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Chapter 1

Definition and general facts

1.1 Literature and conventions

Some classical literature on orthogonal polynomials and special functions:

• Andrews, Askey, Roy: “Special Functions” [2]

• Chihara: “An introduction to orthogonal polynomials” [4]

• Rainville: “Special Functions” [17]

• Szegö: “Orthogonal Polynomials” [19]

We will use the following conventions during this lecture:

• throughout, letK be a field containing the rational numbers, i.e., a field of characteristic
zero; usually K = R(C);

• N = {0, 1, 2, . . . };

• K[x] denotes the ring of polynomials in the indeterminate x with coefficients in K;

• the coefficient functional is denoted by 〈xm〉∑n
k=0 akx

k := am.

1.2 Normal sequences

Before we turn to orthogonal polynomials we define another notion for polynomial bases.

Definition 1.1. A sequence of polynomials (φn(x))n≥0 is called normal, iff for all n ∈ N :
deg φn(x) = n.

These polynomials are sometimes also called simple and by definition in a sequence of
normal polynomials there is exactly one polynomial of degree n for each n ∈ N. From this
definition it is immediate that any polynomial can be expressed as linear combination of
elements of a normal sequence.

Theorem 1.2. Any normal sequence (φn(x))n≥0 forms a basis of K[x] viewed as vector space
over K.
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6 Chapter 1. Definition and general facts

Proof. Let p ∈ K[x] be a polynomial of degree m, i.e., the leading coefficient 〈xm〉p(x) =
am 6= 0. Since φm(x) is normal, also its leading coefficient bm does not vanish for any m.
Define cm = am

bm
and p(1)(x) = p(x)− cmφm(x). Then we have a reduction in the polynomial

degree, i.e., deg p(1)(x) ≤ m−1. Applying this procedure iteratively yields a unique expansion
p(x) =

∑m
k=0 ckφk(x), where not all ck are zero.

Some examples for normal sequences are:

• monomial basis: (xn)n≥0 =
(
1, x, x2, . . .

)

• falling factorial: (xn)n≥0, where

xn :=

{
x · (x− 1) · · · (x− n+ 1) n ≥ 1,

1 n = 0.

• rising factorial: (xn̄)n≥0, where

xn̄ :=

{
x · (x+ 1) · · · (x+ n− 1) n ≥ 1,

1 n = 0.

Often the rising factorial is also denoted using the Pochhammer symbol xn̄ = (x)n.

By theorem 1.2 we can convert one basis (normal sequence) into any other. We consider as
example the conversion from the (classical) monomial basis to falling factorials, e.g., determine
ck such that

p(x) = x3 =
3∑

k=0

akx
k =

3∑

k=0

ckx
k,

where a0 = a1 = a2 = 0 and a3 = 1. The falling factorials we need are:

x0 = 1, x1 = x, x2 = x2 − x, and x3 = x3 − 3x2 + 2x.

Using the notation from the proof of theorem 1.2 we calculate:

a3 = b3 = 1 ⇒ c3 = 1 : p(1)(x) = p(x)− 1 · x3 = 3x2 − 2x

a2 = 3, b2 = 1 ⇒ c2 = 3 : p(2)(x) = p(1)(x)− 3x2 = x

a1 = b1 = 1 ⇒ c1 = 1 : p(3)(x) = p(2)(x)− x1 = 0.

Thus c0 = 0 and so we have x3 = x3 + 3x2 + x1.

Remark 1.3. The transfer or connection coefficients for expressing the monomial basis in
terms of the falling factorials are the Stirling numbers of the 2nd kind S(n, k) that have the
combinatorial definiton

S(n, k) = number of set partitions of an n− element set into exactly k nonempty,

disjoint subsets.

It holds that xn =
∑n

k=0 S(n, k)x
k.
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1.3 Orthogonality

If we want to discuss orthogonality, we need the notion of an inner product that we recall in
the following definition for the real case.

Definition 1.4. Let V be a real vector space. A map 〈·, ·〉 : V × V → R is called inner
product, iff it is

1. positive definite, i.e.,

(∀ f ∈ V : 〈f, f〉 ≥ 0) and (〈f, f〉 = 0 ⇔ f = 0) ,

2. symmetric, i.e.,

∀ f, g ∈ V : 〈f, g〉 = 〈g, f〉,

3. bilinear, i.e.,

∀ f, g ∈ V ∀λ, µ ∈ R : 〈λf + µg, h〉 = λ〈f, h〉+ µ〈g, h〉.

In this lecture we are dealing with special types of inner products that are defined via
weight functions. Let I = (a, b) be a real interval with a, b ∈ R ∪ {±∞} that can be either
open, half-open or closed. Let w(x) be a function defined on (a, b) with w(x) > 0. Then

〈f, g〉w :=

∫ b

a
f(x)g(x)w(x) dx (1.1)

defines an inner product and w(x) is called a weight function. We denote the space of weighted
square integrable functions over an interval I by L2

w(I), i.e.,

L2
w(I) =

{

f : I → R :

∫

I
f(x)2w(x) dx <∞

}

.

For sake of simplicity from now on we will always assume that the moments of all orders exist,
i.e.,

∫ b

a
xnw(x) dx <∞, n ∈ N.

In this case w(x) is called a proper weight function.

Definition 1.5. Let (φn(x))n≥0, φn(x) ∈ R[x], be a normal sequence and let w(x) be a proper
weight function on the interval I = (a, b). If

〈φn, φm〉w =

∫ b

a
φn(x)φm(x)w(x) dx = 0 for n 6= m,

we say that (φn(x))n≥0 is orthogonal with respect to the weight function w(x) on I.

None of the normal sequences that we have seen so far are orthogonal with respect to any
weight function. Some famous examples for orthogonal polynomials that we will discuss in
more detail later are
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Figure 1.1: Legendre polynomials Pn(x) (left) and Chebyshev polynomials Tn(x) (right)

• Legendre polynomials Pn(x) are orthogonal with respect to the constant weight function
w(x) ≡ 1 on the interval [−1, 1]. The first few are given by

P0(x) = 1, P1(x) = x, P2(x) =
1
2(3x

2 − 1), P3(x) =
1
2x(5x

2 − 3).

• Chebyshev polynomials of the 1st kind Tn(x) are orthogonal with respect to the weight
function w(x) =

√
1− x2 on the interval [−1, 1]. The first few are given by

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = x(4x2 − 3).

The next theorem gives an alternative characterization of orthogonal polynomials.

Theorem 1.6. Let (φn(x))n≥0 be a normal sequence and w(x) be a proper weight function
on (a, b). Then φn(x) is orthogonal with respect to w(x) if and only if

∀ n ∈ N :

∫ b

a
xkφn(x)w(x) dx = 0, 0 ≤ k ≤ n− 1.

Proof. Assume that φn(x) is a sequence of orthogonal polynomials. Then by theorem 1.2 for
each k we can compute connection coefficients b(j, k) and write xk =

∑k
j=0 b(j, k)φj(x). Thus

∫ b

a
xkφn(x)w(x) dx =

k∑

j=0

b(j, k)

∫ b

a
φj(x)φn(x)w(x) dx.

But the latter integral vanishes if j < n by orthogonality. The other direction is immediate.

A simple consequence of this result is

Corollary 1.7. Let φn, w be as in theorem 1.6. For any p ∈ R[x] with deg p(x) < n we have
∫ b
a p(x)φn(x)w(x) dx = 0, and in addition

∫ b
a x

nφn(x)w(x) dx 6= 0.

Proof. Exercise.
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1.4 Three term recurrence

Throughout we will sometimes denote the squared, weighted L2-norm of a sequence of or-
thogonal polynomials by

hn = 〈φn, φn〉 =
∫ b

a
φn(x)

2w(x) dx,

and the leading coefficient by

αn = 〈xn〉φn(x) = lc (φn(x)) .

An orthogonal sequence with hn = 1 for all n ∈ N is called orthonormal.

Theorem 1.8. (Three term recurrence) Let (φn(x))n≥0 be a sequence of polynomials orthog-
onal with respect to w(x) on (a, b). Then there exist sequences of numbers an, bn, cn, n ∈ N,
s.t.

φn+1(x) = (anx+ bn)φn(x) + cnφn−1(x), (1.2)

for n ≥ 0, where we put φ−1(x) = 0. Moreover, we have for n ≥ 0 :

an =
αn+1

αn
, and cn+1 = −

an+1

an

hn+1

hn
. (1.3)

Proof. We start by proving the existence of a three term recurrence and for this we expand
xφn(x) in terms of the basis φk(x). Since xφn(x) is a polynomial of degree n+ 1 we need an
expansion in φ0(x), . . . , φn+1(x):

xφn(x) =
n+1∑

k=0

γ(n, k)φk(x).

We multiply the above equation by w(x)φj(x) (0 ≤ j ≤ n+ 1) and integrate over (a, b):

∫ b

a
xφn(x)φj(x)w(x) dx =

n+1∑

k=0

γ(n, k)

∫ b

a
φk(x)φj(x)w(x) dx

︸ ︷︷ ︸

=δjkhj

.

By corollary 1.7 the integral on the left hand side is nonzero only if j = n− 1, n, n+ 1. This
yields

xφn(x) = γ(n, n− 1)φn−1(x) + γ(n, n)φn(x) + γ(n, n+ 1)φn+1(x)

and thus the existence of (1.2). Note that furthermore we have that

γ(n, j) =
1

hj

∫ b

a
xφn(x)φj(x)w(x) dx, j = n− 1, n, n + 1.

For (1.3) we consider the three term recurrence in the form

φn+1(x)− anxφn(x) = bnφn(x) + cnφn−1(x).
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On the right hand side we have a polynomial of degree n. Thus on the left hand side the
leading coefficients must cancel and so an = αn+1/αn. If we multiply the above equation by
φn−1(x)w(x) and integrate over (a, b), then by orthogonality we obtain

−an
∫ b

a
φn(x)xφn−1(x)w(x) dx

︸ ︷︷ ︸

=γ(n−1,n)hn

= cn

∫ b

a
φn−1(x)

2w(x) dx

︸ ︷︷ ︸

=hn−1

.

Summarizing this yields cn = − an
an−1

hn
hn−1

as claimed.

Remark 1.9. • The converse to theorem 1.8 also holds (under some restrictions) and
this result is due to Favard (1935) [7], however the proof is not constructive and the
weight function need not be a “regular” function.

• Dickinson, Pollak and Wannier (1956) [5] show how to construct the weight function
from the three term recurrence in certain special cases.

• Note that theorem 1.8 yields a recurrence and a closed form for hn given the recurrence
coefficients of the given sequence of orthogonal polynomials:

hn = −an−1

an
cnhn−1

= +
an−1

an

an−2

an−1
cncn−1hn−2

= . . .

= (−1)n a0
an
cncn−1 · · · c1h0.

(1.4)

Theorem 1.10. (Christoffel-Darboux) Let (φn(x))n≥0 be a sequence of orthogonal polynomi-
als. Then

n∑

k=0

1

hk
φk(x)φk(y) =

1

anhn

φn+1(x)φn(y)− φn(x)φn+1(y)

x− y . (1.5)

Proof. We start by considering the right hand side of (1.5). Using the three term recurrence
for φk+1(x) and φk+1(y), respectively, we obtain

φk+1(x)φk(y) = (akx+ bk)φk(x)φk(y) + ckφk−1(x)φk(y)

φk(x)φk+1(y) = (aky + bk)φk(x)φk(y) + ckφk(x)φk−1(y)

Subtracting these two lines gives

φk+1(x)φk(y)− φk(x)φk+1(y) = ak(x− y)φk(x)φk(y) + ck (φk−1(x)φk(y)− φk(x)φk−1(y)) .

In the next step we divide this equation by akhk and use that ck = − ak
ak−1

hk
hk−1

to obtain

1

akhk
(φk+1(x)φk(y)− φk(x)φk+1(y))

︸ ︷︷ ︸

=:ψk(x,y)

=
1

hk
(x− y)φk(x)φk(y)

− 1

ak−1hk−1
(φk−1(x)φk(y)− φk(x)φk−1(y))

︸ ︷︷ ︸

=ψk−1(x,y)

.
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We rewrite the above and sum over k = 0, . . . , n:

n∑

k=0

(ψk(x, y) − ψk−1(x, y)) = (x− y)
n∑

k=0

1

hk
φk(x)φk(y).

The left hand side telescopes to ψn(x, y) (using ψ−1(x, y) = 0) and since an = αn+1/αn we
have thus completed the proof.

The polynomials defined in theorem 1.10 are also called kernel polynomials and often
denoted by

kn(x, y) =

n∑

j=0

1

hj
φj(x)φj(y).

It can be shown that for α with −∞ < α ≤ a < ∞ the sequence (kn(x, α))n≥0 is orthogonal
with respect to the weight function (x−α)w(x). From the closed form expression of kn(x, y)
the following theorem is immediate.

Theorem 1.11.

n∑

j=0

1

hj
φj(x)

2 =
1

anhn

(
φ′n+1(x)φn(x)− φ′n(x)φn+1(x)

)
.

Proof. Insert ±φn+1(y)φn(y) on the right hand side in (1.5), regroup terms and pass to the
limit y → x.

1.5 Zeros of orthogonal polynomials

The last, but not least, of the surprising properties that we discuss here and that hold in
general for all families of orthogonal polynomials concern the roots of orthogonal polynomials.

Theorem 1.12. Let (φn(x))n≥0, φn ∈ R[x], be a sequence of orthogonal polynomials. Then
the zeros of φn(x) are all distinct and lie in (a, b).

Proof. For n = 0 nothing needs to be proven. So let n > 0. Then by orthogonality

∫ b

a
φn(x)w(x) dx = 0.

This means that φn(x) has to change signs in (a, b) at least once (recall that w(x) > 0).
Suppose it changes signs at x1 < x2 < · · · < xs ∈ (a, b). Obiviously the multiplicities of xi
have to be odd for 1 ≤ i ≤ s. Since deg φn(x) = n, we know that s ≤ n and we want to show
that in fact s = n.

Hence we assume that s < n and define ψs(x) = (x− x1) · · · (x− xs). By corollary 1.7:

∫ b

a
ψs(x)φn(x)w(x) dx = 0.

But then ψs(x)φn(x) has to change sign in (a, b), which cannot happen since ψs(x) and φn(x)
change sign in the exact same places. Thus s = n.
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zk zk+1

Φn+1

zk zk+1

Φn

Φn

Figure 1.2: φ′n+1(zk)φn(zk) > 0: case with φ′n+1(zk) < 0 and φn(zk) < 0

This, together with the closed form given in theorem 1.10, yields the following result:

Theorem 1.13. Let φn(x) be as before. The zeros of φn(x) and φn+1(x) separate each other.

Proof. Recall the closed form from theorem 1.11:
n∑

j=0

1

hj
φj(x)

2 =
1

anhn

(
φ′n+1(x)φn(x)− φ′n(x)φn+1(x)

)
.

From the left hand side of the identity it is obvious that the above is strictly greater 0. Assume
that an > 0, then

φ′n+1(x)φn(x)− φ′n(x)φn+1(x) > 0 (1.6)

Let z1 < z2 < · · · < zn+1 denote the (simple) roots of φn+1(x) and plug x = zk into (1.6) giving
φ′n+1(zk)φn(zk) > 0. This leaves two possible scenarios, one of which we depict in Figure 1.2.
In this case φ′n+1(zk) < 0 and φ′n+1(zk+1) > 0. Since we have only simple roots, φ′n+1(x)
has to change signs in (zk, zk+1). If we plug in x = zk+1 this yields φ′n+1(zk+1)φn(zk+1) > 0.
Thus also φn has to change signs in (zk, zk+1). The missing case distinctions are argued
analogously.

1.6 Gauß quadrature

Often and since long ago the need arises to approximate a definite integral that cannot be
evaluated exactly. Newton used the method of interpolating a function at n points and inte-
grating the interpolating function, which supposedly should be an easy-to-evaluate integral.
For instance, if the given function is approximated by a piecewise linear function we end up
with the trapezoidal rule. In the following we discuss a method that uses an approximation by
polynomials of higher degree. For this we introduce the Lagrange interpolation polynomial.

The goal is to construct a polynomial of degree n−1 that thake the given values y1, . . . , yn
at the given points x1 < x2 < · · · < xn. First we define the auxiliary polynomial

P (x) =
n∏

j=1

(x− xj)



⇒ P ′(x) =
n∑

k=1

∏

j 6=k
(x− xj)



 .

Using P (x) we can define the following polynomial of degree n− 1:

ℓj(x) =
P (x)

P ′(xj)(x− xj)
.

It is easy to see that ℓj(xi) = δij and that ℓ1(x), . . . , ℓn(x) forms a partition of unity.
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Example 1.14. Let x1 = −1, x2 = 0, x3 = 1, then

ℓ1(x) =
1

2
(x− 1)x,

ℓ2(x) = −(x− 1)(x+ 1),

ℓ3(x) =
1

2
x(x+ 1).

Now we are in the position to define the Lagrange interpolation polynomial for given interpo-
lation points xj and values yj:

Ln(x) =

n∑

j=1

yjℓj(x).

If we choose yj = f(xj) then Ln(x) is the polynomial of degree n − 1 that interpolates f
exactly at x = xj for 1 ≤ j ≤ n. Following Newton’s idea, we approximate the integral

∫ b

a
f(x)w(x) dx ≈

n∑

j=1

f(xj)

∫ b

a
ℓj(x)w(x) dx

︸ ︷︷ ︸

=:λj

. (1.7)

The λj defined above are called “quadrature weights”. Certainly this approximation is exact,
if f(x) is a polynomial of degree n− 1. This rises the question on how to measure the quality
of an approximation by a quadrature method (or numerical integration in general). One
possibility is to compare how big the class of functions is for which the approximation is
exact.

