
Take home exam
Orthogonal polynomials and symbolic computation Summer 2023

If below it says “by whichever means you prefer” this refers to using either classical methods or
application of symbolic procedures that have been introduced in the lecture. It does not mean
citing a solution from the internet, a book, a friend, etc. As a basis for the grades the maximum
number of points is 36 and the passing level is 18 points. You can choose freely from the exercises
below to achieve these points.

Submission deadline: July 10, 2023.

Exercise 1 (4P) Show that the normal sequences (a) (xn)n≥0 and (b) (xn)n≥0 are not sequences
of orthogonal polynomials with respect to any weight function.

Exercise 2 (4P) Let kn(x, y) be the kernel polynomials defined from the sequence of polynomials
(ϕn(x))n≥0 orthogonal with respect to w(x) on [a, b]. Show that, if −∞ < α ≤ a < ∞, then the
sequence (kn(x, α))n≥0 is orthogonal with respect to the weight function (x− α)w(x).

Exercise 3 (4P) Prove Theorem 2.5: For n,m ≥ 0, −1 ≤ x ≤ 1 and Un(x) = sin(n+ 1)θ/ sin θ
for x = cos θ:

(1)

∫ 1

−1

Un(x)Um(x)
√

1− x2 dx = 0, n ̸= m

(2) Un+1(x)− 2xUn(x) + Un−1(x) = 0, n ≥ 1

Exercise 4 (2P for each item) Carry out the details of the proof of Theorem 2.9, i.e., show that
for n ≥ 0 and x ∈ [−1, 1] we have:

(2n+ 1)Pn(x) = P ′
n+1(x)− P ′

n−1(x) (2.14)

(n+ 1)Pn(x) = P ′
n+1(x)− xP ′

n(x) (2.15)

nPn(x) = xP ′
n(x)− P ′

n−1(x) (2.16)

(1− x2)P ′
n(x) = n [Pn−1(x)− xPn(x)] (2.17)

Furthermore, Legendre polynomials satisfy the three term recurrence

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0, (2.18)

with P−1(x) = 0 and P0(x) = 1, and they are a solution to the Legendre differential equation

(1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0. (2.19)

Exercise 5 (4P) Derive the three term recurrence satisfied by Jacobi polynomials P
(α,β)
n (x) star-

ting either from Rodrigues formula, Definition 2.11, or the sum representation in Theorem 2.13,
by whichever means you prefer.

Exercise 6 (4P) Prove by whichever means you prefer:

(a) P
(α−1,β)
n (x) = n+α+β

2n+α+βP
(α,β)
n (x)− n+β

2n+α+βP
(α,β)
n−1 (x)

(b) P
(α,β)
n (x) = n+α

n+α+βP
(α−1,β)
n (x) + n+β

n+α+βP
(α,β−1)
n (x)



(c) (1− x)P
(α+1,β)
n (x) = 2

2n+α+β+2

[
(n+ α+ 1)P

(α,β)
n (x)− (n+ 1)P

(α,β)
n+1 (x)

]
(d) (1− x) d

dxP
(α,β)
n (x) = αP

(α,β)
n (x)− (n+ α)P

(α−1,β+1)
n (x)

Exercise 7 (4P) Let Gegenbauer polynomials for n ≥ 0 and λ > − 1
2 be defined by the three term

recurrence

(n+ 2)Cλ
n+2(x)− 2x(n+ λ+ 1)Cλ

n+1(x) + (n+ 2λ)Cλ
n(x) = 0, Cλ

0 (x) = 1, Cλ
1 (x) = 2λx.

Starting from this definition, compute the generating function F (z) =
∑

n≥0 C
λ
n(x)z

n by whichever
means you prefer.

Exercise 8 (4P) Prove or disprove for n ≥ 1:

(a) 2(1− x2)Tn+1(x)Un−1(x) + Tn+1(x)
2 + (1− x2)Un−1(x)

2 = −x

(b) 2(1− x2)Tn+1(x)Un−1(x) + (1− x2)Un−1(x)
2 + Un+1(x)

2 = x2

(c) 2(1− x2)Tn+1(x)Un−1(x) + Tn+1(x)
2 + (1− x2)Un−1(x)

2 = x2

Exercise 9 (4P)

(a) Compute the weighted squared L2 norm of Hermite polynomials.

(b) Set up the Christoffel-Darboux formula for Hermite polynomials.

(c) Prove Turán’s inequality for Hermite polynomials, i.e., show that

H2
n+1(x)−Hn(x)Hn+2(x) ≥ 0, x ∈ R,

by whatever means you prefer.

Exercise 10 (4P) Implement a procedure in your favourite computer algebra system (CAS) that
takes as input a polynomial expanded in the monomial basis and returns its expansion in the basis
of falling factorials.

Exercise 11 (4P) Implement a procedure in your favourite CAS that approximates the integral
of a given function over the interval [−1, 1] using Legendre-Gauß quadrature. The corresponding
interpolation points for n = 7 are given by

{−0.949108,−0.741531,−0.405845, 0., 0.405845, 0.741531, 0.949108},

and the weights by

{0.129485, 0.279705, 0.38183, 0.417959, 0.38183, 0.279705, 0.129485}.

Test your program at least with a random polynomial of degree 14, f1(x) = ex and f2(x) =
tan2 x− sin(4x).

Exercise 12 (4P) Implement a procedure in your favourite CAS that computes an L2-approximation
up to degree 5 of a given function using the numerical quadrature rule of the previous exercise
and include some test cases.

Exercise 13 (4P) Use the Legendre three term recurrence, identity (2.17) and

(1− x2)P ′
n(x) = (n+ 1) [xPn(x)− Pn+1(x)]

to prove that

n(n+ 1)∆n(x)− (n− 1)n∆n−1(x) = (1− x2)
(
P ′
n(x)Pn−1(x)− Pn(x)P

′
n−1(x)

)
, (3.99)

where ∆n(x) = Pn(x)
2 − Pn−1(x)Pn+1(x). Use (3.99) to prove the Turán inequality for Legendre

polynomials, i.e., that ∆n(x) ≥ 0 for n ≥ 0, x ∈ [−1, 1].



Exercise 14 (4P) Show that for nonnegative x, y, and z one has the implication

1 ≤ xyz =⇒ 8 ≤ (1 + x)(1 + y)(1 + z).

In addition show that 8 is optimal on the RHS, by replacing it by a free variable and running
CAD to show that it is indeed the largest possible lower bound. Then also replace the 1 on the
LHS by a free variable and determine conditions on the two lower bounds for the implication to
hold.

Exercise 15 (4P) Compute a CAD for

A = {p1(x, y) = x2 + y2 − 1, p2(x, y) = x− y}

with the Brown-McCallum projection operator as defined in the lecture:

P (Ak) =
⋃

p∈Ak

{lcxk
(p),discxk

(p) ∪
⋃

p,q∈Ak

{resxk
(p, q)},

using, e.g., Mathematica built-in functions for resultant, etc. on your favorite computer algebra
system. Visualize the result graphically. How many cells does the original AD of A have and how
many the final CAD?


