Exam

Symbolic Linear Algebra

Summer Term 2017

Name:	 									_
Matrikelnummer:	 									
SKZ:	 									
	Problem Marks	1	2	3	4	5	6	7	Total	
	Maximum	1	1	2	2	2	6	6	20	

Problem 1 (1 Mark). Show that $\mathbb{R}[x]$ is not a free $\mathbb{R}[\partial]$ -module.

Problem 2 (1 Mark). Let R be a principal ideal domain and $a_1, \ldots, a_n \in R$. Prove that all greatest common divisors of a_1, \ldots, a_n are associated.

Problem 3 (2 Marks). Let R be a principal ideal domain and let $v \in \mathbb{R}^{n \times 1}$. Let $Q \in \mathrm{GL}_n(\mathbb{R})$ be such that

$$Qv = \begin{pmatrix} \gcd(v) \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

- (a) Show that the first column of Q^{-1} is $v/\gcd(v)$.
- (b) Prove that gcd(v/gcd(v)) = 1.

Problem 4 (2 Marks). Compute the Smith–Jacobson normal form of

$$A = \begin{pmatrix} x - 1 & 0 & \cdots & 0 \\ 0 & x - 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & x - n \end{pmatrix} \in \mathbb{R}[x]^{n \times n}.$$

Problem 5 (2 Marks). Let R be a principal ideal domain and $a, b \in R$. Show that the matrices

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in R^{2 \times 2} \quad \text{and} \quad \begin{pmatrix} \gcd(a, b) & 0 \\ 0 & \operatorname{lcm}(a, b) \end{pmatrix} \in R^{2 \times 2}$$

are equivalent.

Problem 6 (6 Marks). Use the Smith–Jacobson normal form to find all integer solutions of the linear diophantine system

$$-w + 4x + 4y - z = 3,$$

$$w - 2x - 2y + z = -1,$$

$$-w + 8x + 2y - z = 1,$$

$$w - 10x - 4y + z = -3.$$

Problem 7 (6 Marks). Use the Hermite normal form to determine whether the matrix

$$A = \begin{pmatrix} x - 1 & 1 & 1\\ 2x^2 - x & x + 1 & 2x\\ x - 2 & 2 & 1 \end{pmatrix} \in \mathbb{R}[x]^{3 \times 3}$$

is unimodular and compute the inverse in case that A is indeed unimodular.