
Ordinary Differential Equations (ODEs)

In this section, we consider the following problem:

Given: a differential field K, a0, . . . , ar ∈ K, ar ̸= 0, and a differential ring R ⊇ K
Find: all y ∈ R satisfying the following linear ODE,

a0y + a1y
′ + · · ·+ ary

(r) = 0. (1)

� r is called the order of the ODE (1).

� If the leading coefficient ar = 1, then the ODE is called monic.

� If y1, y2 are solutions to (1) and α1, α2 ∈ K, then α1y1 + α2y2 are solutions to (1),
i.e., the set of solutions forms a vector space.

Theorem 18. If R is (contained in) a field and V is the solution space of (1) in R, then
dimK V ≤ r.

Definition 19. Any set of r K-linear independent solutions of (1) is called a fundamental
system of the equation.

Example 20. Consider the ODE y′′ − 2y + y = 0 and its solution space Vi over R1 =
K(x, ex), R2 = K(ex), R3 = K(x). Then we have

� V1 = {ex, xex} as is easily checked by plugging into the ODE; dimV1 = 2.

� V2 = {ex}; dimV2 = 1.

� V3 = {0}; dimV3 = 0.

The existence and dimension of the solution space/set depend on the differential equation
and the choice of R.

Linear ODEs with constant coefficients

Linear ODEs with constant coefficients can always be solved completely in closed form
over the right ring. For now, we consider (1) with coefficients ai ∈ K. We can write the
ODE using operator notation as

L(D)y = 0, where L =
r∑

i=0

aiD
i.

Let us assume for the time being that K is algebraically closed.
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Note

� linear differential operators with constant coefficients commute, i.e., L1(D)L2(D) =
L2(D)L1(D).

� the general solution to y′ − ay = 0 is y = eax.

� the fundamental system of solutions to (D − a)my = 0 is eax, xeax, . . . , xm−1eax.

� if yi is a solution to Li(D)y = 0, then α1y1 + α2y2, α1, α2 ∈ K, is a solution to
L2(D)L1(D)y = 0.

Hence, if p(x) = a0 + a1x + · · · + arx
r = ar

∏s
j=1(x − αj)

m
j , αj ∈ K,mj ∈ N, then the

fundamental system of p(D)y = 0 is given by

{xieαjx | j = 1, . . . , s, i = 0, . . . ,mj − 1}.

Note

� if K = Q and α ∈ C is a root of p of multiplicity m, then also its complex conjugate
ᾱ ∈ C has to be a root; say α = u+ iv, then

exp(u± iv), x exp(u± iv), . . . , xm−1 exp(u± iv)

are part of the fundamental system.

� Since exp(u± iv) = eux
(
cos(vx)± sin(vx)

)
, we get the linear independent real solu-

tions,

eux cos(vx), eux sin(vx), xeux cos(vx), xeux sin(vx), . . . , xm−1eux cos(vx), xm−1eux sin(vx).

Summarizing, the solution of the ODE (1) with constant coefficients is easy, for more
general fields K it’s not so clear what to do.

Polynomial solutions of linear ODEs with rational coefficients

Next, we will discuss finding polynomial solutions of ODEs with rational function coeffi-
cients, i.e., we consider (1) with K = K(x) and R = K[x]. After clearing denominators,
we may assume that the coefficients are all polynomial, i.e., ai ∈ K[x].

First, we need to determine a degree bound d of a potential polynomial solution to (1).
Once we have d,

1. make an ansatz with undetermined coefficients: y(x) =
∑d

j=0 yjx
j;

2. plug the ansatz into the ODE (1);

3. set up a linear system by equating the coefficients to zero;

4. return either the polynomial solution to (1) OR “no polynomial solution exists”.
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Determine a degree bound Let’s denote the unknown degree of y by d, i.e., let

y(x) = ydx
d + yd−1x

d−1 + · · ·+ y1x+ y0,

and w.l.o.g. we assume that the ODE is monic, i.e., that yd = 1. Since Dky = dkxd−k +
lower order terms, we have

deg
(
akD

k(y)
)
= deg(ak) + d− k.

Define β = maxk=0,...,r (deg(ak)− k). Then we have

[xd+β]akD
k(y) =

{
lc(ak)d

k if β = deg ak − k

0 else.

By the choice of β, this term will be non-zero for at least one k ∈ {0, . . . , r}. Hence

φ(d) =
r∑

k=0

[xd+β](akD
ky)dk =

∑
deg(ak)−k=β

lc(ak)d
k ∈ K[d]

is a non-zero polynomial called the indicial polynomial of the ODE. If y is a polynomial
solution of (1) of degree d, then d is an integer root of φ. Thus, we end up with the degree
bound

d = max{n ∈ N | φn = 0}.

Example 21. Consider the ODE

(x+ 1)y′′ + (x− 1)y′ − 2y = 0,

i.e., we have the coefficients

a2(x) = x+ 1, a1(x) = x− 1, a0(x) = −2,

and so
β = max{1− 2, 1− 1, 0− 0} = 0.

Thus
φ(d) =

∑
deg(ak)−k=β

lc(ak)d
k = 1 · d1 − 2 · d0 = d− 2 ⇒ d = 2.

