Algorithmic Combinatorics

Exercises discussed on June 17, 2019

49. Hyper finds the solutions 3^{n} and n ! to the recurrence

$$
(n-2) a(n+2)-\left(n^{2}+3 n-7\right) a(n+1)+3\left(n^{2}-1\right) a(n)=0
$$

Compute the two factorizations of the operator corresponding to this recurrence.
50. Use Zeilberger's algorithm as presented in the lecture to determine a recurrence satisfied by $\sum_{k=0}^{n}\binom{n}{k} k$. You may use the information that the recurrence is of order one with linear coefficients.

