Algorithmic Combinatorics

Exercises discussed on March 25, 2019

13. Let the Euler operator be defined as $\theta_{x}=x D_{x}$. Show that

$$
\theta_{x}^{k} f(x)=\theta_{x}\left(\theta_{x}-1\right) \cdots\left(\theta_{x}-k+1\right) f(x)=x^{k} f^{(k)}(x)
$$

14. Prove Theorem 2.10 (Multiplicative Inverse):

Let $a(x) \in \mathbb{K} \llbracket x \rrbracket$. Then there exists a series $b(x) \in \mathbb{K} \llbracket x \rrbracket$ with $a(x) b(x)=1$ if and only if $a(0) \neq 0$.
15. Let $\left(a_{n}(x)\right)_{n \geq 0},\left(b_{n}(x)\right)_{n \geq 0}$ be convergent sequences of formal power series with respective limits $a(x), b(x) \in \mathbb{K} \llbracket x \rrbracket$.
Show that then also $\left(c_{n}(x)\right)_{n \geq 0}$ wiht $c_{n}(x)=a_{n}(x)+b_{n}(x)$ is a convergent sequence of formal power series with limit $a(x)+b(x)$.
16. Prove the reflection formula, i.e., show that for x an indeterminate and $k \in \mathbb{N}$:

$$
\binom{x}{k}=(-1)^{k}\binom{k-x-1}{k} .
$$

17. Give a direct proof of the binomial theorem in the ring of formal power series, i.e., show that for $f(x) \in \mathbb{C} \llbracket x \rrbracket$ with $f(0)=0$ and $\lambda \in \mathbb{C}$ that

$$
(1+f(x))^{\lambda}:=\sum_{n \geq 0}\binom{\lambda}{n} f(x)^{n} \in \mathbb{C} \llbracket x \rrbracket .
$$