In (1.7) we use 2n parameters (xj , λj)
n
j=1 to achieve an approximation that is exact up to

degree n− 1. So there is clearly room for improvement. One freedom that we did not exploit
so far is the choice of the interpolation points xj.

Theorem 1.15. (Gauss quadrature) Let φn, w be as before and let x1 < x2 < · · · < xn be the
roots of φn(x). Then the weights

λj =

∫ b

a
ℓj(x)w(x) dx

are positive for 1 ≤ j ≤ n and for every f ∈ R[x] with deg f(x) ≤ 2n− 1 we have

∫ b

a
f(x)w(x) dx =

n∑

j=1

λjf(xj).

Proof. Let f ∈ K[x]. By the division algorithm we can write

f(x) = q(x)φn(x) + r(x), with deg r(x) ≤ n− 1.

Then f(xj) = r(xj) for all 1 ≤ j ≤ n and furthermore

∫ b

a
f(x)w(x) dx =

∫ b

a
q(x)φn(x)w(x) dx +

∫ b

a
r(x)w(x) dx.
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The first integral on the right hand side becomes zero, if deg q(x) ≤ n − 1 by corollary 1.7,
which is equivalent to the condition deg f(x) ≤ 2n− 1. Summarizing

∫ b

a
f(x)w(x) dx =

∫ b

a
r(x)w(x) dx,

and for polynomials up to degree n − 1 we know that Lagrange interpolation is exact and
thus the quadrature formula is exact.

Now for the positivity of the quadrature weights. Choose f(x) = ℓk(x)
2, then the degree

of f is 2n − 2. Arguing as before, we can apply the division algorithm and write f(x) =
q(x)φn(x) + r(x), with deg r(x) ≤ n− 1. Now, since f(xj) = r(xj) for all 1 ≤ j ≤ n, we have
that r(x) = ℓk(x). Hence

λk =

∫ b

a
ℓk(x)w(x) dx =

∫ b

a
r(x)w(x) dx =

∫ b

a
f(x)w(x) dx =

∫ b

a
ℓ2(x)w(x) dx > 0.

Remark 1.16. • Gauß considered w(x) ≡ 1; the corresponding orthogonal polynomials
are Legendre polynomials Pn(x).

• often used are also Chebyshev polynomials of the first kind Tn(x); in this case it can be
shown that λ1 = λ2 = · · · = λn and the approximation for f ∈ R[x] reduces to

∫ 1

−1
f(x)

dx√
1− x2

=
π

n

n∑

j=1

f

(

cos

(
2j − 1

2n
π

))

.

• the integration points and weights can be obtained by inserting sufficiently many linear
independent functions with known integrals and solving the resulting system of nonlinear,
algebraic equations.

• the quadrature formula qn(f) =
∑n

j=1 λjf(xj) converges if

1.

lim
n−>∞

qn(p) =

∫ b

a
p(x) dx, ∀ p ∈ R[x],

2.
n∑

j=1

|λj | < B, ∃ B > 0 ∀n ≥ 0.

Note that the second condition is satisfied trivially if λj > 0, since

n∑

j=1

λj =

∫ b

a
1 w(x) dx = b− a.

• the approximation can be improved using “Romberg integration”: Say we are given a
sequence cn → c ∈ R. Then the sequence 2c2n − cn approximates the limit one order
faster, i.e., if we have a look at the asymptotic expansion:

cn = c
(
1 + γ1

n + γ2
n2 + γ3

n3 + . . .
)

c2n = c
(
1 + γ1

2n + γ2
4n2 + γ3

8n3 + . . .
)

}

⇒ 2c2n − cn = c
(

1− γ2
2n2
− γ3

4n3
− . . .

)

This procedure can be applied iteratively.
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1.7 Approximation

Recall that we are always considerung proper weight functions. Then the inner product 〈·, ·〉w
induces a norm ‖f‖ :=

√

〈f, f〉w on the weighted L2-space L2
w(I).

Theorem 1.17. Suppose f ∈ L2
w(a, b), (φn(x))n≥0 a sequence of orthonormal polynomials

with respect to w. Furthermore, let

Q(x) =

n∑

k=0

akφk(x), an 6= 0.

Then the integral
∫ b

a
(Q(x)− f(x))2 w(x) dx

becomes minimal when ak =
∫ b
a f(x)φk(x)w(x) dx. Moreover

n∑

k=0

a2k ≤
∫ b

a
f(x)2w(x) dx. (1.8)

Proof. We start by calculating the squared L2
w-norm:

0 ≤
∫ b

a
(Q(x)− f(x))2w(x) dx =

∫ b

a

(
n∑

k=0

akφk(x)− f(x)
)2

w(x) dx

=

n∑

j,k=0

ajak

∫ b

a
φj(x)φk(x)w(x) dx

︸ ︷︷ ︸

δjk

−2
n∑

k=0

ak

∫ b

a
φk(x)f(x)w(x) dx +

∫ b

a
f(x)2w(x) dx

=
n∑

k=0

a2k − 2
n∑

k=0

ak

∫ b

a
φk(x)f(x)w(x) dx +

∫ b

a
f(x)2w(x) dx.

If we define the Fourier coefficients ck =
∫ b
a φk(x)f(x)w(x) dx and add and subtract

∑

k=0 c
2
k

then from the above it follows that

0 ≤
n∑

k=0

(ak − ck)2 +
∫ b

a
f(x)2w(x) dx−

n∑

k=0

c2k.

The right hand side becomes minimal, if ak = ck. With this choice we also have (1.8).

Remark 1.18.

For f ∈ L2
w(a, b) the computation of ak is well defined, since

∣
∣
∣
∣

∫ b

a
xkf(x)w(x) dx

∣
∣
∣
∣
<∞

by Cauchy-Schwarz inequality (proof: exercise).

Recall the definition of kernel polynomials (now for an orthonormal sequence, i.e. hn = 1)
kn(x, y) =

∑n
j=0 φj(x)φj(y). Kernel polynomials satisify the reproducing property: Let p ∈

K[x], deg p(x) ≤ n:
∫ b

a
p(x)kn(x, y)w(x) dx = p(y).
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Chapter 2

Special families of orthogonal

polynomials

Next we review some of the classicial families of orthogonal polynomials and some of their
characteristic properties.

2.1 Chebyshev polynomials

Definition 2.1. (Chebyshev polynomials of the first kind) For n ≥ 0, x = cos θ, 0 ≤ θ ≤ π,
we define Tn(x) = cos(nθ).

Some properties of Chebyshev polynomials that are immediate consequences of the defi-
nition are

Tn(1) = 1, Tn(−1) = (−1)n, |Tn(x)| ≤ 1, Tn(−x) = (−1)nTn(x),

for n ≥ 0. The orthogonality relation and the three term recurrence follow from elementary
results on trigonometric functions.

Theorem 2.2. For m,n ≥ 0 we have

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

= 0, m 6= n, (2.1)

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0, n ≥ 1, T0(x) = 1, T1(x) = x. (2.2)

Proof. For (2.1) substitute x = cos θ, (2.2) follows from the addition formula

2 cosmθ cosnθ = cos(m+ n)θ + cos(n−m)θ

for m = 1.

From the three term recurrence (2.2) and the initial values T0(x) = 1, T1(x) = x it follows
that Tn(x) have integer coefficients and that lc(Tn(x)) = 2n−1 for n ≥ 1. Note that the
addition formula used in the proof above gives a simple linearization formula for products of
Chebyshev polynomials:

Tn(x)Tm(x) =
1
2 (Tn+m(x) + Tn−m(x)) .

17
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The base case of a normal sequence of polynomials with a simple linearization formula is the
monomial basis φn(x) = xn:

φn(x)φm(x) = xnxm = xn+m = φn+m(x).

In general for a sequence of orthonormal polynomials the linearization formula is of the form

φn(x)φm(x) =
n+m∑

k=0

a(k,m, n)φk(x),

with a(k,m, n) =
∫ b
a φn(x)φm(x) · φk(x)w(x) dx. For classical orthogonal polynomials these

linearization coefficients are known.
One of the most important properties of Chebyshev polynomials of the first kind was

discovered by Chebyshev himself. The polynomial 2−n+1Tn(x) is the monic polynomial of
degree n that has the least deviation from zero.

Theorem 2.3. Let φn(x) be a monic polynomial of degree n s.t.

|φn(x)| ≤ 2−n+1 for − 1 ≤ x ≤ 1.

Then φn(x) = 2−n+1Tn(x).

Proof. The only thing we need to prove this theorem is that

Tn

(

cos
kφ

n

)

= cos kπ = (−1)k, 0 ≤ k ≤ n.

Consider the polynomial Q(x) = 2−n+1Tn(x) − φn(x). Since the leading coefficients cancel,
degQ(x) ≤ n − 1. Since by assumption |φn(x)| ≤ 2−n+1 at xk = cos kπn we must have
signQ(xk) = sign(Tn(xk)) for all 0 ≤ k ≤ n. Thus at the endpoints of [xk+1, xk] Q(x) has
different signs, so Q(x) has a root in each of these segments (see the left plot in figure 2.1.

QHxL

xk+1 xk xk-1

QHxL

xk+1 xk xk-1

QHxL

xk+1

xk
xk-1

Figure 2.1: Different cases for Q(x)

If Q(xk) = 0 then either xk is a double root as depicted in the middle plot, or either
within [xk+1, xk] or within [xk, xk−1] there is more than one root.

But there are exactly n segments, thus Q(x) has at least n roots which implies that Q
vanishes identically.

Chebyshev polynomials of the first kind are denoted by Tn(x) because of another common
transcript of his name “Tchebycheff” (also other spellings exist). The other types of Cheby-
shev polynomials are then named in alphabetical order, we will only discuss the second kind
here.
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-1.0 -0.5 0.5 1.0

-4

-2

2

4

Figure 2.2: Chebyshev polynomials of the second kind Un(x) for n = 0, 1, 2, 3

Definition 2.4. (Chebyshev polynomials of the second kind) For n ≥ 0, x = cos θ and
0 ≤ θ ≤ π we define

Un(x) =
sin(n+ 1)θ

sin θ
.

Again orthogonality and the three term recurrence follow from elementary identities on
trigonometric functions.

Theorem 2.5. For n,m ≥ 0 and −1 ≤ x ≤ 1 we have

∫ 1

−1
Un(x)Um(x)

√

1− x2 dx = 0, m 6= n, (2.3)

Un+1(x)− 2xUn(x) + Un−1(x) = 0, n ≥ 1, U0(x) = 1, U1(x) = 2x. (2.4)

Proof. analogous to theorem 2.2.

Note that the three term recurrence is the same as for Chebyshev polynomials of the first
kind, only the initial values differ. The first few instances of Chebyshev polynomials of the
second kind are given by:

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, and U3(x) = 4x(2x2 − 1).

Some immediate consequences of the definition are

lcUn(x) = 2n, Un(1) = n+ 1, Un(−x) = (−1)nUn(x),

for n ≥ 0 and that Un(x) have all integer coefficients. Also several identities relating Cheby-
shev polynomials of the first and second kind follow from trigonometric addition formulas,
like e.g.,

sin(α+ β) = sinα cos β + sinβ cosα (2.5)

cos(α+ β) = cosα cos β − sinα sin β (2.6)

If we plug in α = nθ, β = θ in (2.5), we obtain

sin(n + 1)θ = sinnθ cos θ + sin θ cosnθ |: sin θ
sin(n + 1)θ

sin θ
= cos θ

sinnθ

sin θ
+ cosnθ.
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With x = cos θ this yields
Un(x) = xUn−1(x) + Tn(x), (2.7)

and analogously choosing α = (n+ 1)θ and β = θ in (2.6) yields

Tn+2(x) = xTn+1(x)− (1− x2)Un(x). (2.8)

For the derivative of Tn(x) we have using x = cos θ, i.e., θ(x) = arccos x, i.e., θ′(x) = − 1√
1−x2 .

So, all in all,

T ′
n(x) = − sinnθ · nθ′(x) = n

sinnθ

sin θ
,

or in other words
T ′
n(x) = nUn−1(x). (2.9)

Plugging in (2.9) into (2.7) and (2.8), respectively, yields two identities relation Chebyshev
polynomials of the first kind with its derivatives:

Tn(x) =
1

n+ 1
T ′
n+1(x)−

x

n
T ′
n(x) (2.10)

(1− x2)T ′
n+1(x) = (n+ 1) (xTn+1(x)− Tn+2(x)) . (2.11)

Remark 2.6. W. Hahn (1935) showed that if the derivatives of orthogonal polynomials form
a set of orthogonal polynomials, then the original set were Jacobi, Hermite or Laguerre poly-
nomials.

2.2 Legendre polynomials

Legendre polynomials are orthogonal with respect to the constant weight function w(x) ≡ 1
and on the interval [−1, 1]. One common way to define them is using their representation
using the Rodrigues formula.

Definition 2.7. (Legendre polynomials) For n ≥ 0 and x ∈ [−1, 1] let

Pn(x) :=
(−1)n
2nn!

dn

dxn
(
1− x2

)n
.

From the definition it is obvious that Pn(x) are polynomials and that degPn(x) = n for
all n ∈ N, i.e., Legendre polynomials form a normal sequence.

Theorem 2.8. For n,m ≥ 0 and x ∈ [−1, 1] we have
∫ 1

−1
Pn(x)Pm(x) dx = 0, n 6= m, (2.12)

Pn(x) =

n∑

k=0

(
n

k

)2(x− 1

2

)n−k (x+ 1

2

)k

. (2.13)

Proof. For proving the orthogonality relation (2.12) we assume w.l.o.g. that n > m. Using
Rodrigues formula and partial integration we obtain

(−1)n
2nn!

∫ 1

−1
Dn
[
(1− x2)n

]
Pm(x) dx =

(−1)n
2nn!

[
Dn−1

[
(1− x2)n

]
Pm(x)

]1

x=−1

− (−1)n
2nn!

∫ 1

−1
Dn−1

[
(1− x2)n

]
P ′
m(x) dx.
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In the boundary term above the derivative of (1− x2)n vanishes for x = ±1 for n ≥ 0. If we
iterate this procedure, after k steps we have

∫ 1

−1
Pn(x)Pm(x) dx = (−1)k (−1)

n

2nn!

∫ 1

−1
Dn−k [(1− x2)n

]
Pm(x) dx.

For k = m+1, the kth derivative of Pm(x) vanishes and this yields the orthogonality for n > m.
By symmetry, this gives (2.12) for n 6= m.

For the derivation of the sum representation of Legendre polynomials we start again from
Rodrigues’ formula and employ Leibniz’ rule, i.e.,

Dn(fg) =
n∑

k=0

(
n

k

)

DkfDn−kg.

Pulling the factor (−1)n inside the derivative, we have in the first step

Pn(x) =
1

2nn!
Dn [(x− 1)n(x+ 1)n] =

1

2n
n!
∑

k=0

(
n

k

)

Dk [(x− 1)n]Dn−k [(x+ 1)n] .

Since

Dk [(x− 1)n] =
n!

(n− k)! (x− 1)n−k and Dn−k [(x+ 1)n] =
n!

k!
(x+ 1)k

collecting terms this yields (2.13).

Some immediate consequences from the sum representation are

Pn(x) = 1, Pn(−1) = (−1)n, and Pn(−x) = (−1)nPn(x),

for n ≥ 0. Having a sum representation at hand, the three term recurrence for Legendre
polynomials, the Legendre differential equation and mixed difference-differential relations can
be found algorithmically as we will see later in this lecture. For sake of completeness we
sketch how to obtain these results using classical methods.

Theorem 2.9. For n ≥ 0 and x ∈ [−1, 1] we have:

(2n+ 1)Pn(x) = P ′
n+1(x)− P ′

n−1(x) (2.14)

(n+ 1)Pn(x) = P ′
n+1(x)− xP ′

n(x) (2.15)

nPn(x) = xP ′
n(x)− P ′

n−1(x) (2.16)

(1− x2)P ′
n(x) = n [Pn−1(x)− xPn(x)] (2.17)

Furthermore, Legendre polynomials satisfy the three term recurrence

(n + 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0, (2.18)

with P−1(x) = 0 and P0(x) = 1, and they are a solution to the Legendre differential equation

(1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0. (2.19)
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Proof. (Sketch)
ad (2.14): Write the polynomials on the right hand side using Rodrigues’ formula:

P ′
n−1(x) =

(−1)n−1

2n−1(n− 1)!
Dn
[
(1− x2)n−1

]
,

P ′
n+1(x) =

(−1)n+1

2n+1(n+ 1)!
Dn
[
D2
[
(1− x2)n+1

]]
.

Carry out the inner differentiation and simplify P ′
n−1(x)− P ′

n+1(x).

ad (2.15): By Leibniz’ rule we have in operator notation that xD = Dx − 1 and a
repeated application of this rule yields xDm = Dmx − mDm−1. Apply this rule to the
identity (Exercise!)

P ′
n+1(x)− xP ′

n(x) =
(−1)n
2nn!

[
Dn+1

[
x(1− x2)n

]
+ xDn+1

[
(1− x2)n

]]
.

Identity (2.16) is just the difference of (2.14) and (2.15), and (2.17) follows from (2.15)
and (2.16).

To obtain the recurrence relation eliminate the derivatives using (2.16) and (2.17) and for
the differential equation, eliminate the differences using (2.15) and (2.16).

In remark 1.9 we derived an explicit formula for the weighted, squared L2-norm hn given
the three term recurrence:

hn = (−1)n a0
an
cncn−1 . . . c1h0.

