1 = FS(Γ1). Hence, there exists a substitution ψ that is
non-erasing on X1 such that δnψ =X1,Q1

∅ ϑ. Since Q1 = Q, we have, in fact,

δnψ =X1,Q
∅ ϑ. Moreover, VDom(δn) ⊆ X1 and Ran(δn) ⊆ X1 since the rules

in I do not introduce new variables. From Ran(δn) ⊆ X1 we can assume
that ψ is non-erasing on any finite superset of X1 and in particular, on X .
From VDom(δn) ⊆ X1 we have σ1δn = σ1 ∪ δn and, finally, σ1δnψ =X ,Q

∅ ϑ.

For all i ≥ 1, if 〈∆i+1; δi+1〉 is obtained from 〈∆i; δi〉 by a rule of I, then
〈∆i+1; σ1δi+1〉 can be obtained from 〈∆i; σ1δi〉 by the same rule. Thus, taking
Γi = ∆i and σi = σ1δi for all 1 < i ≤ n, we get the derivation 〈Γ; ε〉 =⇒P

〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · =⇒BT 〈∅; σn〉 such that σn EX ,Q
∅ ϑ. 2

From Theorem 46, Lemma 49, Lemma 50, and the fact that EX ,Q
E ⊆≤·X ,Q

E , by
Definition 38 and Definition 16 we get the completeness theorem:

Theorem 51 (Completeness of U) Let Γ be a general syntactic sequence
unification problem. Then SolU(Γ) is a complete set of solutions of Γ.

4.3 Almost Minimality

The solution set SolU(Γ), in general, is not minimal with respect to V(Γ)
and FS(Γ). Just consider Γ = {f(x) ≈?

∅ f(y)}: We have SolU(Γ) = {{x 7→
y}, {x 7→ pq, y 7→ pq}}. However, it can be shown that SolU(Γ) is almost

32

minimal with respect to V(Γ) and FS(Γ). In fact, we will prove a stronger
statement: SolU(Γ) is almost disjoint with respect to V(Γ) and FS(Γ).

Before proceeding we need to establish a few notational conventions. We de-
note by BSub(Γ,Eq) the set of substitutions obtained by performing a ba-
sic transformation step on a general syntactic sequence unification problem
Γ = {Eq} ∪ Γ′ with Eq as the selected equation: BSub(Γ,Eq) = {δ | 〈{Eq} ∪
Γ′; ε〉 =⇒BT 〈∆; δ〉 for some ∆}. By Proj (Γ) we denote the set of pro-
jecting substitutions {π | 〈Γ; ε〉 =⇒P 〈Γπ; π〉}. Finally, Sub(Γ,Eq) denotes
Proj (Γ) ∪ BSub(Γ,Eq).

To prove that SolU(Γ) is almost disjoint with respect to V(Γ) and FS(Γ) we
will show that for any Eq ∈ Γ, the set Sub(Γ,Eq) is almost disjoint with
respect to the sets V(Γ) and FS(Γ), and preserves almost disjointness.

Lemma 52 Let Γ be a unification problem and let X = V(Γ) and Q = FS(Γ).
Then Proj (Γ) is almost disjoint with respect to X and Q.

PROOF. Assume by contradiction that Proj (Γ) is not almost disjoint. Then
there exist σ, ϑ ∈ Proj (Γ), σ 6= ϑ, and a ϕ such that σ EX ,Q

∅ ϕ and ϑ EX ,Q
∅ ϕ.

Since σ 6= ϑ, we assume without loss of generality that there exists x ∈ X
such that x 7→ pq ∈ ϑ \ σ. But then x 7→ pq ∈ ϕ, and therefore x 7→ pq ∈ δ
for any δ such that σδ =X ,Q

∅ ϕ. It contradicts the fact that σ EX ,Q
∅ ϕ. 2

Lemma 53 Let Γ be a unification problem, Eq be an equation in Γ, and let
X = V(Γ) and Q = FS(Γ). Then Sub(Γ,Eq) is almost disjoint with respect
to X and Q if and only if BSub(Γ,Eq) is almost disjoint with respect to X
and Q.

PROOF. (⇒) Since Sub(Γ,Eq) is almost disjoint with respect to X and Q,
any subset of Sub(Γ,Eq) is almost disjoint with respect to X and Q.

(⇐) Since, by the assumption and Lemma 52, BSub(Γ,Eq) and Proj (Γ) are
almost disjoint with respect to X and Q, what remains to show is that no
σ ∈ BSub(Γ,Eq) and ϑ ∈ Proj (Γ) can have a common strong ∅-instance on
X and Q. Assume by contradiction that there exists ϕ such that σ EX ,Q

∅ ϕ and

ϑ EX ,Q
∅ ϕ. Then there exists x ∈ X such that x 7→ pq ∈ ϑ and x 7→ pq /∈ σ. But

then x 7→ pq ∈ ϕ, and therefore x 7→ pq ∈ δ for any δ such that σδ =X ,Q
∅ ϕ. It

contradicts the fact that σ EX ,Q
∅ ϕ. 2

Lemma 54 Let Γ be a unification problem, Eq be an equation in Γ, and let
X = V(Γ) and Q = FS(Γ). Then BSub(Γ,Eq) is almost disjoint with respect
to X and Q.

33

PROOF. We consider only the cases when BSub(Γ,Eq) contains more than
one element. (Otherwise the lemma is trivial.) It leads to assuming that Eq
has a form {f(s, s1, . . . , sn) ≈?

∅ f(t, t1, . . . , tm)}, where s is a sequence variable
and t is a term different from s. Depending on t, we have the following two
cases:

Case 1. Let s = x and t = y. Then BSub(Γ,Eq) = {σ1, σ2, σ3}, where
σ1 = {x 7→ y}, σ2 = {x 7→ py, xq}, and σ3 = {y 7→ px, yq}. Assume by con-
tradiction that BSub(Γ,Eq) is not almost disjoint with respect to X and Q.
Then there must exist i and j with 1 ≤ i < j ≤ 3 such that σi and σj have

a common strong instance, i.e., there exist ϑ and ϕ such that σiϑ =X ,Q
∅ σjϕ,

and ϑ and ϕ are non-erasing on X .

