In[1]:= << RISC`GeneratingFunctions`</pre>

Package GeneratingFunctions version 0.8 written by Christian Mallinger Copyright Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

In[2]:= ? REPlus

RecurrenceEquationPlus[re1,re2,a[n]] gives a recurrence equation that is satisfied by the sum of solutions of the recurrences re1 and re2. All recurrences are given in a[n].

Alias: RFPlus

See also: REInfo, DEPlus

(* defining the sequences of Perrin and Lucas numbers *)

$$ln[3] = perrin = {a[n+3] - a[n+1] - a[n] == 0, a[0] == 3, a[1] == 0, a[2] == 2};$$

 $lucas = {a[n+2] - a[n+1] - a[n] == 0, a[0] == 2, a[1] == 1};$

(* computing a recurrence for the sum of Perrin and Lucas numbers *)

In[5]:= REPlus[perrin, lucas, a[n]]

Out[5]=
$$\{a[n] + 2a[1+n] - 2a[3+n] - a[4+n] + a[5+n] == 0,$$

 $a[0] == 5, a[1] == 1, a[2] == 5, a[3] == 7, a[4] == 9\}$

In[6]:= ? RE*

▼ RISC`GeneratingFunctions`

		REHadamar-			RESubsequ-
RE	RE2L	d	REInterlace	REPlus	ence
RE2DE	RECauchy	REInfo	REOut	REShadow	

In[7]:= ? RESubsequence

RecurrenceEquationSubsequence[re,a[n],m*n+k] gives a recurrence that is satisfied by a subsequence of the form a[m*n+k] of every solution a[n] of the input recurrence re.

Alias: RESubsequence

See also: REInfo, REInterlace

(* Computing a recurrence for all odd-indexed Lucas numbers *)

```
In[8]:= RESubsequence[lucas, a[n], 2 n + 1]
Out[8]= \{a[n] - 3a[1+n] + a[2+n] == 0, a[0] == 1, a[1] == 4\}
      (* Cauchy product of Perrin and Lucas numbers *)
 In[9]:= RECauchy[perrin, lucas, a[n]]
Out[9]= \{a[n] + 2a[1+n] - 2a[3+n] - a[4+n] + a[5+n] == 0,
       a[0] = 6, a[1] = 3, a[2] = 13, a[3] = 20, a[4] = 34
      (* defining the Fibonacci sequence *)
ln[10]:= fib = {F[n+2] - F[n+1] - F[n] == 0, F[0] == 0, F[1] == 1};
      (* Computing the recurrence for the Cauchy
       product of Fibonacci numbers with the constant sequence 1,
     i.e., for the partial sum of Fibonacci numbers *)
ln[11]:= RECauchy[fib, {F[n] == 1}, F[n]]
Out[11]= \{F[n] - 2F[2+n] + F[3+n] == 0, F[0] == 0, F[1] == 1, F[2] == 2\}
     (* Perrin and Lucas numbers are built-in *)
In[12]:= ? Perrin
      Perrin[n] gives the nth Perrin number.
In[13]:= ? LucasL
      LucasL[n] gives the Lucas number L_n.
      LucasL[n, x] gives the Lucas polynomial L_n(x). \gg
      (* creating data for guessing *)
in[14]:= dataL = Table[LucasL[nn], {nn, 0, 20}];
     dataP = Table[Perrin[nn], {nn, 0, 20}];
In[16]:= ? GuessRE
      (* Guessing the recurrence for Lucas numbers *)
In[17]:= GuessRE[dataL, a[n]]
Out[17]= \{\{-a[n] - a[1+n] + a[2+n] == 0, a[0] == 2, a[1] == 1\}, ogf\}
      (* Guessing the recurrence for Perrin numbers →
      need to increase the maximal order used! *)
In[18]:= GuessRE[dataP, a[n]]
Out[18] = FAIL
```

In[19]:= GuessRE[dataP, a[n], {0, 3}, {0, 0}]

 $\text{Out[19]= } \{ \{ -a[n] - a[1+n] + a[3+n] = 0, \, a[0] = 3, \, a[1] = 0, \, a[2] = 2 \}, \, ogf \}$