By theorem 2.9, equation(2.18) we have that an = 2n+1
n+1 , cn = − n

n+1 . Hence with

hn = (−1)n 2(n+ 1)

2n+ 1

(

− n

n+ 1

)(

−n− 1

n

)

. . .

(

−1

2

)

h0

and h0 = 2 all in all we obtain that

∫ 1

−1
Pn(x)Pm(x) dx =

2

2n+ 1
δnm, n,m ≥ 0.

Another interesting property of Legendre polynomials can be derived from the Legendre
differential equation.

Theorem 2.10. Let n ≥ 2. The successive relative maxima of |Pn(x)|, when x increases
from 0 to 1 form an increasing sequence.

Proof. For the proof we will consider Pn(x)
2 instead of the absolute value since this function

shares the same properties but has the advantage of being differentiable. In the first step we
define an envelope fn(x) for Pn(x)

2 by

n(n+ 1)fn(x) = n(n+ 1)Pn(x)
2 + (1− x2)P ′

n(x)
2.

Since all expressions on the right hand side are non-negative fn(x) clearly is an upper bound
for Pn(x)

2. Furthermore for critical points z with P ′
n(z) we have that fn(z) = Pn(z) and also

on the endpoints of the interval fn(±1) = Pn(±1)2.
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In the second step we compute the first derivative of the envelope:

n(n+ 1)f ′n(x) = 2n(n + 1)Pn(x)P
′
n(x)− 2xP ′

n(x)
2 + 2(1 − x2)P ′

n(x)P
′′
n (x)

= 2P ′
n(x)

[
n(n+ 1)Pn(x)− xP ′

n(x) + (1− x2)P ′′
n (x)

]
.

Now we recall the Legendre differential equation (2.19)

(1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0.

Hence n(n+ 1)f ′n(x) = 2xP ′
n(x)

2 which is greater or equal to zero if 0 ≤ x ≤ 1.

One immediate consequence of this result is that Legendre polynomials are in absolute
value bounded by one, i.e., |Pn(x)| ≤ |Pn(x)| ≤ 1.

2.3 Jacobi polynomials

Jacobi polynomials are orthogonal with respect to the weight function w(x) = (1−x)α(1+x)β
for α, β > −1 on the interval [−1, 1]. We will also state their definition in terms of the
Rodrigues formula.

Definition 2.11. (Jacobi polynomials) For α, β > −1, −1 ≤ x ≤ 1 and n ≥ 0 define

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n
2nn!

dn

dxn

[

(1− x)n+α(1 + x)n+β
]

.

From the definition it is obvious that degP
(α,β)
n (x) = n for all n ∈ N.

Theorem 2.12. For n,m ≥ 0:

∫ 1

−1
(1− x)α(1 + x)βP (α,β)

n (x)P (α,β)
m (x) dx = 0, n 6= m.

Proof. Completely analogous to the proof of the orthogonality of Legendre polynomials, see
theorem 2.13 (Exercise).

We have already encountered some special cases of Jacobi polynomials:

• Legendre polynomials: α = β = 0, w(x) = 1, Pn(x) = P
(0,0)
n (x)

• Chebyshev polynomials of the first kind: α = β = −1
2 , Tn ≃ P

(− 1

2
,− 1

2
)

n (x) (equal up to
normalization)

• Chebyshev polynomials of the second kind: α = β = 1
2 , Un ≃ P

( 1
2
, 1
2
)

n (x)

Jacobi polynomials for α = β are also called Gegenbauer polynomials or ultraspherical poly-
nomials and are usually introduced using a different normalization. The relation to Jacobi
polynomials is given by

α = β = λ− 1
2 for λ > −1

2 : Cλn(x) =
(2λ)n
(
λ+ 1

2

)

n

P
(λ− 1

2
,λ− 1

2
)

n (x).

Starting from the Rodrigues formula using Leibniz rule also for Jacobi polynomials a sum
representation can be derived.
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Theorem 2.13. For n ≥ 0, α, β > −1 and −1 ≤ x ≤ 1:

P (α,β)
n (x) =

n∑

k=0

(
n+ α

k

)(
n+ β

n− k

)(
x− 1

2

)n−k (x+ 1

2

)k

.

Another commonly used sum representation for Jacobi polynomials is given by

P (α,β)
n (x) =

(α+ 1)n
n!

∑

k≥0

(−n)k(n+ α+ β + 1)k
(α+ 1)kk!

(
1− x
2

)k

. (2.20)

Note, that the sum above is finite because of the factor (−n)k in the numerator. Some
immediate consequences of these sum representations are

P (α,β)
n (1) =

(α+ 1)n
n!

, P (α,β)
n (−x) = (−1)nP (β,α)

n (x), and P (α,β)
n (1) = (−1)n (β + 1)n

n!
.

Derivatives of Jacobi polynomials are again Jacobi polynomials with shifted parameters which
is readily calculated. For n ≥ 0 we have using the sum representation (2.20)

d

dx
P (α,β)
n (x) =

(α+ 1)n
n!

∑

k≥0

(−n)k(n+ α+ β + 1)k
(α+ 1)kk!

k

(
1− x
2

)k−1(

−1

2

)

= −1

2

(α+ 1)n
n!

∑

k≥1

(−n)k(n+ α+ β + 1)k
(α + 1)k(k − 1)!

(
1− x
2

)k−1

.

Rewriting the Pochhammer symbols as (a)n+1 = a(a+ 1)n the above equals to

−1

2

(α+ 1)n
n!

(−n)(n+ α+ β + 1)

α+ 1

∑

k≥1

(−n+ 1)k−1(n+ α+ β + 2)k−1

(α+ 2)k−1(k − 1)!

(
1− x
2

)k−1

.

Cancelling and identifying the parameters on the right hand side we have thus obtained

Theorem 2.14. For n ≥ 0:

d

dx
P (α,β)
n (x) =

n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x).

Since Chebyshev polynomials can be written as Jacobi polynomials identity (2.9) is just
a special case of theorem 2.14. For Legendre polynomials it follows that that

P ′
n(x) =

n+ 1

2
P

(1,1)
n−1 (x).

Note that all identities in theorem 2.9 have generalizations to identities between different
families of Jacobi polynomials. Identities of this type can be found in many text books, in
the handbook of mathematical functions [1] or in online libraries such as the digital library
of mathematical functions (DLMF) or the Wolfram functions site. Later we will see how to
find or prove this type of relations in an algorithmic manner.
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So far we defined orthogonal polynomials on real intervals
only. In applications such as, e.g., finite element methods,
polynomial bases defined on simple geometric objects such
as squares or triangles are used. An orthogonal basis for the
space of bivariate polynomials defined on the unit square Q =
[−1, 1]2 that is orthogonalwith respect to the inner product

〈f, g〉L2Q =

∫

Q
f(x, y)g(x, y) d(x, y)

is given by the following tensor product construction using
Legendre polynomials:

φi,j(x, y) = Pi(x)Pj(y), i, j ≥ 0,

the plot illustrates the case i = 4, j = 3. Orthogonality fol-
lows from the orthogonality of the components on [−1, 1],
since

∫

Q
φi,j(x, y)φk,l(x, y) d(x, y) =

∫ 1

−1
Pi(x)Pk(x) dx

∫ 1

−1
Pj(y)Pl(y) dy =

2δik
2i+ 1

2δjl
2j + 1

.

If we want to construct an orthogonal basis on a triangle then we cannot directly proceed
by a tensor product construction, the following approach based on Dubiner [6] uses a tensor
product-like construction and uses properly chosen Jacobi polynomials.

We will consider the triangle T =
{

(x, y) | −1 ≤ y ≤ 1,−1−y
2 ≤ x ≤

1−y
2

}

(i.e., the tri-

angle with vertices (−1,−1), (1,−1) and (0, 1)) and view it as a collapsed version of the
square Q. Then the family of polynomials orthogonal with respect to the inner product

〈f, g〉L2(T ) =

∫

T
f(x, y)g(x, y) d(x, y)

is given by

φi,j(x, y) = Pi

(
2x

1− y

)(
1− y
2

)i

P
(2i+1,0)
j (y), i, j ≥ 0.

First of all note that the functions defined above are indeed polynomials because of the com-
pensating factor (1−y)i. In order to show orthogonality we compute the integral by decoupling
the integrands using a substitution that is commonly known as Duffy transformation:

z =
2x

1− y ⇒ dz =
2 dx

1− y .

First notice that the integration over the triangle amounts to

∫

T
φi,j(x, y)φk,l(x, y) d(x, y) =

∫ 1

−1

∫ 1−y

2

− 1−y

2

φi,j(x, y)φk,l(x, y) dx dy

By means of the Duffy substitution the integrals decouple and we obtain further

∫ 1

−1
Pi(z)Pk(z) dz

∫ 1

−1

(
1− y
2

)i+k+1

P
(2i+1,0)
j (y)P

(2k+1,0)
l (y) dy.
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Figure 2.3: Square collapsing to triangle with singular vertex marked and φ3,2(x, y)

Evaluating the integrals - first the integration with respect to z and then plugging in the
Kronecker delta and integrating with respect to y - we end up with

∫

T
φi,j(x, y)φk,l(x, y) d(x, y) =

2

2i+ 1

∫ 1

−1

(
1− y
2

)2i+1

P
(2i+1,0)
j (y)P

(2i+1,0)
l (y) dy

=
2

2i+ 1

1

i+ j + 1
δikδjl.

2.4 Hermite and Laguerre polynomials

Both families of orthogonal polynomials introduced next are closely related to probability
distributions. They differ from the previously discussed polynomials as they are defined over
infinite intervals.

2.4.1 Hermite polynomials

The function f(x) = e−x
2

defined over R = (−∞,∞) has many interesting properties such as
it essentially equals its own Fourier transform, i.e.,

f̂(x) =
1√
π

∫ ∞

−∞
f(t)e2ixt dt = f(x). (2.21)

Since the integral is well defined this is easy to be seen by first noting that

e2ixt = cos(2xt) + i sin(2xt).

The function f(x) is even, so is cosine, and sine is an odd function. Thus the integral over
the product f(x) sin(2xt) vanishes and exploiting the symmetry of f(t) cos(2xt) we thus have

f̂(x) =
2√
π

∫ ∞

0
f(t) cos(2xt) dt.

Differentiating the above identity with respect to x and integrating partially the differential
equation

d

dx
f̂(x) = −2xf̂(x)
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for f̂(x) can be determined. This together with the inital value f̂(0) =
√
π yields (2.21).

Furthermore the integral is uniformly convergent in any disk |x| < r and can be bounded
from above by

1√
π

∫ ∞

−∞
e−t

2

e2rt dt

on the disk. Thus the integral can be differentiated with respect to x and we have

d

dxn
e−x

2

=
(2i)n√
π

∫ ∞

−∞
e−t

2

tne2ixt dt. (2.22)

The polynomials that are orthogonal with respect to the normal distribution are the Hermite
polynomials and we state their definition again in terms of a Rodrigues type formula.

Definition 2.15. (Hermite polynomials) For n ≥ 0 define

e−x
2

Hn(x) = (−1)n d
n

dxn
e−x

2

.

From the definition it is immediate that Hn(x) is a polynomial of degree n for any n ≥ 0.
The first few instances are given by

H0(x) = 1, H1(x) = 2x, H2(x) = 2
(
2x2 − 1

)
, H3(x) = 4x

(
2x2 − 3

)
.

Together with the derivative of the Fourier integral (2.22) the definition immediately gives
the integral representation

Hn(x) =
(−2i)n√

π
ex

2

∫ ∞

−∞
e−t

2

tne2ixt dt (2.23)

for Hermite polynomials.Orthogonality can be shown again starting from the Rodrigues for-
mula using partial integration.

Theorem 2.16. For n,m ≥ 0 with n 6= m we have
∫ ∞

−∞
Hn(x)Hm(x)e

−x2 dx = 0.

By the general theory we know that Hermite polynomials thus also satisfy a three term
recurrence. In order to derive this recurrence relation we use the concept of generating
functions. In general, given a sequence (an)n≥0 we use as a different form of representation
its generating function F (z) defined formally as

F (z) =
∑

n≥0

anz
n.

By formally we mean that this is a pure encoding of the given sequence and is not considered
as a functional object in general. In particular this means that we do not require (or expect)
convergence. However, if feasible, we will use common functional notation to formally express
the given sequence. As the most simple example consider the constant sequence an = 1 for
n ≥ 0. It is widely known that

F (z) =
∑

n≥0

zn =
1

1− z ,
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and, in the sense described above, we will consider 1
1−z a representation of the sequence (an)n≥0.

Another simple example is the generating function of an = 1/n!,

F (z) =
∑

n≥0

zn

n!
= ez.

These objects are well defined in the ring of formal power series. Given a field K it is usually
denoted by K[[x]] and becomes a ring, e.g., with ′+′ defined as termwise addition, i.e.,

∑

n≥0

anz
n +

∑

n≥0

bnz
n =

∑

n≥0

(an + bn)z
n,

and ′·′ can defined, e.g., by the Cauchy product



∑

n≥0

anz
n








∑

n≥0

bnz
n



 =
∑

n≥0

(
n∑

k=0

akbn−k

)

zn.

It is easily verified that these operations turn K[[x]] into a ring. Note that also the generating
function of the sequence {an = n!}n≥0 is an element of this ring even if there is no analytic
function corresponding to the formal power series. Further details can be found, e.g., in [11].
Generating functions allow to operate with a given sequence on two levels, the sequence itself
or its functional represenation, to obtain new identities. This is what we will do now with
the sequence of Hermite polynomials.

The integral representation of Hermite polynomials (2.23) together with the formula for
the Fourier transform (2.21) gives a closed form representation for the generating function
of 1

n!Hn(x):

F (z) =
∑

n=0

Hn(x)

n!
zn =

1√
π
ex

2

∫ ∞

−∞

∑

n≥0

(−2itz)n
n!

e−t
2

e2ixt dt

=
1√
π
ex

2

∫ ∞

−∞
e−t

2

e2it(x−z) dt = e2xz−z
2

.

(2.24)

We can use this closed form to derive a sum representation of Hermite polynomials.

Theorem 2.17. For n ≥ 0 and x ∈ R

Hn(x) =

⌊n
2
⌋

∑

k=0

n!

k!(n − 2k)!
(−1)k(2x)n−2k.

Proof. Starting from the closed form representation of the generating function F (z) derived
in (2.24) the sum representation follows by carrying out the Cauchy product e2xze−z

2

and
comparing coefficients:

e2xze−z
2

=
∑

n≥0

(2x)n

n!
zn
∑

n≥0

(−1)n
n!

zn

=
∑

n≥0

⌊n
2
⌋

∑

k=0

(−1)k
k!

(2x)n−2k

(n− k)! z
n.
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Some immediate consequences of the sum representation are

Hn(−x) = (−1)nHn(x), H2n+1(0) = 0, H2n(0) = (−1)n.

Further identities on Hermite polynomials can be obtained by (formally) differentiating the
generating function F (z). It is easily verified that

F ′(z) = (2x− 2z)F (z).

On the series level, the left hand side reads as

F ′(z) =
∑

n≥1

Hn(x)

(n− 1)!
zn−1 =

∑

n≥0

Hn+1(x)

n!
zn,

and for the right hand side we have

(2x− 2z)F (z) =
∑

n≥0

2xHn(x)

n!
zn −

∑

n≥1

2nHn−1(x)

n!
zn.

Comparing coefficients on both sides yields for n ≥ 1 the three term recurrence for Hermite
polynomials,

Hn+1(x) = 2xHn(x)− 2nHn−1(x),

with initial values H0(x) = 1, H1(x) = 2x. This recurrence can be extended to n ≥ 0
with H−1(x) = 0. The weighted L2-norm can again be derived using the formula from
remark 1.9:

hn = (−1)n a0
an
cn · · · · · c1h0 = 2nn!

√
π,

since h0 =
∫∞
−∞ e−x

2

dx =
√
π. If we take the derivative of F (z) with respect to x, then we

obtain
d

dx
F (z) =

∑

n≥0

H ′
n(x)

n!
zn,

and on the closed form side by shifting the summation index

d

dx
e2xz−z

2

= 2ze2xz−z
2

=
∑

n≥0

2Hn(x)

n!
zn+1 =

∑

n≥1

2nHn(x)

n!
zn.

By coefficient comparison it follows that derivatives of Hermite polynomials are again Hermite
polynomials, i.e.,

H ′
n(x) = 2nHn−1(x), n ≥ 1, (2.25)

which can be extended to n ≥ 0 using H−1(x) = 0.

2.4.2 Laguerre polynomials

We conclude the introduction of the classical families of orthogonal polynomials with Laguerre
polynomials Lαn(x) that are defined on [0,∞) and orthogonal with respect to the gamma
distribution, i.e., with respect to the weight function wα(x) = xαe−x for α > −1.
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Definition 2.18. (Laguerre polynomials) For α > −1, x ≥ 0, n ≥ 0, let

xαe−xLαn(x) =
1

n!

d

dxn
[
xn+αe−x

]
.

From the definition it is obvious that Lαn(x) is a polynomial of degree n for each n ≥ 0.
The first few instances are given by

Lα0 (x) = 1, Lα1 (x) = 1−x, Lα2 (x) =
1
2

(
x2 − 4x+ 2

)
, Lα3 (x) =

1
6

(
−x3 + 9x2 − 18x + 6

)
.

Starting from Rodrigues formula (definition 2.18) the orthogonality relation and a sum rep-
resentation for Laguerre polynomials are easily derived.