Assume that i = 1 and j = 2. Then we have xσ1ϑ = yϑ, xσ2ϕ = pyϕ, xϕq,
yσ1ϑ = yϑ, yσ2ϕ = yϕ. It implies that xϕ = pq, i.e., x 7→ pq ∈ ϕ, but it
contradicts the fact that ϕ is non-erasing on X .

Assume that i = 1 and j = 3. Then xσ1ϑ = yϑ, xσ3ϕ = xϕ, yσ1ϑ = yϑ,
yσ3ϕ = pxϕ, yϕq. It implies that yϕ = pq, i.e., y 7→ pq ∈ ϕ, but it contradicts
the fact that ϕ is non-erasing on X .

Assume that i = 2 and j = 3. Then xσ2ϑ = pyϑ, xϑq, xσ3ϕ = xϕ, yσ2ϑ = yϑ,
yσ3ϕ = pxϕ, yϕq. It implies that yϕ = pq and xϑ = pq, i.e., y 7→ pq ∈ ϕ and
x 7→ pq ∈ ϑ, but it contradicts the fact that ϕ and ϑ are non-erasing on X .
Hence, in Case 1 BSub(Γ,Eq) is almost disjoint with respect to X and Q.

Case 2. If s occurs in t, then BSub(Γ,Eq) = ∅ is trivially almost disjoint.
Otherwise, if t is not a sequence term, we can proceed similarly to Case 1,
having only two elements in BSub(Γ,Eq). If t is a non-variable sequence term,
assume that s = x and t = f(r1, . . . , rk) for k ≥ 0. Then BSub(Γ,Eq) =
{σ1, σ2, σ3}, where σ1 = {x 7→ f(r1, . . . , rk)}, σ2 = {x 7→ pf(r1, . . . , rk), xq},
and σ3 = {x 7→ f1(r1, . . . , rk)}{f 7→ pf1, f2q}. The substitutions σ1 and σ2

can not have a common strong instance. It can be shown in the same way as
in the case i = 1, j = 2 above. The substitutions σ1 and σ3, and also σ2 and
σ3 can not have even a common instance, because f2 can not be eliminated
from σ3. Hence, BSub(Γ,Eq) is almost disjoint with respect to X and Q. 2

Lemma 52, Lemma 53, and Lemma 54 imply almost disjointness of Sub(Γ,Eq):

Lemma 55 Let Γ be a unification problem, Eq be an equation in Γ, and let
X = V(Γ) and Q = FS(Γ). Then Sub(Γ,Eq) is almost disjoint with respect to
X and Q.

Now we show that substitutions from Sub(Γ,Eq) preserve almost disjointness.
First, we prove two auxiliary lemmata.

34

Lemma 56 Let Γ be a unification problem and let X = V(Γ) and Q = FS(Γ).
Then every σ ∈ Proj (Γ) is almost-disjointness preserving with respect to X
and Q.

PROOF. Let ϑ1 and ϑ2 be two substitutions such that {ϑ1, ϑ2} is almost
disjoint with respect to the set of variables ∪v∈X V(vσ) = X\VDom(σ) and the
set of sequence function symbols ∪f∈QFS(fσ) = Q. Assume by contradiction
that {σϑ1, σϑ2} is not almost disjoint with respect to X and Q. Then there
exist ϕ1 and ϕ2, both non-erasing on X , such that σϑ1ϕ1 =X ,Q

∅ σϑ2ϕ2. But

then ϑ1ϕ1 =X−,Q
∅ ϑ2ϕ2, where X− = X \VDom(σ), and it contradicts the fact

that {ϑ1, ϑ2} is almost disjoint with respect to X− and Q. 2

Lemma 57 Let Γ be a unification problem, Eq be an equation in Γ, and
let X = V(Γ) and Q = FS(Γ). Then every σ ∈ BSub(Γ,Eq) is almost-
disjointness preserving with respect to X and Q.

PROOF. We prove the lemma by case distinction on the basic transformation
rules applicable to Γ where Eq is the selected equation. For the rules T, O1,
O2, TD, PD1, PD2, and SVE1 the set BSub(Γ,Eq) consist of ε only and,
therefore, the lemma trivially holds. The cases with the rules S, SVE2, W1,
W2, and Sp are considered below.

S: We have Eq = {x ≈?
∅ t}, x /∈ V(t), and σ = {x 7→ t}. Moreover,

∪v∈X V(vσ) = X \ {x} and ∪f∈QFS(fσ) = Q. Let ϑ1 and ϑ2 be two sub-
stitutions such that {ϑ1, ϑ2} is almost disjoint with respect to X \ {x} and
Q. We have to show that {σϑ1, σϑ2} is almost disjoint with respect to X
and Q. Assume by contradiction that it is not. Then there exist substitutions
ϕ1 and ϕ2 such that σϑ1ϕ1 =X ,Q

∅ σϑ2ϕ2. It implies that vσϑ1ϕ1 = vσϑ2ϕ2 for
all v ∈ X \{x}. But since vσ = v for all v ∈ X \{x}, we get vϑ1ϕ1 = vϑ2ϕ2 for
all v ∈ X \{x}, which contradicts almost disjointness of {ϑ1, ϑ2} with respect
to X \ {x} and Q.

SVE2: We have Eq = {f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} with x /∈ VS(t), and

σ = {x 7→ t}. We can proceed here in the same way as for S above.

W1: We have Eq = {f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} with x /∈ VS(t), and

σ = {x 7→ pt, xq}. Assume t is an individual term. (The case when t is a se-
quence variable can be proved like W2, and the case when t is a non-variable
sequence term can be proved like Sp, see below.) Let ϑ1 and ϑ2 be two substitu-
tions such that {ϑ1, ϑ2} is almost disjoint with respect to ∪v∈X V(vσ) = X and
∪f∈QFS(fσ) = Q and assume by contradiction that {σϑ1, σϑ2} is not. Then

there exist ϕ1 and ϕ2, both non-erasing on X , such that σϑ1ϕ1 =X ,Q
∅ σϑ2ϕ2.

