ni}= << RISC" GeneratingFunctions’

Package GeneratingFunctions version 0.8 written by Christian Mallinger
Copyright Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

2= ? REPlus

RecurrenceEquationPlus[rel,re2,a[n]] gives a recurrence equation that
is satisfied by the sum of solutions of the recurrences rel and re2.

All recurrences are given in a[n].
Alias: REPlus

See also: REInfo, DEPlus

(» defining the sequences of Perrin and Lucas numbers =x)

= perrin = {a[n+3] -a[n+1] -a[n] =0, a[0] == 3, a[1] == 0, a[2] == 2}

lucas = {a[n+2] -a[n+1] -a[n] =0, a[0] =2, a[1] == 1};
(* computing a recurrence for the sum of Perrin and Lucas numbers =x)
ns- REPlus[perrin, lucas, a[n]]

ous- {a[n]+2afl+n]-2a[3+n]-af4+n]+a[5+n] =0,
a[0] =5, a[l] =1, a[2] =5, a[3] =7, a[4] =9}

inel= ? REx
V RISC GeneratingFunctions’
REHadamar- RESubsequ-
RE RE2L d REInterlace REPlus ence
RE2DE RECauchy REInfo REOut REShadow

n7= ? RESubsequence

RecurrenceEquationSubsequence[re,a[n],m*n+Kk] gives a recurrence that
is satisfied by a subsequence of the form a[m=*n+k] of every solution a[n] of

the input recurrence re.
Alias: RESubsequence

See also: REInfo, REInterlace

(* Computing a recurrence for all odd-indexed Lucas numbers x)



2 | GeneratingFunctions.nb

ing:- RESubsequence[lucas, a[n], 2n+1]
ougl- {a[n] -3 afl+n]+a[2+n] =0, a[0] =1, a[l] =4}
(* Cauchy product of Perrin and Lucas numbers =)
n9- RECauchy[perrin, lucas, a[n]]
oupgl- {a[n] +2afl+n]-2a[3+n]-a[4+n]+a[5+n] =0,
a[®] =6, a[l] =3, a[2] =13, a[3] =20, a[4] = 34}
(» defining the Fibonacci sequence x)
nio- fib = {F[n+2] -F[n+1] -F[n] =0, F[0] =0, F[1] = 1};

(* Computing the recurrence for the Cauchy
product of Fibonacci numbers with the constant sequence 1,
i.e., for the partial sum of Fibonacci numbers x)

ni11= RECauchy[fib, {F[n] == 1}, F[n]]
oufit= {F[n] -2F[2+n] +F[3+n] =0, F[O] =0, F[1] =1, F[2] == 2}

(* Perrin and Lucas numbers are built-in =x)

niz;= 2 Perrin
Perrin[n] gives the nth Perrin number.
nis;= 2 LucasL

LucasL[n] gives the Lucas number L,,.

LucasL[n, x] gives the Lucas polynomial L,(x). >

(* creating data for guessing x)

n4- dataL = Table[LucasL[nn], {nn, 0, 20}];
dataP Table[Perrin[nn], {nn, 0, 20}];

6= 72 GuessRE
(* Guessing the recurrence for Lucas numbers x)
ni17:- GuessRE[datalL, a[n]]

oufiz- {{-a[n] -a[l+n]+a[2+n] =0, a[0] ==2, a[l] =1}, ogf}

(* Guessing the recurrence for Perrin numbers -

need to increase the maximal order used! =x)

nite;- GuessRE[dataP, a[n]]
outiisl= FAIL



GeneratingFunctions.nb | 3

njt9y- GuessRE[dataP, a[n], {0, 3}, {0, 0}]
oufig)- {{-a[n] -a[l+n]+a[3+n] =0, a[0] ==3, a[l] =0, a[2] =2}, ogf}