Theorem 2.19. For n,m ≥ 0, α > −1 and x ≥ 0 we have

∫ ∞

0
Lαn(x)L

α
m(x)x

αe−x dx = 0, for n 6= m, Lαn(x) =
(α+ 1)n

n!

n∑

k=0

(−n)k
(α+ 1)kk!

xk.

Proof. The orthogonality relation follows by partial integration and the sum representation
using Leibniz formula.

Most common is the special case α = 0, i.e., the polynomials orthogonal with respect to
w(x) = e−x and they are usually simply denoted by

Ln(x) := L0
n(x) =

n∑

k=0

(−n)k
(k!)2

xk.

Starting from the sum representation it is more or less straight forward to derive a closed
form for the generating function of Laguerre polynomials:

F (x; z) =
∑

n≥0

Lαn(x)z
n =

1

(1− z)α+1
exp

(

− xz

1− z

)

. (2.26)

In the first step we plug in the sum representation and use that (−n)k = (−1)knk =
(−1)k n!

(n−k)! and obtain

F (x; z) =
∞∑

n=0

(α+ 1)n
n!

n∑

k=0

n!

(n − k)!
1

(α+ 1)kk!
(−x)kzn.

Then we can exchange the order of summation and shift the summation index of the inner
sum

F (x; z) =
∞∑

k=0

(−x)k
(α+ 1)kk!

∞∑

n=k

(α+ 1)n
(n− k)! z

n =
∞∑

k=0

(−xz)k
(α+ 1)kk!

∞∑

n=0

(α+ 1)n+k
k!

zn

The ratio of Pochhammer symbols
(α+1)n+k

(α+1)k
can be rewritten as (α+ k + 1)n and we can use

the (generalized) binomial theorem (proof is left as an exercise)

∑

n≥0

(a)n
n!

zn = (1− z)−a.
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Together with the series expansion for the exponential function this concludes the proof:

F (x; z) =

∞∑

k=0

(−xz)k
k!

∞∑

n=0

(α+ k + 1)n
n!

zn = (1− z)−α−1
∞∑

k=0

1

k!

(

− xz

1− z

)k

.

The closed form representation of the generating function gives us a way to derive the three
term recurrence of Laguerre polynomials and a mixed difference-differential relation analo-
gously to the derivation for Hermite polynomials.

Theorem 2.20. For n ≥ 1, x ≥ 0 and α > −1 we have

(n+ 1)Lαn+1(x) + (x− 2n− α− 1)Lαn(x) + (n+ α)Lαn−1(x) = 0,

with Lα0 (x) = 1, Lα1 (x) = 1− x, and furthermore

d

dx

(
Lαn−1(x)− Lnα(x)

)
= Lαn−1(x).

Proof. To prove the recurrence relation we first observe that the generating function F (x; z)
satisfies the differential equation

(1− z)2 d
dz
F (x; z) = (−x+ (α+ 1)(1 − z))F (x; z).

For the left hand side we obtain by termwise differentiation and shifting summation indices
that

(1− z)2 d
dz
F (x; z) =

∑

n≥0

(n+ 1)Lαn+1(x)z
n −

∑

n≥0

2nLαn(x)z
n +

∑

n≥0

nLαn(x)z
n+1.

Similarily we derive for the right hand side

(−x+ (α+ 1)(1− z))F (x; z) =
∑

n≥0

(−x+ (α+ 1))Lαn(x)z
n −

∑

n≥0

(α+ 1)Lαn(x)z
n+1.

Comparing coefficients for n ≥ 1 on both sides yields the three term recurrence.

For the derivation of the mixed relation we differentiate the generating function with
respect to x and obtain this way that

(z − 1)
∂

∂x
F (x; z) = zF (x; z).

Plugging in and shifting summation indices accordingly gives the result.

It is possible to express Hermite polynomials in terms of Laguerre polynomials. In par-
ticular, we have for m ≥ 0 that

H2m(x) = (−1)m22mm!L−1/2
m (x2), (2.27)

and

H2m+1(x) = (−1)m22m+1m!xL1/2
m (x2). (2.28)
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We will only show the even case here, i.e., we show that for some constant C = C(m) we have

that H2m(x) = C(m)L
−1/2
m (x2). For this it is sufficient to show that for any polynomial q(x)

with degree less than 2m the orthogonality condition

∫ ∞

−∞
L−1/2
m (x2)q(x)e−x

2

dx = 0 (2.29)

holds. Laguerre polynomials Lαm(x
2) are obviously even on R and so the integral vanishes if

q is odd. However, any polynomial q(x) can be written as the sum of its odd and even part,
i.e., it can be split into

qodd(x) =
1
2 (q(x)− q(−x)) , and qeven(x) =

1
2 (q(x) + q(−x)) .

Hence we can restrict ourselves to even polynomials which, in turn, can be written as q(x) =
r(x2) for some polynomial r of degree less thanm. If we substitute s = x2 in the integral (2.29)
this yields ∫ ∞

−∞
L−1/2
m (x2)q(x)e−x

2

dx =
1

2

∫ ∞

0
L−1/2
m (s)r(s)e−ss−1/2 ds,

which vanishes by the orthogonality of Laguerre polynomials.
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Symbolic computation

Orthogonal polynomials belong to the class of holonomic functions - a class for which over
the past decades several algorithms were developed that are capable of solving problems as
finding closed forms for sums or integrals. What we understood as “closed form” depends
on the context - it may be an explicit, short form, it may be a description in terms of a
defining difference or differential equation. For further reading we refer, e.g., to the textbooks
of Petkovšek, Wilf and Zeilberger [14], Kauers and Paule [11] or Wilf [22].

3.1 The holonomic universe

The ring of formal power series that we introduced in the section on Hermite polynomials
is part of the holonomic universe. We can choose between defining holonomicity from the
generating functions point of view or from the sequence level. We do the latter.

Definition 3.1. A sequence (an)n≥0 over a field K is called holonomic iff there exist poly-
nomials q0, . . . , qd ∈ K[x], qd 6= 0, such that for all n ∈ N

q0(n)an + q1(n)an+1 + · · ·+ qd(n)an+d = 0.

If all the qi are constant (i.e., from the ground field K), then we refer to the sequence as
C-finite, otherwise also as P-finite.

The integer d in the definition above is called the order of the recurrence. A particular
instance of holonomic sequences are sequences that satisfy recurrence relations of order 1, i.e.,
sequences whose shift quotient is a rational function.

Definition 3.2. A sequence (an)n≥0 with elements in K is called hypergeometric over K, if
there exist polynomials p, q ∈ K[x] such that the linear relation

p(n)an+1 + q(n)an = 0

is satisfied for all n ≥ 0. A bivariate sequence (a(n, k))n,k≥0 is called hypergeometric if it is
hypergeometric in both variables n and k.

A hypergeometric term a(n, k) is called proper hypergeometric over K if the polynomials
pi, qi ∈ K[x, y] satisfying

p1(n, k)a(n + 1, k) + p0(n, k)a(n, k) = 0, q1(n, k)a(n, k + 1) + q0(n, k)a(n, k) = 0,

split into integer linear factors of the form αn+ βk + γ, α, β ∈ Z, γ ∈ K.

33
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We have encountered hypergeometric sequences as coefficients in the sum representation
of orthogonal polynomials. In theorem 2.8 we showed that Legendre polynomials can be
expanded as

Pn(x) =

n∑

k=0

cn,k(x) =

n∑

k=0

(
n

k

)2(x− 1

2

)n−k (x+ 1

2

)k

.

The shift quotient of cn,k(x) in the summation variable k is given by

cn,k+1(x)

cn,k(x)
=

(n− k)2
(k + 1)2

x+ 1

x− 1
,

which is a rational function over the field K(n, x). It is even proper hypergeometric in n and
k since also

cn+1,k(x)

cn,k(x)
=

(n+ 1)2(x− 1)

2(n − k + 1)2
.

The holonomicity of elements of the ring of formal power series is defined via holonomicity of
the coefficient sequence.

Definition 3.3. A formal power series f(x) =
∑

n≥0 anx
n ∈ K[[x]] is called holonomic, iff

(an)n≥0 is a holonomic sequence.

Holonomic sequences were defined as solutions to linear difference equations with polyno-
mial coefficients. Analogously, holonomic functions can be characterized as solutions to linear
differential equations with polynomial coefficients.

Lemma 3.4. A formal power series f(x) =
∑

n≥0 anx
n is holonomic if and only if there exist

polynomials p0, . . . , pd ∈ K[x], pd 6= 0, such that

p0(x)f(x) + p1(x)f
′(x) + · · ·+ pd(x)f

(d)(x) = 0.

Proof. The link for transferring the difference equation satisfied by an to a differential equation
satisfied by f(x) (and vice versa) is Dk

xx
n = nkxn−k. If the coefficients qi(n) are expanded

in the basis of falling factorials, then the conversion boils down to a mere rewriting. The
maximal degree of the coefficients in the difference equation translates into the order of the
differential equation. Details are left as an exercise.

Already for Hermite polynomials we have used this equivalence to derive the three term
recurrence

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

starting from the differential equation of the generating function F (z) =
∑

n≥0Hn(x)
zn

n! . As
an example we compute the closed form for the generating function of Chebyshev polynomials
of the first kind starting from their defining difference equation.

Example 3.5. Let F (z) =
∑

n≥0 Tn(x)z
n, where Tn(x) denote the Chebyshev polynomials of

the first kind defined by

Tn+2(x)− 2xTn+1(x) + Tn(x) = 0, T0(x) = 1, T1(x) = x.
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In order to derive the closed form for F (z) we first multiply the equation above by zn+2 and
then we sum over all n ∈ N:

∑

n≥0

Tn+2(x)z
n+2 − 2x

∑

n≥0

Tn+1(x)z
n+2 +

∑

n≥0

Tn(x)z
n+2 = 0.

By shifting summation indices and using the definition of F (z), the above can be rewritten as

(F (z) − xz − 1)− 2xz (F (z)− 1) + z2F (z) = 0.

The initial values of Chebyshev polynomials enter in the compensating terms above. Solving
this (differential) equation yields the closed form solution

F (z) =
1− xz

1− 2xz + z2
.

Note that for any C-finite sequence the generating function is a rational function. Holo-
nomic objects are closed under certain operations, some of which are summarized in the
following theorem.

Theorem 3.6. Let (an)n≥0 and (bn)n≥0 be holonomic sequences. Then the sequence (cn)n≥0

defined by

cn = an + bn (3.1)

cn = an · bn (3.2)

cn =
n∑

k=0

akbn−k (3.3)

(3.4)

is holonomic. If both an and bn are C-finite sequences, then so is cn.

Proof. By definition there exist rational functions q0, . . . , qd ∈ K(x), not all zero, such that

an+d + qd−1(n)an+d−1 + · · ·+ q0(n)an = 0, n ≥ 0.

Repeated use of this recurrence shows that for any k ≥ 0 fixed the shifted sequence (an+k)n≥0

can be expressed as linear combination of (an)n≥0, . . . , (an+d−1)n≥0 over the field K(n). In
other words, they belong to a K-vector space of dimension at most d. In the same way,
the shifted sequences (bn+k)n≥0 for k ≥ 0 fixed belong to the K(n)-vector space spanned by
(bn)n≥0, . . . , (bn+e−1)n≥0.

The proof for each of the sequences (3.1)–(3.3) now follows the same pattern as the
following argument for the termwise addition. Let

(cn)n≥0 = (an)n≥0 + (bn)n≥0.

Then the sequence (cn)n≥0 belongs to the K(n)-vector space generated by

(an)n≥0, . . . , (an+d−1)n≥0, (bn)n≥0, . . . , (bn+e−1)n≥0,

since this vector space contains all the shifted sequences (an+k)n≥0 and (bn+k)n≥0. The
dimension of this space is at most d+ e. Hence, any d+ e+ 1 sequences (cn+k)n≥0 must be
linearly dependent.
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Both, the translation between recurrence relation of a holonomic sequence to the differ-
ential equation of a holonomic function, and the proof of the closure properties above are
constructive and can be turned into an algorithm. These algorithms are implemented in dif-
ferent packages, such as GeneratingFunctions [15] or HolonomicFunctions [12] in Mathematica
or gfun [18] in Maple. We illustrate how the recurrence of the sum of two sequences can be
computed with a simple example.

Example 3.7. Define qn(x) = Tn(x)+pn(x), where Tn(x) denote the Chebyshev polynomials
of the first kind defined by

Tn+2(x)− 2xTn+1(x) + Tn(x) = 0, T0(x) = 1, T1(x) = x,

and pn(x) = (1 + x)n, i.e., the sequence defined by

pn+1(x)− (1 + x)pn(x) = 0, p0(x) = 1.

Chebyshev polynomials satisfy a difference equation of order 2 and the polynomials pn(x)
satisfy a difference equation of order 1. Hence, any 2 + 1 + 1 = 4 shifts of qn(x) have to be
linearly dependent. Thus there has to exist an equation of the form

c3qn+3(x) + c2qn+2(x) + c1qn+1(x) + c0qn(x) = 0.

Plugging in the definition of qn(x) and using the defining recurrences for shifts of Tn(x) and
pn(x) we obtain the following system of equations for the shifts of qn:

qn+3(x) = (4x2 − 1)Tn+1(x)− 2xTn(x) + (1 + x)3pn(x)

qn+2(x) = 2xTn+1(x)− Tn(x) + (1 + x)2pn(x)

qn+1(x) = Tn+1(x) + (1 + x)pn(x)

qn(x) = Tn(x) + pn(x).

Thus the coefficients (c0, c1, c2, c3) have to appear in the nullspace of the matrix





4x2 − 1 2x 1 0
−2x −1 0 1

(1 + x)3 (1 + x)2 1 + x 1



 .

This nullspace can be computed and readily we obtain that

c0(x) = 1 + x, c1(x) = −1− 2x− 2x2, c2(x) = 1 + 3x, and c3(x) = −1.

An immediate consequence of the closure properties for holonomic sequences and the
definition of holonomicity of generating functions is that given f, g holonomic also f + g,
fg, f ′(x), etc. are holonomic. Implicitly, we have introduced a data structure to represent
sequences or functions that allows also to represent the results under certain transformations.

For his master thesis [15], Christian Mallinger implemented the execution of closure prop-
erties in the Mathematica package GeneratingFunctions. This package as well as the master
thesis are available for download at

http://www.risc.jku.at/research/combinat/software/
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Using Mallinger’s package example 3.7 can be solved using the “REPlus” command. Con-
cerning the syntax it is necessary to specify both given sequences that shall be added using
the same parameters and also the output will be given in these terms. After loading the
package, we call REPlus with the defining recurrences for Tn(x) and pn(x) as input and use
as common notation for both q[n] (omitting the dependency on x since it is not relevant in
our context).

In[1]:= << GeneratingFunctions.m

GeneratingFunctions Package by Christian Mallinger – c© RISC Linz – V 0.67 (03/13/03)
In[2]:= REPlus[q[n + 2] − 2xq[n + 1] + q[n] == 0, q[n+ 1] − (1 + x)q[n] == 0, q[n]]

Out[2]=
(

2x2 + 2x+ 1
)

q[n+ 1] + (−x− 1)q[n] + (−3x− 1)q[n+ 2] + q[n+ 3] == 0

Closure properties are implemented on both, the sequence and the function level. The
corresponding commands are, e.g., REPlus and DEPlus, RECauchy and DECauchy, ... Also
switching between difference equation of the coefficient sequence and differential equation
of the generating function is possible using the RE2DE or DE2RE commands. We use
RE2DE to derive a closed form for the generating function of Legendre polynomials F (z) =
∑

n≥0 Pn(x)z
n. As input we give the Legendre three term recurrence (2.18).

In[3]:= ode = RE2DE[{(n + 2)p[n + 2] − (2n + 3)xp[n + 1] + (n + 1)p[n] == 0, p[0] == 1,

p[1] == x}, p[n], F [z]]

Out[3]=
{

F [z](−(x− z))−
(

2xz − z
2 − 1

)

F
′[z] == 0, F [0] = 1

}

In[4]:= DSolve[ode, F [z], z]

Out[4]=

{{

F [z] → 1√
−2xz + z2 + 1

}}

Using the Mathematica built-in command DSolve we can solve the resulting ordinary
differential equation (ODE) and obtain this way the closed form for F (z). Note that for
this type of transformations it is advised to specify also the initial values. Not adding this
information will lead to an unnecessary increase of the order of the differential equation,
because then the lower coefficients are removed by differentiating the whole equation. In the
example of the Legendre generating function the computation without initial values of the
recurrences works, but returns an ODE of order 3.

Some expressions can be dealt with by a series of closure properties. For instance, if we
consider the sum

sn(x) =
n∑

k=0

2k + 1

2
Pk(x).

Looking back at chapter 2, we find that this are the Legendre kernel polynomials for y = 1
and we know by Christoffel-Darboux that a closed form for this sum exists in general. If we
define the coefficients ck =

2k+1
2 then this sequence is defined by (2k+1)ck+1− (2k+3)ck = 0

and c0 = 1
2 . A recurrence for the sum can be determined by first computing a recurrence

for the Hadamard product dk = ckPk(x) and then computing the partial sum as the Cauchy
product of dk and the constant sequence 1.