But then ϑ1ϕ1 =X ,Q
∅ ϑ2ϕ2, which contradicts almost disjointness of {ϑ1, ϑ2}.

35

W2: We have Eq = {f(x, s1, . . . , sn) ≈?
∅ f(y, t1, . . . , tm)} and σ = {y 7→

px, yq}. Let ϑ1 and ϑ2 be two substitutions such that {ϑ1, ϑ2} is almost dis-
joint with respect to ∪v∈X V(vσ) = X and ∪f∈QFS(fσ) = Q and assume
by contradiction that {σϑ1, σϑ2} is not. Then there exist ϕ1 and ϕ2, both
non-erasing on X , such that σϑ1ϕ1 =X ,Q

∅ σϑ2ϕ2. It implies, in particular, that
xϑ1ϕ1 = xϑ2ϕ2 (since xσ = x) and yϑ1ϕ1 = yϑ2ϕ2 (follows from the equalities
yσϑ1ϕ1 = yσ2ϑ2ϕ2, yσϑ1ϕ1 = pxϑ1ϕ1, yϑ1ϕ1q, yσ2ϑ2ϕ2 = pxϑ2ϕ2, yϑ2ϕ2q,
and xϑ1ϕ1 = xϑ2ϕ2). But then ϑ1ϕ1 =X ,Q

∅ ϑ2ϕ2, which contradicts almost
disjointness of {ϑ1, ϑ2}.

Sp: We have Eq = {f(x, s1, . . . , sn) ≈?
∅ f(f1(r1, . . . , rk), t1, . . . , tm)}, x /∈

VS(f1(r1, . . . , rk)), and σ = {x 7→ f1(r1, . . . , rk)}{f 7→ pf1, f2q}. Let ϑ1 and
ϑ2 be two substitutions such that {ϑ1, ϑ2} is almost disjoint with respect to
∪v∈X V(vσ) = X\{x} and ∪f∈QFS(fσ) = Q∪{f1, f2}\{f}. Assume by contra-
diction that {σϑ1, σϑ2} is not almost disjoint with respect to X and Q. Then
there exist ϕ1 and ϕ2, both non-erasing on X , such that σϑ1ϕ1 =X ,Q

∅ σϑ2ϕ2.

But then ϑ1ϕ1 =X ′,Q′
∅ ϑ2ϕ2, where X ′ = X \ {x} and Q′ = Q∪ {f1, f2} \ {f},

which contradicts the fact that {ϑ1, ϑ2} is almost disjoint with respect to
X \ {x} and Q∪ {f1, f2} \ {f}. 2

Lemma 56 and Lemma 57 imply that Sub(Γ,Eq) preserves almost disjointness:

Lemma 58 Let Γ be a unification problem and Eq be an equation in Γ. Then
every substitution in Sub(Γ,Eq) is almost-disjointness preserving with respect
to V(Γ) and FS(Γ).

We need one more technical result:

Lemma 59 Let σ1 and σ2 be two substitutions such that {σ1, σ2} is almost
disjoint with respect to X and Q such that Ran(σ1) ⊆ X and Ran(σ2) ⊆ X .
Let ϑ1 and ϑ2 be two non-erasing substitutions on X with Ran(ϑ1) ⊆ X and
Ran(ϑ2) ⊆ X . Then {σ1ϑ1, σ2ϑ2} is almost disjoint with respect to X and Q.

PROOF. Assume by contradiction that {σ1ϑ1, σ2ϑ2} is not almost disjoint
with respect to X and Q. Then there exist substitutions ϕ1 and ϕ2, both non-
erasing on X , such that σ1ϑ1ϕ1 =X ,Q

∅ σ2ϑ2ϕ2. But this contradicts the fact
that {σ1, σ2} is almost disjoint with respect to X and Q, because ϑ1ϕ1 and
ϑ2ϕ2 are non-erasing on X . 2

Now we can prove the almost disjointness theorem:

Theorem 60 (Almost Disjointness) Let Γ be a unification problem and let
X = V(Γ) and Q = FS(Γ). Then SolU(Γ) is almost disjoint with respect to X

36

and Q.

PROOF. Let σ1, σ2 be two substitutions from SolU(Γ) and let

〈Γ, ε〉 =⇒ 〈Γ1, γ1〉 =⇒ · · · =⇒ 〈Γn, γ1 · · · γn〉 =⇒
=⇒ 〈∆1, δ1〉 =⇒ · · · =⇒ 〈∆m, δm〉 =⇒ 〈∅, σ1〉,

〈Γ, ε〉 =⇒ 〈Γ1, γ1〉 =⇒ · · · =⇒ 〈Γn, γ1 · · · γn〉 =⇒
=⇒ 〈Φ1, ϕ1〉 =⇒ · · · =⇒ 〈Φk, ϕk〉 =⇒ 〈∅, σ2〉

be two derivations in U, leading respectively to 〈∅, σ1〉 and 〈∅, σ2〉 and having
the common initial part 〈Γ, ε〉 =⇒ 〈Γ1, γ1〉 =⇒ · · · =⇒ 〈Γn, γ1 · · · γn〉. Let
γ0 = ε. We prove the theorem in three steps.

