Exam

Symbolic Linear Algebra

Summer Term 2017

Name:

Matrikelnummer:

SKZ:

Problem	1	2	3	4	5	6	7	Total
Marks Maximum	1	1	2	2	2	6	6	20

Problem 1 (1 Mark). Show that $\mathbb{R}[x]$ is not a free $\mathbb{R}[\partial]$-module.
Problem 2 (1 Mark). Let R be a principal ideal domain and $a_{1}, \ldots, a_{n} \in R$. Prove that all greatest common divisors of a_{1}, \ldots, a_{n} are associated.

Problem 3 (2 Marks). Let R be a principal ideal domain and let $v \in R^{n \times 1}$. Let $Q \in \operatorname{GL}_{n}(R)$ be such that

$$
Q v=\left(\begin{array}{c}
\operatorname{gcd}(v) \\
0 \\
\vdots \\
0
\end{array}\right)
$$

(a) Show that the first column of Q^{-1} is $v / \operatorname{gcd}(v)$.
(b) Prove that $\operatorname{gcd}(v / \operatorname{gcd}(v))=1$.

Problem 4 (2 Marks). Compute the Smith-Jacobson normal form of

$$
A=\left(\begin{array}{cccc}
x-1 & 0 & \cdots & 0 \\
0 & x-2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & x-n
\end{array}\right) \in \mathbb{R}[x]^{n \times n} .
$$

Problem 5 (2 Marks). Let R be a principal ideal domain and $a, b \in R$. Show that the matrices

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \in R^{2 \times 2} \quad \text { and } \quad\left(\begin{array}{cc}
\operatorname{gcd}(a, b) & 0 \\
0 & \operatorname{lcm}(a, b)
\end{array}\right) \in R^{2 \times 2}
$$

are equivalent.
Problem 6 (6 Marks). Use the Smith-Jacobson normal form to find all integer solutions of the linear diophantine system

$$
\begin{aligned}
-w+4 x+4 y-z & =3, \\
w-2 x-2 y+z & =-1, \\
-w+8 x+2 y-z & =1, \\
w-10 x-4 y+z & =-3 .
\end{aligned}
$$

Problem 7 (6 Marks). Use the Hermite normal form to determine whether the matrix

$$
A=\left(\begin{array}{ccc}
x-1 & 1 & 1 \\
2 x^{2}-x & x+1 & 2 x \\
x-2 & 2 & 1
\end{array}\right) \in \mathbb{R}[x]^{3 \times 3}
$$

is unimodular and compute the inverse in case that A is indeed unimodular.