In[5]:= prod = REHadamard[{(n + 2)s[n + 2] − (2n + 3)xs[n + 1] + (n + 1)s[n] == 0,

s[0] == 1, s[1] == x}, {(2n + 1)s[n + 1] − (2n + 3)s[n] == 0, s[0] ==
1

2
}, s[n]]



38 Chapter 3. Symbolic computation

Out[5]= {(1+n)(5+2n)s[n]− (1+2n)(5+2n)xs[1+n]+ (2+n)(1+2n)s[2+n] == 0, s[0] ==
1

2
, s[1] ==

3x

2
}

In[6]:= sum = RECauchy[prod, {s[n + 1] − s[n] == 0, s[0] == 1}, s[n]]

Out[6]= {−(2n+ 7)s[n+ 1](2nx + n+ 3x+ 2) + (2n+ 3)s[n+ 2](2nx+ n+ 7x+ 3) + (n+ 2)(2n+ 7)s[n]

− (n+ 3)(2n+ 3)s[n+ 3] = 0, s[0] =
1

2
, s[1] =

3x

2
+

1

2
, s[2] =

15x2

4
+

3x

2
− 3

4
}

Using closure properties to compute recurrences for compound sequences does not yield the
minimal recurrences. In fact in the example above we overshoot already. For many questions
it is not essential to have the smallest possible recurrence, e.g., if we are interested in proving
a certain identity. However, if we want to use, e.g., the recurrence for fast computation we
might prefer the smallest possible recurrence.

One way of finding a smaller recurrence is to guess it. Guessing is another feature imple-
mented in GeneratingFunctions. Given a data set, it tries to solve for polynomial coefficients
of a difference equation satisfied by the given input. For this purpose an assumed order of the
recurrence d and a maximal degree K for the polynomial coefficients is assumed. The data is
plugged in the generic ansatz

c0(n)an + . . . cd(n)an+d = 0, with ci(n) =

K∑

k=0

γi,kn
k,

and we try to solve the resulting system for the coefficients (γi,k)
d,K
i=0,k=0. First of all, this

system need not have a solution, either in general or because the order and degree bound
were chosen to low. Secondly, the result is an equation that is a priori satisfied by the given
input only. If we want to use it to describe the given sequence, we need to still prove it. On
the other hand, proving is often easier than finding. We continue the example from above
and will first guess a shorter recurrence and then verify this guess using the bigger recurrence
(that is certified).

In[7]:= data = Table[Sum[LegendreP[k, x](2k + 1)/2, {k, 0, n}], {n, 0, 30}]//Factor;

In[8]:= guess = GuessRE[data, s[n]]

Out[8]= {{(2 + n)(5 + 2n)s[n] + (−1− 15x− 16nx − 4n2
x)s[1 + n] + (2 + n)(3 + 2 ∗ n)s[2 + n] == 0,

s[0] ==
1

2
, s[1] ==

1 + 3x

2
}, ”ogf”}

In order to prove that this is actually the recurrence satisfied by sn(x), we compute the
recurrence of the difference of the guessed sequence and the certified sequence obtained via
closure properties. Since any sequence (an)n≥0 and its negated version (an)n≥0 satisfy the
same recurrence only with different initial values, we only need to flip the initial values of the
guess for computing the difference of the two sequences.

In[9]:= REPlus[sum, {guess[[1, 1]], s[0] == −
1

2
, s[1] == −

1 + 3x

2
}, s[n]]

Out[9]= {−((2 + n)(7 + 2n)s[n]) + (7 + 2n)(2 + n+ 3x+ 2nx)s[1 + n]− (3 + 2n)(3 + n+ 7x+ 2nx)s[2 + n] +

(3 + n)(3 + 2n)s[3 + n] == 0, s[0] == 0, s[1] == 0, s[2] == 0}

Since the initial values are all zero, the difference of the two sequences must be zero and
hence they are equal. Thus we have proved the guessed recurrence. For sake of shorter pre-
sentation we have already simplified the initial values in the Mathematica output above. The
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actual output of GeneratingFunctions gives the unfactored initial values. Mallinger’s package
only deals with univariate sequences and if not specified otherwise using the corresponding
option, the default bounds are 2 for the order and 3 for the degree. Often it is necessary
to raise these bounds. Manuel Kauers implemented the Mathematica package Guess (also
available for download) that can handle also multivariate input.

3.2 Gosper’s algorithm

Next we turn to algorithms that deal with summation other than exploiting closure properties.
The first method we discuss is Gosper’s algorithm [8] that is capable of deciding whether
a given hypergeometric term can be summed indefinitely to a closed form in terms of a
hypergeometric expression. Before we introduce Gosper’s algorithm, we briefly go back one
level and show how to sum polynomials in closed form, i.e., find s ∈ K[x] such that given
p ∈ K[x],

s(n) =

n∑

k=0

p(k).

In other words, the problems we are addressing in this section are finding antidifferences of
given expressions. This problem is very similar to indefinite integration, i.e., if we are given
a function f(x) and we know (or can find) F (x) such that F ′(x) = f(x), then clearly

∫ b

a
f(x) dx = F (b)− F (a).

In the same way, if we are given a summand f(k) and are able to determine F (k) such that
F (k + 1)− F (k) = f(k) then by telescoping

b∑

k=a

f(k) = F (b+ 1)− F (a).

In the following we will frequently denote the forward shift with respect to a variable k by
Sk, i.e., SkF (k) = F (k+1), and the forward difference by △kF (k) = F (k+1)−F (k). If the
variable is clear from the context, we simply write △ = △k or S = Sk.

The first observation concerning solving the problem of finding the antidifference for poly-
nomials is the analogy of forward difference operating on falling factorials to differentiating
monomials. For d ≥ 0 we have

△nd = (n+ 1)d − nd
= (n+ 1)n · · · · · (n+ 1− d)(n + 1− d+ 1)− n(n− 1) · · · · · (n− d+ 1)

= n(n− 1) · · · · · (n− d+ 2) ((n+ 1)− (n− d+ 1))

= dnd−1.

A simple consequence is that

n∑

k=0

kd =

n∑

k=0

1

d+ 1
△kd+1 =

1

d+ 1
(n+ 1)d+1.
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Since any polynomial can be expressed in the basis of falling factorials a sum over a polynomial
summand can be evaluated by a basis transfer and repeated application of the summation
identity above. As a by-product, this also shows that if s(n) =

∑n
k=0 p(k), where p is a

polynomial of degree d, then s is a polynomial of degree d + 1. This gives another way of
evaluating sums over polynomials, namely by interpolation.

The problem we address next is:

When is the sum over a hypergeometric term again hypergeometric?

As opposed to polynomials for hypergeometric input the sum need not always be hypergeo-
metric again. The harmonic numbers defined as

Hn =

n∑

k=1

1

k

are a simple counter example. The summand is rational (and as such a special case of a hy-
pergeometric term), the harmonic numbers however are neither rational nor hypergeometric.
Let in the following fk be a given hypergeometric term, i.e., there exists a rational function
u such that fk+1 = u(k)fk (wherever u(k) is defined). The output of our consideration will
be either a rational function w such that sk = w(k)fk satisfies the telescoping equation

fk = sk+1 − sk, (3.5)

and as such solves our summation problem, or the answer “NO hypergeometric solution to
the telescoping problem (3.5) exists”. Again, note that this is a decision procedure. If a
hypergeometric solution exists, it can be determined by Gosper’s algorithm. First of all, it
is easy to verify that if a hypergeometric solution to (3.5) exists, then it has to be a rational
multiple of the given summand, since

sk
fk

=
sk

sk+1 − sk
=

1
sk+1

sk
− 1

which is the rational function w we are looking for. Dividing the telescoping equation through
fk we arrive at the new problem of finding w ∈ K(x) such that

1 = w(k + 1)u(k) − w(k). (3.6)

So we already reduced the problem of finding a hypergeometric solution to (3.5) to finding
a rational solution to (3.6). And we are going to reduce further. The key is to determine a
Gosper form for the given u:

u(x) =
p(x+ 1)

p(x)

q(x)

r(x+ 1)
, (3.7)

where p, q, r ∈ K[x] and q, r are such that

gcd (q(x), r(x+ j)) ∈ K, j ∈ N∗. (3.8)

This Gosper form is not uniquely defined, but any representation satisfying the above con-
straints will do the job as we will see below. First we show how to compute such a factorization.
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We start by representing u(x) = s(x)
t(x) with s, t being two relatively prime polynomials. If s, t

satisfy the shift condition (3.8) then we are done and

q(x) = s(x), r(x) = t(x− 1), and p(x) = 1.

In order to check whether (3.8) is satisfied (or to find the values for which it is violated), we
use resultants. Given two polynomial p, q with full factorization

p(x) = (x− r1) · · · · · (x− rm) and q(x) = (x− s1) · · · · · (x− sn),

we can define the resultant resx(p, q) as

resx(p, q) =
m∏

i=1

n∏

j=1

(ri − sj),

i.e., as the evaluation of one polynomial at the roots of the other one. Resultants are imple-
mented in all major computer algebra systems. Compute the resultant

R(j) = resx (s(x), t(x+ j)) .

R(j) is a polynomial such that R(j̃) = 0 if and only if gcd
(
s(x), t(x+ j̃)

)
is a non constant

polynomial. Thus the positive integer roots of R are precisely the values violating (3.8).
These factors x− j̃ are factored out of s and t and put into p (possibly including compensating
factors). The procedure can be iterated until we arrive at a Gosper form of u.

Currently we are looking for a rational w satisfying (3.6). We refine the ansatz for w and
search for y ∈ K(x) such that

w(k) =
r(k)

p(k)
y(k)

is a solution. If we plug into (3.6) we arrive at the Gosper equation

p(k) = q(k)y(k + 1)− r(k)y(k). (3.9)

“And now a miracle happens” [14]. If a rational function y satisfies (3.9), then y has to be
polynomial.

Assume y was a rational function and write it as y(k) = s(k)
t(k) with s, t being relatively

prime and t being a nontrivial polynomial. If we plug into Gosper’s equation then it reads as

p(k)t(k)t(k + 1) = q(k)s(k + 1)t(k) − r(k)s(k)t(k + 1).

Let N ∈ N be the largest integer such that gcd (t(k), t(k +N)) /∈ K. Then there exists a non
constant, irreducible polynomial x dividing the greatest common divisor. But then also

x(k −N) | t(k) ⇒ x(k −N) | r(k)s(k)t(k + 1).

Since s, t are relatively prime and x(k −N) | t(k + 1) would violate the maximality of N we
must have x(k−N) | r(k) or, shifted forward, x(k+1) | r(k+N +1). Analogously it can be
argued that x(k + 1) | q(k)s(k + 1)t(k) which implies that x(k + 1) | q(k). But then we have
found a non-trivial factor x for which

x(k + 1) | gcd (q(k), r(k +N + 1)) ,
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which contradicts condition (3.8) of the Gosper form.
This way finally our task turned into determining a polynomial solution y to

p(x) = q(x)y(x+ 1)− r(x)y(x). (3.10)

with given r, q, p. Based on the polynomial degrees of r, q and p a degree bound d for y can
be computed:

If deg q 6= deg r or lc(q) 6= lc(r) then

D = {deg(p)−max{deg(q),deg(r)}}. (3.11)

Else, with qk−1 = 〈xk−1〉q(x) and rk−1 = 〈xk−1〉r(x):

D = {deg(p)− deg(a) + 1, (rk−1 − qk−1)/ lc(a)} . (3.12)

If we intersect D with the natural numbers, then if D = ∅ then no polynomial solution exists
(and thus no hypergeometric solution exists!). Otherwise put d = maxD. Plugging in an
ansatz for y up to this degree in the Gosper equation (3.10) we can solve for the undetermined
coefficients. If no polynomial solution exists, then no hypergeometric solution exists to the
original problem. Otherwise, return

w(n) =
r(n)

p(n)
y(n).

We summarize the main steps of Gosper’s algorithm:

Input: (fk)k≥0 hypergeometric

Output: (sk)k≥0 hypergeometric such that sk = fk+1 − fk OR “impossible” if no such sk
exists.

1. Let u ∈ K(x) be: u(k) =
fk+1

fk

2. Compute the Gosper form of u:

u(x) =
p(x+ 1)

p(x)

q(x)

r(x+ 1)
,

with p, q, r ∈ K[x] and q, r such that gcd (q(x), r(x+ j)) ∈ K for all j ≥ 1

3. Find a polynomial solution y ∈ K[x] of Gosper’s equation

p(x) = q(x)y(x+ 1)− r(x)y(x)

(using the degree bounds (3.11) and (3.12)). If no such y exists, return “impossible”

4. Let w(x) = r(x)
p(x)y(x)

5. Return sk = w(k)fk

We illustrate the execution of Gosper’s algorithm with two simple examples, the well known
Gauß-sum and the harmonic numbers (the latter to prove that harmonic numbers are not
hypergeometric).
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Example 3.8. Let Fn =
∑n

k=1 k for n ≥ 1, i.e., we have fk = k. We follow the steps of
Gosper’s algorithm:

1. compute the shift quotient u(k) =
fk+1

fk
= k+1

k (defined for k ≥ 1)

2. determine the Gosper form of u: in this case it is easy to be seen that the choice

q(x) = r(x) = 1, p(x) = x

does the job.

3. Find a polynomial solution y to Gosper’s equation:

x = y(x+ 1)− y(x).

For the degree bound, we run into the first part of case (3.12), i.e., d = deg p(x) −
deg q(x)+ 1 = 1− 0+1 = 2. Hence we use the ansatz y(x) = y2x

2+ y1x+ y0. Plugging
into Gosper’s equation gives

x = 2xy2 + y1 + y2,

and equating the coefficients of x of like powers on both sides yields the system

1 = 2y2
0 = y1 + y2

⇒ y2 =
1
2 , y1 = −1

2 .

Thus y(x) = 1
2x(x− 1) + y0

4. w(x) = 1
2(x− 1)

5. Return sk =
1
2(k − 1)k

This yields the well-known result Fn =
∑n

k=1(sk+1 − sk) = sn+1 − s1 = n(n+1)
2 .

Example 3.9. Let Hn =
∑n

k=1
1
k for n ≥ 1, i.e., fk =

1
k :

1. compute the shift quotient u(k) =
fk+1

fk
= k

k+1

2. determine the Gosper form of u: in this case it is easy to see that the choice

q(x) = r(x) = x, p(x) = 1

does the job.

3. Find a polynomial solution y to Gosper’s equation:

1 = xy(x+ 1)− xy(x).

For the degree bound again by (3.12) it follows that d = 0, i.e., y(x) = y0. Plugging
into Gosper’s equation gives

1 = xy0 − xy0 = 0,

which does not have a solution. I.e. we return “NO hypergeometric solution exists”
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There exist several implementations of Gosper’s algorithm, e.g., in Mathematica the pack-
age zb.m implemented by Peter Paule and Markus Schorn [16] that is also available for down-
load on the RISC algorithmic combinatorics software page.

In[10]:= << zb.m

Fast Zeilberger Package by Peter Paule and Markus Schorn (enhanced by Axel Riese)
– c© RISC Linz – V 3.54 (02/23/05)

In[11]:= Gosper[kk!, {k, 0, n}]

If ‘n’ is a natural number, then:

Out[11]=

{

n
∑

k=0

kk! == (n+ 1)n!− 1

}

In[12]:= Gosper[
4k − 1

(2k − 1)2
16−k

(

2k

k

)

2

, {k, 0, n}]

If ‘n’ is a natural number, then:

Out[12]=

{

n
∑

k=0

4k − 1

(2k − 1)2
16−k

(

2k

k

)2

== −16−n

(

2n

n

)2}

Entering the command “Prove[ ]” returns the proof of the sum evaluation provided by
Gosper’s algorithm, i.e., it gives the telescoper that yields the closed form, in human readable
form.

3.3 Zeilberger’s algorithm

In the previous section we were dealing with the problem of indefinite summation. Often it
is too much to ask for an antidifference of a given (hypergeometric) term, still there exists a
closed form evaluation of the definite sum. A simple example is

∑

k

(
n

k

)

=

n∑

k=0

(
n

k

)

= (1 + 1)n = 2n.

In the first sum (and also in the following) we consider the summation variable to range
over all integers. Since

(n
k

)
= 0 if k < 0 or k > n this summation is in fact finite. By the

binomial theorem we know that there exists a simple closed form evaluation. But for the
definite summation

m∑

k=0

(
n

k

)

no such (hypergeometric) closed form exists. The input we consider for now is a summand
f(n, k) that is hypergeometric in both n and k and we are interested in the definite sum

s(n) =
∑

k

f(n, k)

with k ranging over all integers. Following the idea of telescoping, if we would find g(n, k)
such that

g(n, k + 1)− g(n, k) = f(n, k),
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then we would have a hold on s(n). This might still be too much to ask for. Hence we
extend the idea following Zeilberger’s approach [26, 25] and search for polynomial coefficients
c0(n), . . . , cd(n) (not all zero) such that

c0(n)f(n, k) + c1(n)f(n+ 1, k) + . . . cd(n)f(n+ d, k) = g(n, k + 1)− g(n, k). (3.13)

This idea is also referred to as creative telescoping. Note that the coefficients above do not de-
pend on the summation variable k. Hence by summing over (3.13) a (possibly inhomogeneous)
recurrence for s(n) is obtained.

Verbaeten [21, 20] showed that for proper hypergeometric summands f(n, k) a k-free
recurrence

I∑

i=0

J∑

j=0

aij(n)f(n+ i, k + j) = 0 (3.14)

exists and he also gave explicit bounds on the orders I and J , see also [23]. For the proof of
the order bounds it is necessary to require that the summand is proper hypergeometric, i.e.,
that the shift ratios with respect to both n and k split into integer linear factors. We denote
the shift quotients by

r(n, k) =
f(n+ 1, k)

f(n, k)
and s(n, k) =

f(n, k + 1)

f(n, k)
. (3.15)

With this notation, the shift quotients f(n + i, k + j)/f(n, k) can be expressed as products
of shifts of r and s, e.g.,

f(n+ 2, k)

f(n, k)
=
f(n+ 2, k)

f(n+ 1, k)
· f(n+ 1, k)

f(n, k)
= r(n+ 1, k)r(n, k).