Step 1. In the first step we show that for any set of substitutions {ϑ1, ϑ2} that
is almost disjoint with respect to V(Γn) and FS(Γn), the set {γ0γ1 · · · γnϑ1,
γ0γ1 · · · γnϑ2} is almost disjoint with respect to X and Q. We use induction
on n. For n = 0 the claim is trivial. As the induction hypothesis, assume that
for any set of substitutions {ϑ1, ϑ2} that is almost disjoint with respect to

V(Γn0) and FS(Γn0), n0 ≥ 0, the set {γ0γ1 · · · γn0ϑ1, γ0γ1 · · · γn0ϑ2} is almost
disjoint with respect to X and Q. Now assume that {ϑ1, ϑ2} is almost disjoint
with respect to V(Γn0+1) and FS(Γn0+1). Since V(Γn0+1) ⊆ V(Γn0γn0+1) =
∪v∈V(Γn0) V(vγn0+1) and FS(Γn0+1) ⊆ FS(Γn0γn0+1) = ∪f∈FS(Γn0)FS(fγn0+1),

we, in fact, have that the set {ϑ1, ϑ2} is almost disjoint with respect to
∪v∈V(Γn0) V(vγn0+1) and ∪f∈FS(Γn0)FS(fγn0+1). By Lemma 58, the substitution

γn0+1 is almost disjointness preserving with respect to V(Γn0) and FS(Γn0),
because γn0+1 ∈ Sub(Γn0 ,Eq) for some Eq ∈ Γn0 . Therefore, by Definition 12,
{γn0+1ϑ1, γn0+1ϑ2} is almost disjoint with respect to V(Γn0) and FS(Γn0). In-
stantiating the induction hypothesis with {γn0+1ϑ1, γn0+1ϑ2}, we obtain that
{γ0γ1 · · · γn0γn0+1ϑ1, γ0γ1 · · · γn0γn0+1ϑ2} is almost disjoint with respect to X
and Q. This proves the first step.

Step 2. Now we will show that the set {δ1 · · · δm, ϕ1 · · ·ϕk} is almost disjoint
with respect to V(Γn) and FS(Γn). The substitutions δ1 and ϕ1 belong to
Sub(Γn,Eq) for some Eq ∈ Γn and, by Lemma 55, the set {δ1, ϕ1} is almost
disjoint with respect to V(Γn) and FS(Γn). The substitutions δ2 · · · δm and
ϕ2 · · ·ϕk are non-erasing on V(Γn). Moreover, Ran(δ1) ⊆ V(Γn), Ran(ϕ1) ⊆
V(Γn), Ran(δ2 · · · δm) ⊆ V(Γn), and Ran(ϕ2 · · ·ϕk) ⊆ V(Γn). Therefore, by
Lemma 59, the set {δ1 · · · δm, ϕ1 · · ·ϕk} is almost disjoint with respect to the
sets V(Γn) and FS(Γn).

Step 3. From the previous two steps we conclude that the set {γ0 · · · γnδ1 · · · δm,
γ0 · · · γnϕ1 · · ·ϕk} is almost disjoint with respect to X and Q. Since σ1 =
γ0 · · · γnδ1 · · · δm and σ2 = γ0 · · · γnϕ1 · · ·ϕk, we obtain that {σ1, σ2} (and hence
an arbitrary two-element subset of SolU(Γ)) is almost disjoint with respect to

37

X and Q. Therefore, by Definition 10, SolU(Γ) is almost disjoint with respect
to X and Q. 2

Theorem 51, Theorem 60, and Proposition 11 imply the main result about
general syntactic sequence unification:

Theorem 61 (Main Theorem) Let Γ be a general syntactic sequence uni-
fication problem. Then SolU(Γ) = amcu∅(Γ).

Main Theorem implies that every general syntactic sequence unification prob-
lem has an almost minimal complete set of unifiers. Then, by Proposition 17,
every such problem has a minimal complete set of unifiers. Since for some
problems (e.g., for {f(a, x) ≈?

∅ f(x, a)}) this set is infinite, we obtain the
following result about the unification type:

Theorem 62 (Unification Type) The unification type for general syntac-
tic sequence unification is infinitary.

5 “Lighter” Version of the Unification Procedure

Application of the decision algorithm D can be a costly operation. The DS
step in D invokes the NP-hard decidability test for word equations with linear
constant restrictions. Below we describe a “lighter” version of the unification
procedure that does not call the decision algorithm. It uses the inference sys-
tem I extended with rules to detect some (but not all) failing cases. We denote
the extended inference system by IExt. The rules that detect failure are the
following ones:

IVOC: Individual Variable Occurrence Check

〈{x ≈?
∅ t} ∪ Γ′; σ〉 =⇒ ⊥, if x 6= t and x ∈ VI(t).

SC1: Symbol Clash 1

〈{f(s1, . . . , sn) ≈?
∅ g(t1, . . . , tm)} ∪ Γ′; σ〉 =⇒ ⊥, iff 6= g.

SC2: Symbol Clash 2

〈{f(s, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ′; σ〉 =⇒ ⊥,

if Head(s),Head(t) ∈ FS and Head(s) 6= Head(t).

AD: Arity Disagreement

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tm)} ∪ Γ′; σ〉 =⇒ ⊥,

if n 6= m and si /∈ VS and tj /∈ VS for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ m.

38

E1: Empty 1

〈{f() ≈?
∅ f(t, t1, . . . , tn)} ∪ Γ′; σ〉 =⇒ ⊥.

E2: Empty 2

〈{f(s, s1, . . . , sn) ≈?
∅ f()} ∪ Γ′; σ〉 =⇒ ⊥.

SVOC: Sequence Variable Occurrence Check

〈{f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ′; σ〉 =⇒ ⊥,

if x 6= t and x ∈ VS(t).

PF: Prefix Failure

〈{f(s, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ′; σ〉 =⇒ ⊥,

if s ∈ T −
S (F ,V) and t ∈ TI(F ,V), or s ∈ TI(F ,V) and t ∈ T −

S (F ,V), where
T −

S (F ,V) = TS(F ,V) \ VS.

Hence, IExt = I ∪ {IVOC, SC1, SC2, AD, E1, E2, SVOC, PF}.

One way of refining the unification procedure U (see Definition 38) is to
use IExt instead of I and to retain the decision algorithm D. In this case
instead of immediately applying D on a unification problem in unification
tree first the failure detection rules of IExt are tried. If they can not detect
failure, then the decision algorithm is used to decide whether the problem is
solvable or not. In this way we can tailor the failure detection rules in U as a
pre-filter before applying the costly decision algorithm.

