Algorithmic Combinatorics

Exercises discussed on March 18, 2019

7. Show that $H_{n} \sim \log n$ as n tends to infinity without using Euler's result.
(BP1) Show that the harmonic numbers cannot be expressed as a rational function, i.e., show that $H_{n} \notin \mathbb{C}(n)$.
8. Determine the generating function $F(x)=\sum_{n \geq 0} c_{n} x^{n}$ for
(a) $c_{n}=n^{2}$.
(b) $c_{n}=\frac{1}{n+1}$.
9. Show that $\left(\mathbb{K}^{\mathbb{N}},+, \cdot\right)$ is a commutative ring with one.
10. Show that $(\mathbb{K} \llbracket x \rrbracket,+, \cdot)$ is an integral domain.
11. Show that the map $D_{x}: \mathbb{K} \llbracket x \rrbracket \rightarrow \mathbb{K} \llbracket x \rrbracket$ defined as

$$
D_{x} \sum_{n=0}^{\infty} a_{n} x^{n}:=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n},
$$

turns $\mathbb{K} \llbracket x \rrbracket$ into a differential ring.
(BP) indicates Bonus problem, i.e., it brings extra credits.