Hence we can divide the equation (3.14) through f(n, k) and obtain a linear combination
of products of shifts of r and s. The next step is to bring this equation to a common
denominator and equate the coefficients of powers of k in the numerator to zero. If there are
more unknowns aij(n) than equations then a nontrivial solution will exist. The number of
unknowns is obviously (I + 1)(J + 1). Now if the summand is proper hypergeometric then
the degree of the numerator with respect to k grows linearly in I and J . At some point
the number of unknowns will exceed the number of equations and then at latest we have a
nontrivial nullspace of the system. For instance consider the summand

f(n, k) =
(2n+ k + 1)!

(n+ 2k + 1)!
=⇒







r(n, k) = (2n+k+2)(2n+k+3)
n+2k+2

and

s(n, k) = 2n+k+2
(n+2k+2)(n+2k+3) .

Then for I = J = 1 the degree of k in the numerator is 4 and also the number of unknowns
is (I + 1)(J + 1) = 4. For I = J = 2, the degree is 8 which gives rise to 9 equations and the
number of unknowns is 9. For, e.g., I = 3 and J = 2 the degree is 10 and the number of
unknowns is 12 and we can stop iterating and solve the linear system for the coefficients aij(n).

On the other hand, if the shift quotient contains an arbitrary polynomial factor in the
denominator then the number of equations (i.e., the degree of k in the numerator) grows too
fast. A classical example where this is the case is the summand

f(n, k) =
1

n2 + k2
.
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Below you find a table with the number of equations and unknowns for different choices of I
and J :

I 1 1 1 2 2 2 3 3 3

J 1 2 3 1 2 3 1 2 3

No(equations) 6 10 14 10 16 22 14 22 30

No(unknowns) 4 6 8 6 9 12 8 12 16

Given the existence of a k-free recurrence (3.14) it can be shown that a creative telescoping
identity of the form (3.13) exists.

Theorem 3.10. Let f(n, k) be a proper hypergeometric term. Then f satisfies a nontrivial
recurrence of the form (3.13) in which g(n, k)/f(n, k) is a rational function of n and k.

Proof. See e.g. [14].

The theorem above guarantees the existence of a relation

c0(n)f(n, k) + c1(n)f(n+ 1, k) + . . . cd(n)f(n+ d, k) = g(n, k + 1)− g(n, k)

with g being a rational multiple of f(n, k). The question is now how to determine such a
recurrence in a reasonably fast way. This leads us back to Gosper’s algorithm. First fix the
assumed order d of the recurrence, e.g., d = 1. Then we seek to compute a telescoper g of

h(n, k) = c0(n)f(n, k) + c1(n)f(n+ 1, k) = (c0(n) + c1(n)r(n, k)) f(n, k),

in the notation introduced above. Following Gosper we first determine the shift quotient

u(n, k) =
h(n, k + 1)

h(n, k)
=
c0(n) + c1(n)r(n, k + 1)

c0(n) + c1(n)r(n, k)
s(n, k),

and then the Gosper form of u(n, k). From the Gosper form we can set up the Gosper
equation which now needs to be solved for a polynomial solution y and the coefficients c0, c1.
The presence of these coefficients gives an additional freedom for a solution to exist (even
though classical Gosper would not work on the given summand). If no polynomial solution
exists, then the order d is increased and we start all over. This process has to terminate by
the considerations of Verbaeten.

A Maple implementation of Zeilberger’s algorithm can be found, e.g., on Zeilberger’s home-
page. A Mathematica implementation is part of the zb-package introduced in the previous
section. For the binomial sum discussed in the beginning it is used as follows:

In[13]:= Zb[Binomial[n, k], {k, 0, n}, n]

If ‘n’ is a natural number, then:

Out[13]= {2SUM[n]− SUM[1 + n] == 0}

If the resulting recurrence is as simple as, e.g., in this case then a closed form evaluation of
the sum is possible. Also if the recurrence is of higher order, but with constant coefficients (C-
finite) a closed form solution can be easily determined. In any case a (possibly inhomogeneous)
recurrence is returned.



3.4. A short introduction to Gröbner bases 47

The summand in the sum representation (2.20) of Jacobi polynomials is also proper hy-
pergeometric in n and k and thus Zeilberger’s algorithm is applicable to derive the Jacobi
three term recurrence:

In[14]:= Zb

[

(α + 1)n
n!

(−n)k(n + α + β + 1)k
(α + 1)k k!

(

1 − x

2

)k

, {k, 0, n}, n

]

Out[14]= {−2(n+ α+ 1)(n+ β + 1)(2n+ α+ β + 4)SUM[n]

+ (2n+ α+ β + 3)
(

(2n+ α+ β + 2)(2n+ α+ β + 4)x+ (α2 − β
2)
)

SUM[1 + n]

− 2(n+ 2)(n+ α+ β + 2)(2n+ α+ β + 2)SUM[2 + n] == 0}

The same recurrence is also found starting from the sum representation given in theo-
rem 2.13, which can be derived from the Rodrigues formula by application of Leibniz rule.
For the special case α = β = 0, we have the three term recurrence for Legendre polynomials
in an easy and fast way. Later we will see an extension of creative telescoping that also allows
to find (and thus also prove) differential relations or mixed difference-differential relations as
given in theorem 2.9.

3.4 A short introduction to Gröbner bases

Gröbner bases were originally developed by Bruno Buchberger [3] to solve the problem of ideal
membership. Since they were introduced they have successfully been applied to numerous
problems ,some of which will be mentioned in this section and used later on. Here we will only
give a very brief introduction, for more complete informations we refer to [24] and references
therein.

First we recall some common notations and definitions. In the following we will frequently
abbreviate K[x1, . . . , xn] = K[X]. By [X] we denote the monoid (under multiplication) of
power products xi11 x

i2
2 · · · xinn . A subset I ⊂ K[X] is called an ideal over the polynomial ring

K[X], iff for any p, q ∈ I also the sum p + q ∈ I and if for any p ∈ I and r ∈ K[X] the
product p · r ∈ I. We write I �K[x].

A set of polynomials {b1, . . . , bk} forms a basis of I, if

I = {p1b1 + · · ·+ pkbk | p1, . . . , pk ∈ K[X]}.

We write I = 〈b1, . . . , bk〉. In the univariate case it is obvious which coefficient is the leading
coefficient (and which term is the leading term). In the multivariate case we need to specify
a term order in order to clarify the notion of a leading term.

Definition 3.11. A term order is a total order ≺ satisfying

• ∀ τ ∈ [X] : 1 ≺ τ

• ∀ τ1, τ2, σ ∈ [X] : τ1 ≺ τ2 ⇒ τ1σ ≺ τ2σ

In the multivariate setting there are several possible term orderings. We list only a few
for K[x, y], the generalization to K[X] is straight forward.

1. lexicographic ordering: First fix an order on the variables, e.g. x > y. Then xi1yj1 ≺lex
xi2yj2 iff either i1 < i2 or, if i1 = i2 and j1 < j2.
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2. graduated lexicographic ordering: Again let x > y. First we go by the total degree of
the term and if this is equal, then we compare using lexicographic ordering, i.e.,

xi1yj1 ≺glex xi2yj2 ⇔ i1 + j1 < i2 + j2 ∨
(
i1 + j1 = i2 + j2 ∧ xi1yj1 ≺lex xi2yj2

)
.

3. graduated reverse lexicographic ordering:

xi1yj1 ≺grlex xi2yj2 ⇔ i1 + j1 < i2 + j2 ∨
(
i1 + j1 = i2 + j2 ∧ xi2yj2 ≺lex xi1yj1

)
.

For instance, with x < y, we have for τ1 = x2y3 and τ2 = x3y that

τ1 ≺lex τ2, τ2 ≺glex τ1 and τ2 ≺grlex τ1.

From now on we choose a term order ≺ and fix it. The leading term of a polynomial p ∈ K[X]
is the term of p which is maximal with respect to ≺ and is denoted by lt(p). The leading
coefficient is the coefficient of the leading term and is denoted as usual by lc(p).

Next recall polynomial division in the univariate case. Given two polynomials a, b ∈ K[x]
there exist uniquely determined polynomials q, r such that

a(x) = b(x)q(x) + r(x) with deg(r) < deg(b).

For multivariate polynomials in general quotient and remainder are not uniquely defined, un-
less we specify a term order and replace the degree reduction condition by a divisibilty condi-
tion on leading terms. Then we have that given two polynomials a, b ∈ K[X] = K[x1, . . . , xn]
there exist uniquely determined polynomials q, r ∈ K[X] such that

a(x1, . . . , xn) = b(x1, . . . , xn)q(x1, . . . , xn) + r(x1, . . . , xn)

such that lt(b) divides no term of r. Given b ∈ K[X] we define the reduction relation −→{b}
by

a −→{b} r : ⇔ ∃ q : a = bq + r and lt(r) � lt(a).

The reduction with respect to a set of polynomials {b1, . . . , bk} is defined as

a −→{b1,...,bk} r : ⇔ ∃ q1, . . . , qk : a = b1q1 + · · ·+ bkqk + r and lt(r) � lt(a).

Note that if a −→{b1,...,bk} r then a− r ∈ 〈b1, . . . , bk〉. The reduction with respect to the set
B = {b1, . . . , bk} is unique (i.e., the remainder r is uniquely determined) if B is a Gröbner
basis.

Definition 3.12. A set G = {g1, . . . , gk} ⊂ K[X] forms a Gröbner basis iff

∀ a ∈ 〈g1, . . . , gk〉 : a −→G 0.

If the Gröbner basis is known then we simply write a −→ r instead of a −→G r. There
are many equivalent characterizations of Gröbner bases. One of them states that if a −→ r1
and a −→ r2 then there exists a polynomial r such that both r1 −→ r and r2 −→ r. This
property is referred to as confluence.

Buchberger derived an algorithm that computes given a set {a1, . . . , am} ⊂ K[X] computes
a Gröbner basis G = {g1, . . . , gk} of 〈a1, . . . , am〉. This algorithm gives a constructive proof
of the existence of a Gröbner basis for every ideal I in K[X]. Furthermore, if for any g ∈ G
we have that g is irreducible with respect to G\{g} (autoreduced) and if we normalize the
elements of G to be monic, then the Gröbner basis is uniquely determined.
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Example 3.13. Let I = 〈p1(x, y) = x2 + y2 − 4, p2(x, y) = (x− 1)(y − 1)− 1〉�K[x, y] and
let ≺=≺lex with x < y. Then the Gröbner basis G1 of I is given by

G1 =
{
x4 − 2x3 − 2x2 + 8x− 4, x3 − x2 − 3x+ y + 4

}
.

On the other hand, if we choose ≺=≺lex with y < x then the Gröbner basis G2 of I is given
by

{
y4 − 2y3 − 2y2 + 8y − 4, x+ y3 − y2 − 3y + 4

}
.

We can represent a Gröbner basis graphically in the integer lattice Z2 with coordinates (i, j)
for the term xiyj plotting the leading terms of the basis polynomials. Below you see the
corresponding plot for the Gröbner bases G1 and G2.

Note that all three sets of polynomials {p1, p2}, G1, G2 have the same common roots.
Observe also that G1 contains a polynomial only depending on x (i.e., on the smallest variable)
and G2 contains a univariate polynomial in y. This property is referred to as elimination
property, see below. Next we give a short and by no means complete list of problems that
can be solved using Gröbner basis:

Elimination property In general we have that if G is a Gröbner basis with respect to the
lexicographic order x1 < · · · < xn then (with k < n)

I ∩K[x1, . . . , xk] = 〈G ∩K[x1, . . . , xk]〉.

This also gives a way to determine the common roots of a given system of polynomials. After
computing the Gröbner basis, we can compute the roots of the univariate polynomials in x1.
Next we plug in the solutions and can determine the solutions for x2 in I ∩ K[x1, x2] and
iterate further.

Ideal membership Given an ideal I � K[X] and a polynomial p ∈ K[X] we want to
determine wheter p ∈ I. We compute a Gröbner basis G of I and reduce p with respect to
G, i.e., p −→G r. If r = 0, then p ∈ I, otherwise not. Note that also if r does not vanish then
it is a normal form of the given polynomial in the ideal I.

Equality of ideals Given two ideals, we compute their Gröbner bases with respect to some
fixed ordering. If the (normalized, autoreduced) Gröbner are the same, then so are the ideals.
Note that if a Gröbner basis of an ideal I consists only of the element {1}, then this is
equivalent to I = K[X].
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Ideal dimension The vector space dimension of the factor ring K[x, y]/〈G〉 can be read off
the number of terms below the “staircase”. For the ideal dimension we need the notion of
the Hilbert polynomial. Given an ideal I �K[X] let the Hilbert function H : Z→ Z denote
the number of irreducible terms of total degree at most d. The Hilbert polynomial is the
polynomial h(d) that equals H(d) for d large enough. The ideal dimension is then given by
the degree of the Hilbert polynomial. The dimension of 〈Gk〉 (k = 1, 2) of the example above
is thus zero.

Radical membership Given an ideal I � K[X] and a polynomial p ∈ K[X], determine
whether p ∈ Rad(I), where Rad(I) is the radical ideal defined by

Rad(I) =
√
I =

{

a | ak ∈ I
}

.

The key for invoking Gröbner basis is Hilbert’s Nullstellensatz. It asserts that if we are
working over an algebraically closed field, then Rad(I) consists of exactly those polynomials
in K[X] vanishing on all common roots of I. If I = 〈a1, . . . , am〉, then we compute a Gröbner
basis G of 〈a1, . . . , am, py − 1〉 in K[X, y], i.e., we introduce a new variable y. If G = {1},
then p is in the radical ideal, otherwise not. This approach is usually referred to as the
Rabinowitsch trick.

3.5 Multivariate holonomic functions

The algorithms for executing closure properties or dealing with sums over (proper) hyperge-
ometric expressions that we have considered so far have been univariate or bivariate at most.
Next we want to extend these concepts to holonomic functions in the multivariate case. For
this discussion we will use operator notation.

The operators that we are dealing with in this lecture are shifts and derivatives. For
forward shifts with respect to the variable n we use the notation Sn, i.e., Snf(n) = f(n+ 1).
For derivatives with respect to the variable x we use the notation Dx. Note that these
operators are non-commutative, i.e.,

Dxx = xDx + 1 and Snn = (n+ 1)Sn.

But certainly the operators Dx and Sn commute, i.e., DxSn = SnDx. Sometimes we use the
symbol ∂z to denote either of these operators if the statement applies to both.

The input that we consider are multivariate functions depending on discrete and/or con-
tinuous variables that satisfy linear difference equations or differential equations or mixed
difference-differential equations with polynomial coefficients. Given such functions we discuss
an algorithm to carry out closure properties, i.e., operations such as addition, multiplication,
and to deal with definite summation and definite integration. The output of this procedure
will be a description again in terms of linear difference equations or differential equations or
mixed difference-differential equations with polynomial coefficients.

Before we turn to the multivariate case we review first univariate holonomic functions
(and sequences) from the operator point of view. In the following we will abuse notation in
the sense that we do not use notation that accounts for the non-commutativity or the free
algebra structure and instead keep it short and simple. The symbols ” ◦ ” and ” • ” denote
composition and application of an operator, respectively.
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Let A = Q(z)[∂z ] and let f be a given function. Then define

I = {L ∈ A | L • f = 0}.

Obviously for two operators L1, L2 ∈ I also L1 + L2 ∈ I and for U ∈ A and L ∈ I also
U ◦ L ∈ I since

(U ◦ L) • f = U ◦ (L • f) = 0.

In other words, I is an ideal in (A, ◦,+), the annihilating ideal of f denoted by ann(f). Note
that A needs to be constructed in a way that for U, V ∈ A,

(U ◦ V ) • f = U ◦ (V • f)

holds. For instance if U = Dx and V = x, then

(U ◦ V ) • f = (Dxx) • f,

and
U ◦ (V • f) = Dx ◦ (xf) = f + xDxf = (1 + xDx)f.

By the map induced by Leibniz rule

Φ : A→ A Dxx 7→ xDx + 1

we see that both expressions above are indeed equal and in general we can transform any
p ∈ A into its standard form:

p 7→
d∑

i=0

ai(x)D
i
x, with ai ∈ Q(x).

Note that this type of construction can be carried out also for shifts, i.e., A = Q(n)[Sn], or
more general derivations ∂z. Hence we consider

(
zα∂β

)

α,β
as a basis for the normal form

representation.
With this notation a univariate function f (or sequence) is holonomic if there exists L ∈ A

such that L•f = 0, i.e., in this case the annihilating ideal is generated by a single operator. As
in the univariate case we first define holonomicity for continuous variables in the multivariate
case.

Definition 3.14. Let A = Q(x1, . . . , xd)[Dx1 , . . . ,Dxd ]. Then a function f is holonomic if
for any 1 ≤ i ≤ d there exists a nontrivial operator Pi ∈ ann(f) of the form

Pi =

mi∑

j=0

aij(x1, . . . , xd)D
j
xi

with rational function coefficients aij.

This means that a function is holonomic if ann(f) contains operators that depend only
on Dxi for each i. Also in certain non-commutative rings Gröbner bases can be defined and
computed, but we will not enter this topic and for sake of simplicity merely use some facts
that hold both for the commutative and the non-commutative case.
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Note that the Gröbner basis of ann(f) need not contain any of these univariate operators,
but they can be computed using Gröbner bases with the corresponding term order.

