Algorithmic Combinatorics

Exercises discussed on May 6, 2019
30. Determine the asymptotics of

$$
\frac{3^{n}}{4 n+1}\binom{3 n}{n+1}^{2}\binom{6 n}{2 n}^{-1}
$$

31. Can $f(x)=\sin (x)+\cos (x)$ be expressed as a hypergeometric series?
32. Show that a sequence $\left(a_{n}\right)_{n>0}$ is holonomic if and only if there exist polynomials $p_{0}, \ldots, p_{r} \in \mathbb{K}[x]$ and $q \in \mathbb{K}[x]$ such that

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=q(n), \quad n \in \mathbb{N} .
$$

33. Show that if $\left(a_{n}\right)_{n \geq 0}$ is holonomic, then $s_{n}=\sum_{k=0}^{n} a_{k}$ is holonomic.
34. Use Mallinger's package GeneratingFunctions to
(a) compute the defining differential equation for $y(x)=\frac{x}{\sqrt{1-4 x}}$ starting from the algebraic equation

$$
(1-4 x) y(x)^{2}-x^{2}=0 ;
$$

(b) derive a recurrence relation for the coefficients a_{n} of $y(x)=\sum_{n \geq 0} a_{n} x^{n}$ starting from the differential equation computed in (a).

Solve the recurrence computed in (b) using your favourite computer algebra system.

