Algorithmic Combinatorics

Exercises discussed on May 20, 2019
40. Implement a program in your favourite computer algebra system that sums a given polynomial sequence using
(a) falling factorial representation.
(b) interpolation (you may use built-in commands to execute the interpolation, e.g., in Mathematica the command InterpolatingPolynomial).

Compute some test cases, in particular compare the timings for the sparse and dense polynomial given in testcases.m.
41. Let T_{n} be the number of tilings of a $3 \times n$ rectangle with straight trominoes (i.e., 1×3 and 3×1 pieces).
(a) Determine a recurrence relation for T_{n}.
(b) Express the partial sum $s_{n}=\sum_{k=0}^{n} T_{k}$ in terms of T_{n}.
42. Express $s_{n}=\sum_{k=0}^{n} a_{k}$ in terms of a_{n}, a_{n+1}, \ldots, where the sequence $\left(a_{n}\right)_{n \geq 0}$ is given by the recurrence

$$
a_{n+3}=5 a_{n+1}-4 a_{n}, \quad a_{0}=a_{1}=1, \quad a_{2}=2 .
$$

