Algorithmic Combinatorics

Exercises discussed on April 1, 2019

Recall the definition of Stirling numbers of the second kind $S_{2}(n, k)$ as the number of ways to partition an n-element set into a disjoint union of k nonempty subsets. They satisfy the recurrence relation

$$
S_{2}(n, k)=S_{2}(n-1, k-1)+k S_{2}(n-1, k), \quad n, k \geq 1
$$

with initial values $S_{2}(0,0)=1$ and $S_{2}(n, 0)=0$ for $n \geq 1$, and $S_{2}(n, k)=0$ for $k>n \geq 1$.
18. Show that for $k \in \mathbb{N}$

$$
\sum_{n=0}^{\infty} S_{2}(n, k) x^{n}=\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)}
$$

19. Show that for $k \in \mathbb{N}$

$$
\sum_{n=0}^{\infty} S_{2}(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(\mathrm{e}^{x}-1\right)^{k}
$$

and that

$$
\sum_{n, k=0}^{\infty} S_{2}(n, k) \frac{x^{n}}{n!} y^{k}=\exp \left(y\left(\mathrm{e}^{x}-1\right)\right)
$$

20. Let the signless Stirling numbers of the first kind $C(n, k)$ denote the number of permutations of $\{1,2, \ldots, n\}$ with exactly k cycles. Derive a recurrence relation for $C(n, k)$. Starting from this recurrence, derive a recurrence relation for the Stirling numbers of the first kind $S_{1}(n, k):=(-1)^{n-k} C(n, k)$.
21. Let x be an indeterminate and $n \in \mathbb{N}$. Show that
(a) $x^{n}=\sum_{k=0}^{n} S_{2}(n, k) x^{\underline{k}}$
(b) $x^{\underline{n}}=\sum_{k=0}^{n} S_{1}(n, k) x^{k}$