If we have a look at the leading power products of a (non-commutative) Gröbner basis
of ann(f)� Q(x, y)[Dx,Dy] then in general it will look like in the left picture below. If f is
holonomic then the ideal is zero dimensional and the leading power products will look rather
like in the right image.
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Holonomicity of sequences is again defined via the (multivariate) generating function.

Definition 3.15. A multivariate sequence a(n1, . . . , nd) is holonomic if the generating func-
tion

F (z1, . . . , zd) =
∞∑

n1=0

· · ·
∞∑

nd=0

a(n1, . . . , nd)z
n1

1 · · · znd

d

is holonomic.

Holonomic functions that depend on both discrete and continuous variables are then
defined as the obvious combination of the above. All orthogonal polynomials that we have
discussed so far are examples for such sequences. They involve at least one discrete parameter
(the polynomial degree) and one continuous variable.

Example 3.16. Consider Legendre polynomials Pn(x) in Q(n, x)[Sn,Dx] with Sn > Dx in
lexicographic order. Then the Gröbner basis of ann (Pn(x)) is given by

{(n+ 1)Sn − (x2 − 1)Dx − (n+ 1)x, (x2 − 1)D2
x + 2xDx − n(n+ 1)}

On the other hand, if we compute the Gröbner basis in Q(n, x)[Dx, Sn], i.e., Dx > Sn, we
obtain

{(x2 − 1)Dx + (−n− 1)Sn + (n+ 1)x, (n + 2)S2
n − (2n+ 3)xSn + (n+ 1)}

Note that in the first case we have a mixed relation and the Legendre differential equa-
tion (2.19) and in the latter the same mixed relation and the Legendre three term recur-
rence (2.18).

Also multivariate holonomic functions are closed under certain operations some of which
are listed in the following theorem.

Theorem 3.17. Let f, g be holonomic. Then f + g, fg, definite sums
∑
f and definite

integrals
∫
f are again holonomic.
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As in the univariate case the proof of this theorem is constructive in the sense that given
ann(f) and ann(g), the annihilating ideal for f + g, . . . can be computed. Instead of mere
linear algebra in the multivariate case this also requires computations of non-commutative
Gröbner bases.

These closure properties as well as a higher dimensional version of Zeilberger’s algorithm as
well as further methods that we do not treat here are implemented in Christoph Koutschan’s
Mathematica package HolonomicFunctions. For further details on the scope of the program
and the underlying algorithms we refer to his thesis [12] or the user’s guide [13]. This package is
very user friendly as one need not know all the underlying structure and available algorithms,
but it is possible to call them with the single command “Annihilator” and internally the right
method is chosen. But also the syntax for closure properties, creative telescoping or Gröbner
basis reductions is easy to understand and use.

Example 3.18. The composite sequence f(n) =
∑

k≥0

(
n
k

)
Pk(x), where at first we consider

x as a free parameter and as operations only shifts in n, is holonomic because of closure
properties. Applying the “Annihilator” command yields

In[15]:= Annihilator[Sum[Binomial[n, k]LegendreP[k, x], {k, 0, n}], {S[n]}]

Out[15]= {(n+ 2)S2
n + (−2nx− 2n− 3x− 3)Sn + (2nx+ 2n+ 2x+ 2)}

Observe that the input can be specified in classical Mathematica notation and that the shift
operator with respect to n is denoted by S[n].

The commands for executing closure properties in HolonomicFunctions are of the form
“DFinite[Operation]”. For instance if we want to compute an annihilating ideal for the sum-
mand above, we first compute the annihilators for each Pk(x) and

(n
k

)
and then use “DFinite-

Times”:

In[16]:= ann1 = Annihilator[LegendreP[k, x], {S[k]}]

Out[16]= {(k + 2)S2
k + (−2kx− 3x)Sk + (k + 1)}

In[17]:= ann2 = Annihilator[Binomial[n, k], {S[k]}]

Out[17]= {(k + 1)Sk + (k − n)}

In[18]:= ann = Factor[DFiniteTimes[ann1, ann2]]

Out[18]= {(k + 2)2S2
k + (2k + 3)x(k − n+ 1)Sk + (k − n)(k − n+ 1)}

Note that in the last step we wrapped the Mathematica command “Factor” around DFinite-
Times which factors the coefficients of the operators (note that it does not factor the opera-
tors!).

Legendre polynomials are also holonomic as functions in x and thus we can consider f(n)
also as function f(n, x) and use the operator Dx in addition. Derivation with respect to a
variable x is denoted by Der[x] in HolonomicFunctions and readily we obtain

In[19]:= Factor[Annihilator[Sum[Binomial[n, k]LegendreP[k, x], {k, 0, n}], {S[n],Der[x]}]]

Out[19]= {(−n− 1)Sn + 2(x− 1)(x+ 1)Dx + (2n+ x+ 1),

− 2(x− 1)(x+ 1)2D2
x + (x+ 1)(2nx − 2n− 3x− 1)Dx + n(n+ x+ 2)}
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Example 3.19. Recall the definition of polynomials orthogonal in the L2-inner product on
triangles defined in section 2.3,

φi,j(x, y) = Pi

(
2x

1− y

)(
1− y
2

)i

P
(2i+1,0)
j (y), i, j ≥ 0.

Also for these a recurrence relation can be computed using the Annihilator command. In this
case it is too big to display here, but there is also a command that allows to have a look at the
support of the basis of the annihilating ideal without seeing all the coefficients:

In[20]:= ann = Factor[Annihilator[LegendreP[i,
2x

1 − y
]

(

1 − y

2

)

i

JacobiP[j, 2i+1, 0, y], {S[i], S[j]}]];

In[21]:= Support[ann]

Out[21]= {{S2
j , Sj , 1}, {S2

i , SiSj , Si, Sj , 1}}

For these basis functions we can also determine the full system of mixed relations including
derivatives with respect to x and y:

In[22]:= ann = Factor[Annihilator[LegendreP[i,
2x

1 − y
]

(

1 − y

2

)i

JacobiP[j, 2i + 1, 0, y],

{S[i], S[j],Der[x],Der[y]}]];

In[23]:= Support[ann]

Out[23]= {{Sj , Dx, Dy , 1}, {D2
y , Si, Dx, Dy , 1}, {DxDy , Si, Dx, Dy , 1}, {D2

x , Dx, 1}, {SiDy , Si, Dx, Dy , 1},
{SiDx, Si, Dx, Dy , 1}, {S2

i , Si, Dx, Dy , 1}}

The creative telescoping idea of Zeilberger’s algorithm extends to treat problems of mul-
tiple definite summation and integration. That is in general we are interested to determine
the annihilating ideal for

b1∑

x1=a1

· · ·
∑

xk=ak

∫ bk+1

xk+1=ak+1

. . .

∫ bm

xm=am

f(x1, . . . , xm, Y )d(xk+1, . . . , xm), (3.16)

where f is a holonomic sequence in the summation variables x1, . . . , xk, a holonomic functions
in the integration variables xk+1, . . . , xm and Y = (y1, . . . , yn) is a vector of free parameters.
The presence of free parameters is essential for the method to work. If the given multisum or
-integral evaluates to a number, then it is not applicable.

Creative telescoping for a generic input such as (3.16) follows the same idea as introduced
earlier for Zeilberger’s algorithm. Given the annihilating ideal I = ann(f) (that can be found,
e.g., using Koutschan’s package) we search the ideal for an operator that acts only on the free
parameters, the principal part, and for a delta part. For discrete variables k this delta part
contains as factor the forward difference ∆k = Sk − 1, for a continuous variable x it contains
as factor the derivation with respect to x.

Let us illustrate this on a simple example with two continuous variables x, y and two
discrete variables k, n, where we consider y and n as the free parameters, i.e., we want to find
the annihilating ideal for

Fn(y) =

k1∑

k=k0

∫ x1

x=x0

fk,n(x, y) dx
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in the ring A = Q(x, y, k, n)[Dx,Dy, Sk, Sn]. Given ann(f), we look for operators P ∈
Q(y, n)[Dy, Sn] and Q ∈ A such that

P +∆kDxQ ∈ I.
If we apply this operator to the given holonomic object fk,n(x, y) this gives

P • fk,n(x, y) + ∆kDxQ • fk,n(x, y) = 0.

Note that since P does not depend on x it commutes with the integration. Next we integrate
the above equation with respect to x:

P •
∫ x1

x=x0

fk,n(x, y) dx + ∆k

∫ x1

x=x0

DxQ • fk,n(x, y) dx = 0.

The integral over the delta part is easily evaluated by the fundamental theorem of calculus
and we continue

P •
∫ x1

x=x0

fk,n(x, y) dx + ∆k (Q • fk,n(x1, y)−Q • fk,n(x0, y)) = 0.

In the next step we sum over k. Then the operator P again commutes with this action and we
are left with P acting on Fn(y). The sum over the delta part can be evaluated by telescoping
and in short we denote the result as rn(y). All in all we obtain

P • Fn(y) + rn(y) = 0, i.e.,
I∑

i=0

J∑

j=0

aij(n, y)F
(j)
n+i(y) + rn(y) = 0.

In many applications the remainder of the delta part rn(y) vanishes and we obtain a ho-
mogeneous recurrence rightaway. Otherwise we can determine an annihilating operator
R ∈ Q(n, y)[Sn,Dy] for r and apply it from the left. The resulting operator R ◦ P still
annihilates Fn(y) and gives a homogeneous recurrence.

Note also that usually the summation and integration are assumed to run over all the
integers and reals, respectively. If the given holonomic function has only finite support, then
rn(y) = 0 which is commonly referred to as natural boundary conditions. Note that the
sum discussed in example 3.18 has natural boundary conditions because of the presence of
the binomial coefficient

(n
k

)
. The algorithm that Annihilator internally used in deriving a

recurrence or mixed relation for this sum in fact is just creative telescoping.

Example 3.20. It is possible to convert expansions in one polynomial bases to another. In
some cases the connecting coefficients can be expressed in simple closed form, but at least
recurrence relations for these coefficients might be found. If we want to convert a polynomial
(or power series) given in its monomial expansion into its Legendre polynomial expansion,
then we need to compute the coefficients ak,n in

xn =
n∑

k=0

2

2k + 1
ak,nPk(x).

The factor hk = 2
2k+1 enters because of the normalization of the L2-norm of Pk(x). These

Fourier coefficients are then computed as

ak,n =

∫ 1

−1
xnPk(x) dx.
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The integrand above is certainly holonomic, so we can use creative telescoping:

In[24]:= ann = Annihilator[Integrate[xkLegendreP[n, x], {x,−1, 1}], {S[k], S[n]},

Assumptions → Element[k, Integers]&&Element[n, Integers]]

Out[24]= {(k − n+ 1)Sk + (−k − 1)Sn, (−k − n− 3)S2
n + (k − n)}

We need to add the assumptions on n, k being integers in the command, because otherwise
HolonomicFunctions cannot evaluate the delta part at the boundaries of the integral correctly.
If we want to see the output in a more traditional form we do the following

In[25]:= ApplyOreOperator[ann, a[k, n]]

Out[25]= {(−1− k)a[k, 1 + n] + (1 + k − n)a[1 + k, n], (k − n)a[k, n] + (−3− k − n)a[k, 2 + n]}

3.6 SumCracker

The method that we discuss next has been developed and implemented by Manuel Kauers [10,
9]. The input is more general than for the previously discussed packages. SumCracker can
deal with sequences that are described by systems of difference equations that may be coupled,
nonlinear or of higher order with rational function coefficients. They need to be admissible
in the sense that the system can be used to generate the defined sequences.

The scope of the package includes deciding zero equivalence, finding algebraic dependencies
and proving inequalities. The latter is not within the scope of this lecture, but we will
introduce the first two. The application of the package is restricted to univariate sequences
and if sums appear to indefinite sums only. Also it only deals with shifts, not derivatives.

There is a certain overlap in scope of SumCracker with the packages discussed previ-
ously as, e.g., HolonomicFunctions, but mostly they should be applied to different classes of
problems as we will show also below. The algorithms implemented in SumCracker also use
Gröbner basis computations, but not in a non-commutative setting with operators involved,
but we are going back to the classiscal polynomial setting.

First we discuss the algorithm for deciding zero equivalence. The task is given sequences
a1(n), . . . , ad(n) in terms of their defining recurrence relations (or system of), prove polyno-
mial identities

f(n) = p(a1(n), . . . , ad(n)) = 0, ∀ n ≥ 0,

for some p ∈ K[x1, . . . , xd]. For instance, prove identity (2.8),

f(n) = Tn+2(x)− xTn+1(x) + (1− x2)Un(x) = 0 (3.17)

on Chebyshev polynomials of the first and second kind. For this example we have, e.g.,

a1(n) = Tn+2(x), a2(n) = Tn+1(x) and a3(n) = Un(x),

and the polynomial p is linear. Note that this is a proper input for the algorithm, since both
Chebyshev polynomials satisfy three term recurrences. This means in particular that they
are admissible and we can generate the sequence given initial values.

The basic idea is to prove the given statement by induction. In the first step we want to
determine a number N > 0 such that

∀n ≥ 0 : f(n) = f(n+ 1) = · · · = f(n+N) = 0 ⇒ f(n+N + 1) = 0. (3.18)
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Then in the second step it remains to check initial values and we are done. But how can we
compute N? For this we reformulate the given identity as a purely polynomial statement.For
the example (3.17) above we do so by introducing variables t0, t1, u0, u1 that correspond
to Chebyshev polynomials of first and second kind Tn, Tn+1, Un, Un+1. By means of the
Chebyshev three term recurrences all higher shifts of Chebyshev polynomials can be expressed
solely by t0, t1 and x (or u0, u1 and x, respectively):

Tn(x) ≡ t0
Tn+1(x) ≡ t1
Tn+2(x) ≡ 2xt1 − t0
Tn+3(x) ≡ (4x2 − 1)t1 − 2xt0

. . . . . .

And we can proceed analogously for Chebyshev polynomials of the second kind. Note that
also the discrete variable n, if it appears in the input has to be translated to a continuous
variable and it also exhibits a certain shift behaviour. Now it is also obvious why it is necessary
to deal with admissible sequences. In order to carry out the above “translation procedure”,
we need to be able to express the highest order terms by lower order ones. The result of this
transformation turns the given sequence f(n) into a polynomial f0 given by

f(n) ≡ f0 = xt1 − t0 + (1− x2)u0.

If we denote the shifted versions f(n +m) by fm = fm(t0, t1, u0, u1, x), then the induction
proof reads in these terms as

f0 = 0 ∧ f1 = 0 ∧ f2 = 0 ∧ · · · ∧ fN = 0 =⇒ fN+1 = 0. (3.19)

On the left hand side we have a set of polynomials generating an ideal

I = 〈f0, f1, f2, . . . , fN 〉.

Deciding whether (3.19) holds corresponds to deciding if fN+1 is in the radical ideal Rad(I)
and this can be done using Gröbner bases computations. The process starts with a certain
length of the induction hypothesis depending on the length of the recurrences of the given
sequences. If the implication (3.18) does not hold, then the initial value is checked and (if it
zero), the length of the induction hypothesis is increased. Kauers showed in his thesis [9] that
the algorithm is correct and terminates. The algorithm has been implemented in the package
SumCracker and the corresponding command is “ZeroSequenceQ”.

In[26]:= ZeroSequenceQ[ChebyshevT[n+2, x]−xChebyshevT[n+1, x]+(1−x2)ChebyshevU[n, x]]

Out[26]= True

More interesting than proving certain identities may be finding algebraic dependencies of
given sequences. Note that (linear) recurrence relations are also a type of algebraic relation.
Given a set of admissible sequences, say (an)n≥0, (bn)n≥0, (cn)n≥0, we define the annihilating
ideal of these sequences as

ann(an, bn, cn) = {p ∈ K[x, y, z] | p(an, bn, cn) ≥ 0, ∀n ≥ 0}.
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Example 3.21. Let Fn denote the Fibonacci numbers defined via the recurrence Fn+2 =
Fn+1 + Fn with F0 = 0, F1 = 1. Then with the sequences

an = Fn, bn = Fn+1 and cn = (−1)n,

then Cassini’s identity gives rise to an element in the annihilating ideal of these sequences:

Fn−1Fn+1 − F 2
n − (−1)n = 0 ←→ p(x, y, z) = x(x+ y)− y2 − z ∈ ann(an, bn, cn).

Note that as indicated in the example above we again do not work with the sequences as
such but with their continuous counterparts in some suitable difference ideal. The annihilating
ideal is finitely generated, because it is an ideal in a ring of polynomials with finitely many
variables. But usually we do not know (and cannot determine) its dimension. Hence we
cannot compute the annihilating ideal in general, but it can be approximated from below.

For this first we fix a total degree d. Then we built an ansatz with polynomials up to
degree d, e.g., for d = 2 and two sequences (i.e., variables),

p(x, y) = a0 + a1x+ a2y + a3xy + a4x
2 + a5y

2.

Since the sequences we are dealing with are given by a system of difference equations, we can
evaluate p for specific instances and solve for the coefficients ai that are just numbers. Recall
once more that also discrete variables like, e.g., n are sent to continuous variables where we
model the shift behaviour accordingly.

If a candidate for an identity (algebraic relation) has been found, the zero equivalence
decision procedure is used to discard wrong identities. Then the total degree d is increased
and the procedure is repeated until some (arbitrary) degree bound dmax is reached. Note that
no upper bound for the degree can be computed. Thus after the execution of the algorithm,
we know that all algebraic relations up to degree dmax have been found. In the general case,
it cannot be determined how many relations we miss (i.e., if we have found all).