Another way is to use IExt instead of I and omitting D completely. We call
the unification procedure obtained from U in this way the “light” unification
procedure and denote it by ULight. Obviously, soundness and completeness
theorems hold for ULight as well. However, there are cases when U stops with
failure, but ULight can go on forever. This is because the failure rules in IExt do
not detect all failing cases, even if a fair selection strategy is used. For instance,
none of them apply to an unsolvable unification problem {f(x) ≈?

∅ f(a, x)}.

6 Termination without the Decision Algorithm

In this section we consider three special cases when omitting the application
of the decision algorithm D does not lead to nontermination.

39

6.1 Equations in Unification Problems Have at Least One Ground Side

Unification procedure ULight terminates if equations in the unification problem
have at least one ground side. It can be proved by showing that every rule in
the inference system IExt strictly decreases a complexity measure, a 5-tuple
of natural numbers 〈n1, n2, n3, n4, n5〉, associated to a system 〈∆, σ〉 where:

n1 = the number of distinct variables in ∆;
n2 = the total number of symbols in the ground sides of equations in ∆.
n3 = the number of subterms in ∆ of the form f(s1, . . . , sn), where s1 is not
a sequence term;

n4 = the number of equations in ∆ of the form t ≈?
∅ x, where t is not an

individual variable;
n5 = the number of equations in ∆ that have the form f(s, s1, . . . , sn) ≈?

∅
f(x, t1, . . . , tm), where s is not a sequence variable,

and measures are compared lexicographically.

This result, in particular, implies that general syntactic matching with se-
quence variables and sequence function symbols in finitary.

6.2 Unification Problems with Linear Shallow Sequence Variables

Unification problems with linear shallow sequence variables are problems where
every sequence variable occurs only once and the occurrence happens at the
top level, like, for instance, in {f(x1, x, y1) ≈?

∅ f(g(x), g(h(y))), f(x2, x) ≈?
∅

f(y2, g(h(a)))}. The problems like {f(a, x) ≈?
∅ x, f(x, a) ≈?

∅ x} or {f(x, x) ≈?
∅

f(g(a, x), g(x, a))} do not fall in this class. Although the restriction might
look too strong, it is common in formalizing and implementing sequent calculi
(Paulson, 1990).

Termination of ULight for unification problems with linear shallow sequence
variables is not hard to establish. We can consider a complexity measure for
a system 〈∆, σ〉, a 6-tuple of natural numbers 〈n1, n2, n3, n4, n5, n6〉, where

n1 = the number of distinct variables in ∆;
n2 = the number of symbols in ∆;
n3 = the number of occurrences of sequence function symbols in ∆;
n4 = the number of subterms in ∆ of the form f(s1, . . . , sn), where s1 is not
a sequence term;

n5 = the number of equations in ∆ of the form t ≈?
∅ x, where t is not an

individual variable;
n6 = the number of equations in ∆ that have the form f(s, s1, . . . , sn) ≈?

∅

40

f(x, t1, . . . , tm), where s is not a sequence variable.

Measures are compared lexicographically. It is easy to show that each rule
in the inference system IExt strictly decreases the measure, and it implies
termination.

6.3 Sequence Variables Occur Only in the Last Argument Positions in Terms

This is another interesting case. As it turns out, it makes unification unitary
and application of the decision algorithm obsolete.

We start with modifying the inference system. First, we introduce rules that
take into account the occurrence restriction for sequence variables. These are
the following:

E1m: Empty 1, modified

〈{f() ≈?
∅ f(t, t1, . . . , tn)}; σ〉 =⇒ ⊥, if t /∈ VS.

E2m: Empty 2, modified

〈{f(s, s1, . . . , sn) ≈?
∅ f()}; σ〉 =⇒ ⊥, if s /∈ VS.

SVOCm: Sequence Variable Occurrence Check, modified

〈{f(x) ≈?
∅ f(t, t1, . . . , tm)}; σ〉 =⇒ ⊥,

if x 6= t and x ∈ VS(t, t1, . . . , tm).

SVD1: Sequence Variable Deletion 1

〈{f(x) ≈?
∅ f()}; σ〉 =⇒ 〈∅; σϑ〉, where ϑ = {x 7→ pq}.

SVD2: Sequence Variable Deletion 2

〈{f() ≈?
∅ f(x)}; σ〉 =⇒ 〈∅; σϑ〉, where ϑ = {x 7→ pq}.

SVEm: Sequence Variable Elimination, modified

〈{f(x) ≈?
∅ f(t, t1, . . . , tm)}; σ〉 =⇒ 〈∅; σϑ〉,

if x /∈ VS(t, t1, . . . , tm) and ϑ = {x 7→ pt, t1, . . . , tmq}.
We define the modified inference system IMod as the set of inference rules:

IMod = {T, O1, O2, S, TD, PD1, PD2, IVOC, SC1, SC2, AD, PF,

E1m, E2m, SVOCm, SD1, SD2, SVEm}.

The modified unification procedure UMod is obtained from ULight by replacing
the inference system ILight by IMod.

41

Remark 63 Note that only one rule in IMod is applicable to a selected equa-
tion. No rules can be applied on ⊥ and 〈∅; σ〉. Hence, if Γ is unifiable, then
the solution set SolUMod

(Γ) generated by UMod is a singleton.

Termination of any transformation sequence in IMod can be shown in the
standard way: First, we define a complexity measure for a system 〈∆, σ〉 as a
6-tuple of natural numbers 〈n1, n2, n3, n4, n5, n6〉, where

n1 = the number of distinct variables in ∆;
n2 = the number of symbols in ∆;
n3 = the number of occurrences of sequence function symbols in ∆;
n4 = the number of subterms in ∆ of the form f(s1, . . . , sn), where s1 is not
a sequence term;

n5 = the number of equations in ∆ of the form t ≈?
∅ x, where t is not an

individual variable;
n6 = the number of equations in ∆ of the form f(s1, . . . , sn) ≈?

∅ f(x), where
n ≥ 0 and s1 is not a sequence variable.