Hence we have the degree bound d = 2 and the ansatz

y(x) = y2x
2 + y1x+ y0

y′(x) = 2y2x+ y1

y′′(x) = 2y2
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which we plug into the ODE:

2(x+ 1)y2 + 2(x− 1)xy2 + (x− 1)y1 − 2y2x
2 − 2y1x− 2y0 = 0

−y1x+ 2y2 − y1 − 2y0 = 0.

Equating coefficients to zero, gives the solution

y1 = 0, y2 = y0,

hence the general polynomial solution is y(x) = C(x2+1). (Note: the full solution is given
by y(x) = C1e

−x + C2(x
2 + 1).)

Example 22. Consider next the ODE,

(x2 − 1)y′′ + (x− 1)y′ − 2y = 0.

Here β = max{2 − 2, 1 − 1, 0 − 0} = 0 and φ(d) = d2 + d1 − 2 = d2 − 2, which has no
integer roots and thus the equation does not have a polynomial solution.

Rational solutions of linear ODEs with rational polynomial coeffs

By the same argument as before, we can reduce the problem to polynomial coefficients and
consider (1) with K = K[x] and R = K(x).

First, we need to determine a denominator bound. Suppose y = p
q
is a solution and

suppose we know some Q ∈ K[x] with q|Q. Then we can write y = P
Q

= p
q
for some

(unknown) P ∈ K[x] that is not necessarily coprime with Q.
Next, we plug y into the given ODE, clear denominators and end up with the problem

of finding a polynomial solution P to an ODE with polynomial coefficients.

Finding a denominator bound Let y = p/q be a solution of (1) and q = qm1
1 · · · qms

s

the factorization of q over K[x]. Then

Dk(p/q) =
poly

qm1+k
1 · · · qms+k

s

with no possibility of further cancelation, since we have for squarefree q and pairwise
relatively prime u, q, v ∈ K[x],

D

(
u

qlv

)
=

u′qlu− u(lvql−1q′ + qlv′)

q2lv2
=

u′qv − luvq′ − quv′

ql+1v2
.

If q divides the numerator if and only if q|luvq′, but l > 0 and 1 = gcd(q, u) = gcd(q, v) =
gcd(q, q′).

Plugging y = p/q into the ODE (1) in the form

ary
(r) = ar−1y

(r−1) − · · · − a1y
′ − a0y,
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gives something of the form

pr

qm1+r
1 · · · qms+r

s

= − pr−1

qm1+r−1
1 · · · qms+r−1

s

− · · · − p0
qm1
1 · · · qms

s

,

for some polynomials pi. Hence something has to cancel on the LHS of the equation. Since
there is no common factor with the numerator of y(r), we have that it has to be with the
leading coefficient ar,

q1 · · · qs|ar.

This means that the factors that can occur in the denominator appear among the factors
of the leading coefficient.

The next step is to find a bound on the multiplicities of the factors. The idea is as
follows:

� Let q be a factor of ar and y = u
vql

be a solution of (1);

� w.l.o.g., we may assume that gcd(u, q) = gcd(v, q) = 1;

� let q = x− α for some α ∈ K; w.l.o.g. assume α = 0;

� expand

u

v
= c0 + c1x+ c2x

2 + . . . ⇒ y(x) = c0x
−l + . . . , y′(x) = −c0ly

−l−1 + . . .

� plug y = x−l into the ODE (1)

� the trailing coefficient is a polynomial in l: φ(l), called the indicial polynomial;

� if y = u
vxl is a rational solution, then −l is an integer root of φ.

Example 23. We consider the second order linear ODE

x(x+ 2)y′′ + (6− x2)y′ − 2(x+ 3)y = 0.

Candidates for the denominator bound are q1(x) = x, q2(x) = x+ 2.
Next, we need to determine the multiplicities:

� q1 = x: write y = u
vql1

and expand u/v = c0 + c1x+ c2x
2 + . . . . Then

y = c0x
−l + c1x

−l+1 + . . .

y′ = −lc0x
−l−1 − lc1x

−l + . . .

y′′ = −l(l + 1)c0x
−l−2 + l(l − 1)c1x

−l−1 + . . .

Plugging into the given ODE yields

0 = x(x+ 2)c0l(l + 1)x−l−2 + · · · − (6− x2)lc0x
−l−1 − · · · − 2(x+ 3)c0x

−l + . . .
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The trailing coefficient is the coefficient of x−l−1 and so we obtain the indicial poly-
nomial

φ(l) = 2l(l + 1)− 6l = 2l(l − 2) ⇒ l = 2.

Thus the first factor of the denominator bound is x2.

� q2 = x+ 2: y(x− 2) is a solution to

x(x− 2)y′′ − (x2 − 4x− 2)y′ − 2(x+ 1)y = 0.

By shifting the argument, we can consider now again q̃2 = x and the same procedure
as before now yields φ(l) = −2l(l + 3), i.e., l = −3, which is not a valid bound.

Summarizing, we plug in the ansatz y(x) = u(x)/x2 into the original ODE and look for the
polynomial solution u(x) with the previous method.
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