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Notation 1. Let A ∈ Rm×n be an m-by-n matrix with entries in a commutative ring R. We denote
by gcd(A) the greatest common divisor of all the entries of A.

Notation 2. We use Swapj,k to refer to the (unimodular1) elementary matrix which swaps the jth
with the kth row. We write Add j,k(x) for the (unimodular) elementary matrix which adds x times
the kth row to the jth row.

Theorem 3. Let R be a commutative ring. Let A ∈ Rm×n and B ∈ Rn×p. Then

gcd(A) gcd(B) | gcd(AB).

Proof. Write A = gcd(A)Ã and B = gcd(B)B̃ for some Ã ∈ Rm×n and B̃ ∈ Rn×p. Then

AB = gcd(A) gcd(B)ÃB̃,

implying that gcd(A) gcd(B) | AB which proves the theorem.

Corollary 4. Let A ∈ Rm×n, P ∈ GLm(R), and Q ∈ GLn(R). Then

gcd(PA) = gcd(A) = gcd(AQ).

Proof. By Theorem 3,
gcd(A) | gcd(PA) | gcd(P−1PA) = gcd(A).

Thus, gcd(A) = gcd(PA). The other identity is proved in the same way.

Algorithm 5 (Extended Euclidean Algorithm).

Input v ∈ Rn where R is a Euclidean ring with degree deg : R \ {0} → N.

Output Q ∈ GLn(R) such that Qv = (gcd(v), 0, . . . , 0)t.

Procedure

(a) If v = 0, then return Q = 1n.

(b) If v has only one non-zero entry vj , then return Q = Swap1,j .

(c) If v has at least two different non-zero components vj and vk where deg vj 6 deg vk,
then:

1A matrix with entries in R is unimodular if and only if its determinant is a unit in R if and only if it has an
inverse with entries in R.
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(1) Let vk = qvj + r with r = 0 or deg r < deg vj .
(2) Apply the algorithm recursively v′ = Addk,j(−q) v obtaining Q′.
(3) Return Q = Q′Addk,j(−q).

Theorem 6. Algorithm 5 is correct and terminates.

Proof. We first check the correctness: If the algorithm terminates in step (a) or (b), then the output
is obviously correct. It it reaches step (c), thenQv = Q′Addk,j(−q) v = Q′v′ = (gcd(v′), 0, . . . , 0)t =
(gcd(v), 0, . . . , 0)t where the last identity follows from Theorem 3 since Addk,j(−q) is unimodular.

We now check termination: Here, we only need to consider step (c). For w ∈ Rn and w 6= 0,
define a size δ(w) =

∑
j,wj 6=0(1 + degwj) > 0. We claim that δ(v) > δ(v′): The only entry of v′

which changes compared to v is its kth entry where vk is replaced by r = vk − qvj . Since either
r = 0 or deg r < deg vk, we have indeed δ(v) > δ(v′). That means, that in every recursive call
the size of the argument decreases which can only happen finitely often. Thus, step (c) cannot be
executed infinitely often meaning that eventually one of the conditions in the previous two steps
must hold and the algorithm terminates.

Note 7. For actual computations, the following variant of Algorithm 5 is useful:

(a) Form the extended matrix A = (v | 1n).

(b) If A =

(
x
0

Q

)
with x ∈ R, then return Q.

(c) Let k be such that Ak,1 is a non-zero entry of the first column of A of minimal degree.2
Exchange the kth and first row of A.

(d) For j = 2, . . . , n such that vj 6= 0: Let vj = qv1 + r where r = 0 or deg r < deg vj ; and
subtract q times the first row of A from the jth row.

(e) Go to step (b).

It is easy to check that the above steps do the same computations as Algorithm 5 unrolled into an
imperative programming style and with a stricter order of the eliminations. The first column of A
corresponds to the (current instance of the) vector v while the identity matrix is used to record the
row transformations.

Example 8. For R = Z, consider 33 1 0 1
55 0 1 0
121 0 0 1

 
 33 1 0 1

55 0 1 0
11 0 −2 1

 
 33 1 0 1

0 0 11 −5
11 0 −2 1

 
 0 1 6 −3

0 0 11 −5
11 0 −2 1


which implies that gcd(33, 55, 121) = 11.

2That is, Ak,1 6= 0 and degAj,1 > degAk,1 for all = 1, . . . , n.
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