Algorithmic Combinatorics

Exercises discussed on June 3, 2019

46. Given is the following P-finite recurrence

$$
(4 n+1) g_{n+2}+2(4 n-1) g_{n+1}-3(4 n+5) g_{n}=0, \quad g_{0}=1, \quad g_{1}=0
$$

Determine all candidate pairs for $u(n), v(n+2)$ in the algorithm Hyper presented in the lecture and at least one hypergeometric solution to this recurrence.
47. Chebyshev polynomials of the first kind can be defined using the recurrence

$$
T_{n+2}(x)-2 x T_{n+1}(x)+T_{n}(x)=0, \quad T_{0}(x)=1, T_{1}(x)=x .
$$

Compute the generating function $F(z)=\sum_{n \geq 0} T_{n}(x) z^{n}$.
48. Given are two sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$. The sequence a_{n} is hypergeometric satisfying $c_{1}(n) a_{n+1}=c_{0}(n) a_{n}$ for some polynomials c_{0}, c_{1} and b_{n} is P-finite satisfying

$$
d_{r}(n) b_{n+r}+\cdots+d_{1}(n) b_{n+1}+d_{0}(n) b_{n}=0,
$$

for polynomials d_{k}. Give a direct proof that the sequence $c_{n}=a_{n} b_{n}$ is P-finite of order r by explicitely computing the recurrence coefficients.