Measures are compared lexicographically. Then, we prove that each rule in
IMod reduces the complexity measure. It is pretty straightforward.

Two other important properties of UMod, soundness and completeness, can be
formulated and proved similarly to the soundness and completeness theorems
for U. We do not give details of the proofs here. Rather, we point out that
completeness of UMod, together with the fact that the solution set UMod(Γ) is
singleton for an unifiable Γ, implies that UMod calculates a most general unifier
for unification problems where sequence variables occur as the last arguments.
Unification type for this case is unitary, since any unifiable problem has a most
general unifier.

7 Implementation

We implemented the “light” unification procedure in Mathematica on the base
of a rule-based programming system ρLog 5 (Marin and Kutsia, 2003). A rule
in ρLog is a specification of a nondeterministic and partially defined compu-
tation. The system has primitive operators for defining elementary rules and
for computing with unions, compositions, reflexive-transitive closures, rewrit-
ing, and normal forms of rules. With these tools the “light” syntactic se-
quence unification procedure (with bounded depth) was implemented quite
easily. Within the bounded depth, the procedure, by default, uses the depth-
first search method with backtracking provided with ρLog. Options allow the

5 Available from http://www.score.is.tsukuba.ac.jp/~mmarin/RhoLog/.

42

user to modify the depth bound, use iterative deepening instead of depth-first
method, and stop computation after obtaining a certain number of solutions.

8 Relation with Order-Sorted Higher-Order Unification

Syntactic sequence unification can be considered as a special case of order-
sorted higher-order E-unification. Here we show the corresponding encoding
in the framework described in (Kohlhase, 1994).

We consider simply typed λ-calculus with the types i and o. The set of base
sorts consists of ind, seq, seqc, o such that the type of o is o and the type
of the other sorts is i. Individual and sequence variables are treated as first
order variables, while sequence function symbols are encoded as second order
variables. We define a context C (a function that assigns sorts to variables)
such that C(x) = ind for all x ∈ VI , C(x) = seq for all x ∈ VS, C(f) =
seq → seqc for each f ∈ F lexS, and C(f) = ind → · · · → ind → seqc

(with n arrows) for each f ∈ F ixS with Ar(f) = n. Individual function
symbols are treated as constants. We assign to each f ∈ F lex I a functional
sort seq → ind and to each f ∈ F ix I with Ar(f) = n a functional sort
ind → · · · → ind → ind (with n arrows). We assume equality constants ≈s

for every sort s. In addition, we have two function symbols: binary pq of the
sort seq → seq → seq and a constant [] of the sort seq. Sorts are partially
ordered as ind ≤ seqc and seqc ≤ seq. The equational theory is an AU-
theory, asserting associativity of pq with [] as left and right unit. We consider
unification problems for terms of the sort ind, where terms are in βη-normal
form containing no bound variables, and terms whose head is pq are flattened.
For a given unification problem in this theory, we are looking for unifiers that
obey the following restrictions: If a unifier σ binds a second order variable f
of the sort seq→ seqc, then fσ = λx.pg1(x), . . . , gm(x)q. If σ binds a second
order variable f of the sort ind → · · · → ind → seqc (with n arrows), then
fσ = λx1. . . . xn.pg1(x1, . . . , xn), . . . , gm(x1, . . . , xn)q. In both cases m > 1 and
g1, . . . , gm are fresh variables of the same sort as f .

Hence, syntactic sequence unification can be considered as order-sorted se-
cond-order AU-unification with additional restrictions. Order-sorted higher-
order syntactic unification was investigated by Kohlhase (1994), but we are not
aware of any work done on order-sorted higher-order equational unification.

43

9 Related Work

Solving equations involving sequence variables has applications in various
fields, like artificial intelligence, knowledge management, programming, rewrit-
ing, program schemata, XML-processing, and theorem proving. In this section
we briefly review just some of the methods related to our work. Note that
in the literature flexible arity symbols are also called “variadic”, “polyadic”,
“variable arity”, “varying-arity”, or “multiple arity” symbols.

Sequence variables are part of Common Logic (Common Logic Working Group,
2003) and SCL, a simplified version of Common Logic. These are languages
designed for use in the interchange of knowledge among disparate computer
systems. Moreover, sequence variables occur in a “concrete” instance of the
Common Logic language, called Knowledge Interchange Format KIF (Gene-
sereth et al., 1998) and in a simplified version of KIF, called SKIF (Hayes and
Menzel, 2001). In SKIF, sequence variables are called row variables. Hayes and
Menzel (2001) point out that unification with row variables is very difficult,
because two expressions can have infinitely many most general unifiers. They
also remark that allowing row variables only in the last argument positions
guarantee that unification patterns that create the difficulties with infinitely
many most general unifiers cannot arise. Unification procedures for these lan-
guages are not discussed.

Probably the first attempt to design and implement unification with sequence
variables (without sequence functions) was made in the MVL system (Gins-
berg, 1991). The implementation of unification was incomplete because of re-
stricted use of widening technique. The restriction was imposed intentionally,
for the efficiency reasons. No theoretical study of the unification algorithm of
MVL, to the best of our knowledge, was undertaken.

Word equations (Siekmann, 1975; Abdulrab and Pécuchet, 1990; Jaffar, 1990;
Schulz, 1993) and associative unification (Plotkin, 1972) can be modeled by
syntactic sequence unification using constants, sequence variables, and one
flexible arity function symbol. In the similar way we can imitate unification
for path logics closed under right identity and associativity (Schmidt, 1998).

Equations, where the length of the values of sequence variables is bounded,
have finitely many solutions. This fact is used, for instance, in Prolog III (Col-
merauer, 1990) and in (Richardson and Fuchs, 1997). In Prolog III, a restricted
form of word unification is incorporated for reasoning with lists with several
subparts of unknown length. Solving such equations are delayed until the
length of those subparts becomes known. In (Richardson and Fuchs, 1997), a
unification algorithm with vector variables is described. Vector variables are
similar to sequence variables, but come with their possible length attached,

44

which makes unification finitary. The algorithm was implemented and used
for schema-based logic program transformation, but its properties have never
been investigated.

