Algorithmic Combinatorics

Exercises discussed on May 13, 2019

35. Let $C(x)=\sum_{n \geq 0} C_{n} x^{n}$ be the generating function of the Catalan numbers. In the lecture we deduced from the equation $x C(x)^{2}-C(x)+1=0$ the explicit representation

$$
C(x)=\frac{1-\sqrt{1-4 x}}{2 x} .
$$

What rules out the possibility $C(x)=\frac{1+\sqrt{1-4 x}}{2 x}$?
36. Prove or disprove that the multiplicative inverse of $C(x)$ (the generating function of the Catalan numbers) is holonomic.
37. Let $a(x)$ be an algebraic power series and suppose that the power series $b(x)$ is such that $a(b(x))=x$. Show that $b(x)$ is algebraic.
38. Let $\left(a_{n}\right)_{n \geq 0}$ be the coefficient sequence of an algebraic power series. Show that then the sequence of partial sums $\left(\sum_{k=0}^{n} a_{k}\right)_{n \geq 0}$ is the coefficient sequence of an algebraic power series.
39. Determine all polynomial solutions of the recurrence

$$
(4 n+9) a(n)-4(n+1) a(n+1)+3 a(n+2)=0, \quad a(0)=-1, a(1)=0 .
$$