The corresponding command in SumCracker is “ApproximateAnnihilator”, where approxi-
mate indicates that not a description of the full annihilating ideal is computed. As an example
we derive automatically Cassini’s identity for Fibonacci numbers:

In[27]:= ApproximateAnnihilator[{Fibonacci[n],Fibonacci[n + 1], (−1)n}]

Out[27]=
{

(−1)2n − 1, (Fn)
2 + Fn+1Fn − (Fn+1)

2 + (−1)n
}

Variants of ApproximateAnnihilator that in fact are special cases of this command are
“GetLinearRecurrence” and “Crack”. GetLinearRecurrence finds (if possible) a linear recur-
rence for the given sequence:

In[28]:= GetLinearRecurrence[HermiteH[2n, x], In → n,Head → h]

Out[28]= h[2 + n] == −8(1 + n)(1 + 2n)h[n] − 2(5 + 4n− 2x2)h[1 + n]

The option “In” is used to specify which is the discrete variable that the recurrence is
to be determined in. The option “Head” specifies which variable to use for the resulting
sequence - the default value is “SUM”. SUM is also what is used in SumCracker to denote
sums in order to distinguish from the Mathematica built-in “Sum”-command.

In[29]:= GetLinearRecurrence[SUM[(2k − 1)JacobiP[k, 1, 0, x], {k, 0, n}], In → n,Head → s]
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Out[29]= s[n+ 3] ==
4n2x+ 2n2 + 24nx+ 11n+ 35x+ 13

(n+ 4)(2n+ 3)
s[n+ 2]

− 8n3x+ 4n3 + 52n2x+ 28n2 + 94nx+ 63n+ 35x+ 43

(n+ 4)(2n+ 1)(2n+ 3)
s[n+ 1] +

(n+ 2)(2n+ 7)

(n+ 4)(2n+ 1)
s[n]

Note that SumCracker handles only indefinite sums, i.e., the upper summation bound is
not allowed to appear in the summand. The “Crack” command tries to express a given sum
in terms of the objects (sequences) that appear in the summand:

In[30]:= Crack[SUM[(2k + 1)LegendreP[k, x], {k, 0, 2n}]]

Out[30]= − (2n+ 1)(P2n(x)− P2n+1(x))

x− 1

In this example above the summand consists of Legendre polynomials, n and the contin-
uous variable x. These are exactly the parts that the closed form expression is constructed
from. If for some reason we want to translate the given expression into a different form then
we can specify this using the “Into”-option:

In[31]:= Crack[SUM[(2k + 1)LegendreP[k, x], {k, 0, 2n}], Into → {JacobiP[2n, 1, 0, x], n}]

Out[31]= (1 + 2n)JacobiP[2n, 1, 0, x]
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Chapter 4

Some further applications

In the final section we give some further examples for applications of the symbolic methods
presented in the previous section. These examples are partly reviewing some of the classical
results presented in section 2 and partly we discuss further questions arising when dealing
with orthogonal polynomials.

In Theorem 2.9 several properties of Legendre polynomials were stated that ultimately
led to derive the Legendre three term recurrence and to the Legendre differential equation.
All these relations are special instances of identities that hold for all Jacobi polynomials.

First note that Jacobi polynomials P
(α,β)
n (x) are holonomic in the continuous variable x

and in the discrete variables α, β and n. A basis for the annihilating ideal in the corresponding
operators can be computed using HolonomicFunctions:

In[32]:= jacann = Factor[Annihilator[JacobiP[n,α, β, x], {S[n], S[a], S[b], Der[x]}]]

Out[32]= {(n+ α+ β + 1)Sβ + (1− x)Dx + (−n− α− β − 1), (n+ α+ β + 1)Sα + (−x− 1)Dx

+(−n−α−β− 1), 2(n+1)(n+α+β+1)Sn − (x− 1)(x+1)(2n+α+β+2)Dx − (n+α+β+1)(2nx+

xα+ xβ + 2x+ α− β), (x− 1)(x+ 1)D2
x + (xα+ xβ + 2x+ α− β)Dx − n(n+ α+ β + 1)}

Next recall the identity (2.14)

(2n+ 1)Pn(x) = P ′
n+1(x)− P ′

n−1(x)

stated in theorem 2.9. The corresponding identity for Jacobi polynomials can be found given
the basis for the annihilating ideal jacann using the “FindRelation”-command of Holnomic-
Functions. In HolonomicFunctions we only deal with forward shifts hence we shift (2.14) by
one

(2n+ 2)Pn+1(x) = P ′
n+2(x)− P ′

n(x).

The support of this relation in operator notation is {Sn, S2
nDx,Dx}. Next we check if there

is an immediate generalization of this form available for Jacobi polynomials:

In[33]:= FindRelation[jacann,Support → {S[n], S[n]2Der[x],Der[x]}]

Out[33]= {2(n + α + β + 1)(n + α + β + 2)(2nx + xα + xβ + 2x + α − β)S2
nDx − (n + α + β + 1)(2n + α +

β+3)
(

4n2
x+ 4nxα+ 4nxβ + 12nx + xα

2 + 2xαβ + 6xα+ xβ
2 + 6xβ + 8x+ α

2 + 2α− β
2 − 2β

)

Sn−
2(n+ α+ 1)(n+ β + 1)(2nx + xα+ xβ + 4x− α+ β)Dx}

61
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If we spell out this result in traditional notation then we obtain

2(n + α+ β + 2) (α− β + x(2 + α+ β + 2n))
d

dx
P

(α,β)
n+2 (x) =

(2n + α+ β + 3) ((α− β)(α+ β + 2) + x(2n+ α+ β + 2)(2n + α+ β + 4))P
(α,β)
n+1 (x)

+
2(n + α+ 1)(n + β + 1)

n+ α+ β + 1
(β − α+ x(2n+ α+ β + 4))

d

dx
P (α,β)
n (x).

(4.1)

Note that in this relation the appearing coefficients depend on x which was not the case
in the corresponding identity for Legendre polynomials. Recall that Legendre polynomials
belong to a special subclass of Jacobi polynomials namely the ultraspherical or Gegenbauer
polynomials. These are Jacobi polynomials with α = β. In (4.1) we see that for this choice
the identity already would simplify quite a bit. Concerning a generalization of (2.14) to an
identity valid for all Jacobi polynomials we should extend the prescribed support to include
also SnDx. As a rule of thumb we may assume that this central term gets reduced to zero if
we specialize to Gegenbauer polynomials. Hence we call FindRelation again with an extended
support and with the restriction that the coefficients shall be independent of x:

In[34]:= FindRelation[jacann,Support → {S[n], S[n]2Der[x],Der[x], S[n]Der[x]},Eliminate → {x}]

Out[34]= {2(n+ α+ β + 1)(n+α+ β +2)(2n+ α+ β + 2)S2
nDx + 2(α− β)(n+ α+ β +1)(2n+α+ β +3)SnDx

−(n+α+β+1)(2n+α+β+2)(2n+α+β+3)(2n+α+β+4)Sn−2(n+α+1)(n+β+1)(2n+α+β+4)Dx}

This identity is now a full generalization of the mixed relation for Legendre polynomials
in both support and shape. We also see in this relation the coefficient α − β appearing for
the term SnDx that vanishes for Legendre and in general for Gegenbauer polynomials.

It is also possible to express Jacobi polynomials P
(α,β)
n (x) in terms of P

(α+1,β+1)
n (x), i.e.,

to do a basis transformation. In order to obtain the corresponding connection coefficients we
proceed similarly as before:

In[35]:= FindRelation[jacann,Support → {S[a]S[b], S[a]S[b]S[n], S[a]S[b]S[n]2, S[n]2},

Eliminate → {x}]

Out[35]= {−(n+α+β+3)(n+α+β+4)(2n+α+β+4)S2
nSαSβ − (α−β)(n+α+β+3)(2n+α+β+5)SnSαSβ +

(2n+ α+ β + 4)(2n+ α+ β + 5)(2n+ α+ β + 6)S2
n + (n+ α+ 2)(n+ β + 2)(2n+ α+ β + 6)SαSβ}

Again this identity can be spelled out in traditional notation and then reads as

P
(α,β)
n+2 (x) = − (α+ n+ 2)(β + n+ 2)

(α+ β + 2n+ 4)(α + β + 2n+ 5)
P (α+1,β+1)
n (x)

+
(α− β)(α+ β + n+ 3)

(α+ β + 2n + 4)(α+ β + 2n+ 6)
P

(α+1,β+1)
n+1 (x)

+
(α+ β + n+ 3)(α+ β + n+ 4)

(α+ β + 2n + 5)(α+ β + 2n+ 6)
P

(α+1,β+1)
n+2 (x).

(4.2)

Note that also here the identity simplifies if we consider Gegenbauer polynomials. The con-

nection coefficients for Jacobi polynomials P
(α,β)
n (x) with Jacobi polynomials with parameters

α and β shifted forward have the simple, fixed finite support as shown in (4.2). These con-

nection coefficients can also be computed in the general case for transferring P
(α,β)
n (x) to

P
(γ,δ)
n (x), however the support usually is running over the whole history k = 0, . . . , n.
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In the context of Chebyshev polynomials we discussed the linearization of products of
orthogonal polynomials, i.e., to determine the coefficients a(k,m, n) in

φn(x)φm(x) =

m+n∑

k=0

a(k,m, n)φk(x),

for a given orthogonal sequence (φn(x))n≥0. With hn =
∫
φn(x)

2w(x) dx these coefficients
can be computed as the triple product integrals

a(k,m, n) =
1

hk

∫

φn(x)φm(x)φk(x)w(x) dx.

Let us try to determine these linearization coefficients for φk(x) = Pk(x) and w(x) ≡ 1, i.e.,
for Legendre polynomials. For this purpose we use creative telescoping as implemented in
HolonomicFunctions. First we compute the annihilator for the integrand including the inverse
squared L2-norm of Legendre polynomials 1

hn
= 2n+1

2 :

In[36]:= ann = Factor[Annihilator[LegendreP[k, x]LegendreP[m,x]LegendreP[n, x]
2k + 1

2
,

{S[k], S[m], S[n],Der[x]}]];

This annihilator is used as input to execute creative telescoping for the integration with
respect to x:

In[37]:= conn = Factor[CreativeTelescoping[ann, Der[x], {S[k], S[m], S[n]}]];

In[38]:= Factor[conn[[1]]]

Out[38]= {(k + m − n + 1)(k − m + n)Sm − (k + m − n)(k −m + n + 1)Sn, (2k + 1)(k − m − n)(k + m − n +

1)Sk − (2k + 3)(k −m− n− 1)(k +m− n)Sn, (k −m− n− 2)(k +m− n− 1)(k −m+ n+ 2)(k +m+

n+ 3)S2
n − (k −m− n− 1)(k +m− n)(k −m+ n+ 1)(k +m+ n+ 2)}

Note that the computations are rather involved and take some time even on big machines.
The output of CreativeTelescoping contains both the principal part displayed above and the
delta part for which one needs to check that it indeed telescopes to zero. We omit this step
here. Finally we are interested in a recurrence relation for the linearization coefficients in k.
To find such a recurrence we use the FindRelation command:

In[39]:= krec = Factor[FindRelation[conn[[1]],Support → {1, S[k], S[k]2}]]

Out[39]= {(2k + 1)(k −m− n+ 1)(k +m− n+ 2)(k −m+ n+ 2)(k +m+ n+ 3)S2
k − (2k + 5)(k −m− n)(k +

m− n+ 1)(k −m+ n+ 1)(k +m+ n+ 2)}

In[40]:= ApplyOreOperator[krec, a[k]]

Out[40]= {−((5 + 2k)(k −m− n)(1 + k +m− n)(1 + k −m+ n)(2 + k +m+ n)a[k]) + (1 + 2 ∗ k)(1 + k −m−
n)(2 + k +m− n)(2 + k −m+ n)(3 + k +m+ n)a[2 + k]}

This recurrence can then be solved using the Mathematice built-in RSolve command.
Note that the recurrence progresses in steps of size two. This is natural if we recall that
Legendre polynomials are even for even degrees and odd for odd degrees. Hence if the product
Pn(x)Pm(x) is a polynomial of even degree then all the odd coefficients in the linearization
vanish and vice versa. Thus also a common way to write them is as a(m+n−2k,m, n) instead
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of a(k,m, n). It is also easy to see that then the upper summation bound is min(m,n) only.
We summarize the result in the following corollary following [2, Cor. 6.8.3].

Corollary 4.1. For Legendre polynomials Pn(x)

Pn(x)Pm(x) =

min{m,n}
∑

k=0

2m+ 2n+ 1− 4k

2m+ 2n+ 1− 2k

(
1
2

)

k

(
1
2

)

m−k
(
1
2

)

n−k (m+ n− k)!
k!(m− k)!(n − k)!

(
1
2

)

m+n−k
Pm+n−2k(x).

In high order finite element methods integrals over given coefficient functions f with prod-
ucts of (usually) orthogonal polynomials need to be computed. In the simple one dimensional
case this means that integrals of the form

Ai,j =

∫ b

a
f(x)φi(x)φj(x) dx

need to be evaluated for polynomial degrees i, j up to an upper bound p giving rise to a system
matrix A = (Ai,j)

p
i,j=0. If we can determine a recurrence for the product φi(x)φj(x) with

shifts in i, j whose coefficients do not depend on x then this recurrence can be used to build
up the matrix A. For all orthogonal polynomials it is possible to derive such a recurrence
relation based on the respective three term recurrence. For specific sequences (φn(x))n≥0

this can be carried out automatically using, e.g., HolonomicFunctions or packages with a
similar scope. As a simple example consider the product of two Jacobi polynomials ψij(x) =

P
(2,0)
i (x)P

(1,1)
j (x). Note that this is not merely product of two polynomials of the same family.

An x-free recurrence exists nonetheless however, if both of the given polynomial sequences
are orthogonal with respect to some weight function and satisfy a three term recurrence in
the standard form.

For the computations first derive an annihilator for the product ψij with shifts in i, j and
then the annihilating ideal is searched for a relation where no x appears in the coefficients:

In[41]:= ann = Factor[Annihilator[JacobiP[i, 2, 0, x]JacobiP[j, 1, 1, x], {S[i], S[j]}]];

In[42]:= rec = Factor[FindRelation[ann,Eliminate → {x}]]

Out[42]= {(i+2)2(i+4)(j+3)(2j+5)S2
i Sj − (i+2)(i+3)(2i+5)(j+2)(j+4)SiS

2
j − (2i+5)(j+3)(2j+5)SiSj −

(i+ 2)(i+ 3)(2i+ 5)(j + 2)(j + 3)Si + (i+ 1)(i+ 3)2(j + 3)(2j + 5)Sj}

The support of this recurrence is of diamond shape. In the lattice plot it is indicated
by the circled grid points. The double circle corresponds to the new matrix entry Ai,j
that can be computed from given initial values. The necessary initial values are exactly

0 1 2 3 4
i

0

1

2

3

4

j

the grey-shaded areas. Note that the graph is centered at
(−1,−1). This simplifies the computation of the needed ini-
tial values since for all classical orthogonal polynomials the
three term recurrence can be extended to degree −1 by set-
ting φ−1(x) = 0.

Starting from these initial values first the entries Ai,1 for
i = 1, . . . , 2p can be computed. Note that by the shape of the
recurrence we need to compute initial values up to degree 2p if
we need to fill the matrix up to Ap,p. This is indicated by the
arrow pointing to the right. In the second step we increase j
and move one line up and compute Ai,2 for i = 1, . . . , 2p − 1
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recursively. This procedure is repeated until the full matrix is computed. If we consider the
matrix A built from solely the product of the two orthgonal polynomials (with a constant
coefficient function at most), then the initial values are easily computed. In this case a simple
routine for building up the matrix is as follows:

In[43]:= A[−1, j Integer] := 0; A[i Integer,−1] := 0; A[i Integer, 0] := 2;

In[44]:= A[i Integer, j Integer] := A[i, j] =
i(i + 2)(j + 1)(2j + 1)

(i + 1)(2i + 3)j(j + 2)
A[i−1, j− 1]−

j + 1

j + 2
A[i, j−2]−

(j + 1)(2j + 1)

(i + 1)(i + 2)j(j + 2)
A[i, j − 1] +

(i + 1)(i + 3)(j + 1)(2j + 1)

(i + 2)(2i + 3)j(j + 2)
A[i + 1, j − 1];

Note that above we used caching in order to speed up the computations and that the
initial values Ai,0 for i ≥ 1 are just the constant value 2. Then the matrix can be assembled
in a fast way:

In[45]:= Timing[mat = Table[A[i, j], {i, 0, 50}, {j, 0, 50}]; ]

Out[45]= {0.200013,Null}

If the coefficient function is not constant, then the recursion can essentially be used in the
same way. Only the initial values Ai,0 need to be adjusted.
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[14] H.S. Wilf M. Petkovšek and D. Zeilberger. A = B. A K Peters Ltd., Wellesley, MA,
1996.

[15] C. Mallinger. Algorithmic Manipulations and Transformations of Univariate Holonomic
Functions and Sequences. Master’s thesis, RISC, J. Kepler University, August 1996.
Available at http://www.risc.uni-linz.ac.at/publications/.

[16] P. Paule and M. Schorn. A Mathematica Version of Zeilberger’s Algorithm for Proving
Binomial Coefficient Identities. Journal of Symbolic Computation, 20:673–698, 1995.

[17] E.D. Rainville. Special Functions. Chelsea Publishing Co., Bronx, N.Y., first edition,
1971.

[18] B. Salvy and P. Zimmermann. Gfun: A package for the manipulation of generating
and holonomic functions in one variable. ACM Transactions on Mathematical Software,
20:163–177, 1994.
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