Extensions of logic and functional programming, integrated in the RelFun
system (Boley, 1999), permit sequence variables in the last argument positions
of flexible arity symbols. Unification for such terms is unitary. RelFun allows
multiple-valued functions as well.

Implementation of first-order logic in Isabelle (Paulson, 1990) is based on
sequent calculus formulated using sequence variables (on the meta level). Se-
quence meta-variables are used to denote sequences of formulae and individual
meta-variables denote single formulae. Since in every such unification prob-
lem no sequence meta-variable occurs more than once and all of them occur
only on the top level, Isabelle, in fact, deals with a finitary case of sequence
unification.

The Set-Var prover (Bledsoe and Feng, 1993) has a construct called vector
of (Skolem) functions that resembles our sequence functions. For instance,
a vector of functions denoted by g(a, s), where s is a vector of variables,
abbreviates a sequence of functions g1(a, s), . . . , gm(a, s). However, splitting
vectors of functions between variables is not allowed in unification: such a
vector of functions either entirely unifies with a variable or with another vector
of functions.

The programming language of Mathematica has a built-in pattern matching
mechanism, which supports sequence variables (represented as identifiers with
“triple blanks”, e.g., x) and flexible arity function symbols. The behav-
ior of the matching algorithm is explained in examples in the Mathematica
book (Wolfram, 2003). Our procedure (without sequence function symbols)
can imitate this behavior. For a given matching problem, the output of the
procedure would be identical to the set of all possible matchers Mathematica
matching algorithm computes. On the other hand, when Mathematica tries
to match patterns to some expression, it tries first those matchers that assign
the shortest sequences of arguments to the first triple blanks that appear in
the pattern and returns the first matcher it finds. We can simulate also this
behavior, imposing an order of choosing successors in the Projection rule, ap-
plying Sequence Variable Elimination 2 before Widening 1, and stopping the
procedure whenever the first solution appears. Exactly in the same way we
can model the minimal sequence matching algorithm described in (Hamana,
1997), where it was used to define rewriting with sequences and study rewrit-
ing semantics of Mathematica/R (Buchberger, 1996). Mathematica/R is the
rewriting part of the Mathematica programming language.

Marin and Ţepeneu (2003) provided a more advanced mechanism to control

45

pattern matching with sequence variables in Mathematica. Their package Se-
quentica allows users to specify the sequence variable instantiation order, and
the lengths of term sequences sequence variables can be instantiated with.

Hamada and Ida (1997) extended Mathematica symbolic computation capa-
bilities with higher order lazy narrowing calculi. The extension itself did not
involve sequence variables, but the authors indicated that properly used se-
quence variables enhance clarity of programs and emphasized on the need of
clear semantics of sequence variables.

Coelho and Florido (2004) developed a constraint logic programming language
CLP(Flex) over the domain of terms with sequence variables and flexible arity
symbols. Constraint solving in CLP(Flex) is based on a version of our unifi-
cation procedure without sequence functions (Kutsia, 2002b). CLP(Flex) is
applied to XML-processing, where XML documents are abstracted by terms
with flexible arity symbols. It gives a highly declarative model for XML pro-
cessing yielding a substantial degree of flexibility in programming.

Buchberger introduced sequence variables and sequence functions in the The-
orema system (Buchberger et al., 2000). Kutsia and Buchberger (2004) stud-
ied the meta-mathematical implications of introducing sequence variables in
predicate logic. The equational prover of Theorema (Kutsia, 2003) supports
proving by unfailing completion for unit equalities with sequence variables in
the last argument positions and proving by rewriting with unrestricted occur-
rences of sequence variables. The unification procedure implemented in the
prover follows the procedure UMod described in this paper.

10 Conclusions

We proved that general unification in the free theory with individual and
sequence variables and function symbols is decidable and has the infinitary
type. We developed a rule-based unification procedure and proved its sound-
ness, completeness, and almost minimality. The procedure uses the decision
algorithm to cut failing branches in the unification tree. A “lighter” version of
the procedure replaces the decision algorithm with extra rules to detect failure.
It is still sound and complete, easier to implement, but for some failing cases
might not terminate. We also showed a relation between general syntactic
sequence unification and order-sorted higher-order equational unification.

Under certain restrictions sequence unification problems have finitely many
solutions: sequence variables in the last argument positions, unification prob-
lems with at least one ground side (matching as an instance), all sequence
variables on the top level with maximum one occurrence. It would be inter-

46

esting to identify more cases with finite or finitely representable solution sets.

Acknowledgements

I thank Bruno Buchberger who introduced me to the subject, Mircea Marin
for interesting discussions, Manuel Kauers for useful LATEX macros, and the
anonymous referees for helpful comments.

References

Abdulrab, H., Pécuchet, J.-P., 1990. Solving word equations. J. Symbolic Com-
putation 8 (5), 499–522.

Baader, F., Schulz, K. U., 1991. General A- and AX-unification via optimized
combination procedures. In: Abdulrab, H., Pécuchet, J.-P. (Eds.), Proc. of
the 2nd Int. Workshop on Word Equations and Related Topics. Vol. 677 of
LNCS. Springer, pp. 23–42.

Baader, F., Schulz, K. U., 1996. Unification in the union of disjoint equational
theories: Combining decision procedures. J. Symbolic Computation 21 (2),
211–244.

Baader, F., Snyder, W., 2001. Unification theory. In: Robinson, A., Voron-
kov, A. (Eds.), Handbook of Automated Reasoning. Vol. I. Elsevier Science,
Ch. 8, pp. 445–532.

Bledsoe, W. W., Feng, G., 1993. Set-Var . J. Automated Reasoning 11 (3),
293–314.

Boley, H., 1999. A Tight, Practical Integration of Relations and Functions.
Vol. 1712 of LNAI. Springer.

Buchberger, B., 1996. Mathematica as a rewrite language. In: Ida, T.,
Ohori, A., Takeichi, M. (Eds.), Proc. of the 2nd Fuji Int. Workshop on
Functional and Logic Programming. World Scientific, Shonan Village Cen-
ter, Japan, pp. 1–13.

Buchberger, B., Dupré, C., Jebelean, T., Kriftner, F., Nakagawa, K.,
Vasaru, D., Windsteiger, W., 2000. The Theorema project: A progress re-
port. In: Kerber, M., Kohlhase, M. (Eds.), Proc. of Calculemus’2000 Con-
ference. pp. 98–113.

Coelho, J., Florido, M., 2004. CLP(Flex): Constraint logic programming ap-
plied to XML processing. In: Meersman, R., Tari, Z. (Eds.), On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE. Proc. of
Confederated Int. Conferences. Vol. 3291 of LNCS. Springer, pp. 1098–1112.

Colmerauer, A., 1990. An introduction to Prolog III. Communications of ACM
33 (7), 69–91.

47

Common Logic Working Group, 2003. Common logic: Abstract syntax and
semantics, http://cl.tamu.edu/docs/cl/1.0/cl-1.0.pdf.

Genesereth, M. R., Petrie, C., Hinrichs, T., Hondroulis, A., Kassoff, M.,
Love, N., Mohsin, W., 1998. Knowledge Interchange Format, draft pro-
posed American National Standard (dpANS). Tech. Rep. NCITS.T2/98-
004, http://logic.stanford.edu/kif/dpans.html.

Ginsberg, M. L., 1991. The MVL theorem proving system. SIGART Bull.
2 (3), 57–60.

Hamada, M., Ida, T., 1997. Implementation of lazy narrowing calculi in Math-
ematica. Technical Report 97-02, RISC, Johannes Kepler University, Linz,
Austria.

Hamana, M., 1997. Term rewriting with sequences. In: Proc. of the First Int.
Theorema Workshop. Technical report 97–20, RISC, Johannes Kepler Uni-
versity, Linz, Austria.

Hayes, P., Menzel, C., 2001. Semantics of Knowledge Interchange Format,
http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf.

Jaffar, J., 1990. Minimal and complete word unification. J. ACM 37 (1), 47–85.
Kohlhase, M., 1994. A mechanization of sorted higher-order logic based on the

resolution principle. Ph.D. thesis, Saarland University. Saarbrücken, Ger-
many.

Kutsia, T., 2002a. Solving and proving in equational theories with sequence
variables and flexible arity symbols. Ph.D. thesis, Johannes Kepler Univer-
sity, Linz, Austria.

Kutsia, T., 2002b. Unification with sequence variables and flexible arity sym-
bols and its extension with pattern-terms. In: Calmet, J., Benhamou, B.,
Caprotti, O., Henocque, L., Sorge, V. (Eds.), Artificial Intelligence, Auto-
mated Reasoning and Symbolic Computation. Proc. of Joint AISC’2002 –
Calculemus’2002 Conference. Vol. 2385 of LNAI. Springer, pp. 290–304.

Kutsia, T., 2003. Equational prover of Theorema. In: Nieuwenhuis, R. (Ed.),
Proc. of the 14th Int. Conference on Rewriting Techniques and Applications.
Vol. 2706 of LNCS. Springer, pp. 367–379.

Kutsia, T., 2004. Solving equations involving sequence variables and sequence
functions. In: Buchberger, B., Campbell, J. A. (Eds.), Artificial Intelligence
and Symbolic Computation. Proc. of AISC’04 Conference. Vol. 3249 of
LNAI. Springer, pp. 157–170.

Kutsia, T., Buchberger, B., 2004. Predicate logic with sequence variables and
sequence function symbols. In: Asperti, A., Bancerek, G., Trybulec, A.
(Eds.), Proc. of the 3rd Int. Conference on Mathematical Knowledge Man-
agement. Vol. 3119 of LNCS. Springer, pp. 205–219.

Makanin, G. S., 1977. The problem of solvability of equations in a free semi-
group. Math. USSR Sbornik 32 (2), 129–198.

Marin, M., Ţepeneu, D., 2003. Programming with sequence variables: The
Sequentica package. In: Mitic, P., Ramsden, P., Carne, J. (Eds.), Challenging
the Boundaries of Symbolic Computation. Proc. of 5th Int. Mathematica
Symposium. Imperial College Press, London, pp. 17–24.

48

Marin, M., Kutsia, T., 2003. On the implementation of a rule-based program-
ming system and some of its applications. In: Konev, B., Schmidt, R. (Eds.),
Proc. of the 4th Int. Workshop on the Implementation of Logics. pp. 55–68.

Paulson, L., 1990. Isabelle: the next 700 theorem provers. In: Odifreddi, P.
(Ed.), Logic and Computer Science. Academic Press, pp. 361-386.

Plotkin, G., 1972. Building in equational theories. In: Meltzer, B., Michie, D.
(Eds.), Machine Intelligence. Vol. 7. Edinburgh University Press, pp. 73–90.

Richardson, J., Fuchs, N. E., 1997. Development of correct transformation
schemata for Prolog programs. In: Fuchs, N. E. (Ed.), Proc. of the 7th Int.
Workshop on Logic Program Synthesis and Transformation. Vol. 1463 of
LNCS. Springer, pp. 263–281.

Robinson, J. A., 1965. A machine-oriented logic based on the resolution prin-
ciple. J. ACM 12 (1), 23–41.

Schmidt, R., 1998. E-Unification for subsystems of S4. In: Nipkow, T. (Ed.),
Proc. of the 9th Int. Conference on Rewriting Techniques and Applications.
Vol. 1379 of LNCS. Springer, pp. 106–120.

Schulz, K. U., 1993. Word unification and transformation of generalized equa-
tions. J. Automated Reasoning 11 (2), 149–184.

Siekmann, J., 1975. String unification. Research paper, Essex University.
Wolfram, S., 2003. The Mathematica Book, 5th Edition. Wolfram Media.

49

