
Design:

Decomposition and Decoupling

Decomposition & decoupling

• Program: built from a collection of parts

– What are these parts?

– Is it necessary to have it this way?

– Is there the right way to identify these parts?

• Decomposition: identifying the parts that

built up a program

• Decoupling: eliminating dependencies

among these parts

Decomposition: Why?

• Alternative: make the whole program as a

single block

• Advantages of decomposition:

– Division of labour

– Reuse

– Modular analysis and verification

– Localized change

Decomposition:

What are the parts?
• Well… they are descriptions

– Of some collections of data and its

transformations

– Of some algorithms

– …

– They will be translated into a programming

language (again a description)

• The computer follows this description, when

executing the program.

So… what are the parts?

• Groups of similar or related concepts

• Together, they give structure to a program

The architecture

How to get these parts?

• Top-down approach

– If a part is already available, you’ve got it

– Else, split it into subparts, develop them,

combine them together

• “Similar level of abstraction” approach

– Start with some parts

– Analyse, describe, refine each part before

starting to develop them

Decoupling

• The parts need to work together

– There are some dependencies among them

– Some parts call functions of other parts,
• hence, they need to know about these other parts

• hence, they depend on these other parts

• Decoupling: minimizing these dependencies

• Dependency: introduced by the relation
“uses”

“Uses”

• A uses B if the meaning of A depends on
the meaning of B

• For executable code, “meaning” means
“behavior”

 A uses B if the behavior of A depends
on the behavior of B

Example: Traffic monitoring system

• A real-life system
 interprets traffic data

 issues regularly snapshots with the traffic situations

– Data - read from a database
• Contains real-time info sent by sensors

– A simplified road network is used

– Computed traffic data - sent to some other database
• to be used in other application

• to be visualized in a browser

– Abnormal traffic situations are announced to another
traffic monitoring system

– Statistics need to be extracted

My parts...

Real-time

data provider

Real-time

data

Road network

provider

Road

network

Traffic

snapshot

generator

DB Writer

Visualizer

Traffic

snapshot

Management

console

”uses” diagram for the

traffic monitoring system

Description

• Traffic snapshot generator:
– Maps real-time data onto road segments

– Integrates readings from various sources

– Issues snapshots of the traffic situation

• Real-time data
– Collections of measurements raised in a specific time frame

– Can come from static (vehicle counters) or moving (GPS sensors
installed on vehicles) sources.

• DB Reader
– Connects to the database with real-time data

– Downloads readings according to some criteria (usually
temporal)

Description (2)

• Road network
– Contains information about a subset of the road infrastructure

– A set of road segments (edges), and

– A set of crossroads (nodes)

– Geometry is the most important information about a road
segment

• Road network provider
– Reads/loads/downloads a road network

• DB Writer
– Writes traffic information into some database

• Visualizer
– Represents graphically the snapshot of the traffic situation

– Shows a road map with the road segments colored according to
the traffic on them (red for traffic jams, yellow for delays, green
for normal traffic)

“Uses” diagrams

• Reasoning

– Is part A correct?

• Need to analyse all parts on which A depends

– And al parts on which these parts depend, etc.

– If I modify B, what changes?

• All parts that use B

• And all parts that use them, etc.

 Impact analysis

“Uses” diagrams

• Reuse

– Identify collections of parts so that no part in

the collection uses parts outside the collection

– E.g, Road network, Traffic snapshot, Real-

time data

“Uses” diagrams

• Implementation order

– Assign parts to different implementation teams

– Make sure that no team has to wait for another

team to finish

– Start with parts that use no other parts

 try to avoid cyclical “uses”

...Inconvenience

• “uses” is transitive

– If A depends on B and B depends on C, then

A depends on C

• Well then,

– Can we define a dependency that “stops after

one step”?

Idea

• All parts on which A depends should be

complete (should not depend on any other

parts)

– Their description completely describe their

behavior

• Such a description is called specification

• …but a specification cannot be executed

 we need at least one implementation part,

behaving as the specification says

Extended “uses” diagram

• New type of blocks: specifications

• New relation: “meets”, or “fulfills”

– part B meets specification S if it behaves

according to S

A S

B

Advantages

• Weakened assumptions

– if A uses B, it is improbable that all aspect of B

are important to A

– with specifications, we focus only on those

aspects, S, of B on which A really depends

– usually specifications are much simpler than

implementations

Advantages

• Evaluating change

– What if I change B?

• Analyse only if the changed B still fulfills S

• Communication among developers

– People developing A and B only need to agree

on S.

• Multiple implementation

– There may be sets of Bs

– The actual B can be decided by a configuration

In my traffic system

• I can use specifications for

– The real-time data provider

– The real-time data

– The road network

– …

What are, in fact, specifications?

• They describe contracts that their

implementations must fulfill

• The contracts describe behaviors

– Services that must be offered

• Hence collections of functions

 interfaces

Example

interface IRealtimeDataProvider

{

void setConnectionInformation(string s);

ITrafficData getRTData(DateTime tBegin, DateTime tEnd);

ITrafficData getLastRTData(DateTime tBegin);

}

C# Lecture

Delegates and Events

Delegates

• from MSDN:

– a delegate is similar to a function pointer in C or C++

– encapsulates a reference to a method

– a delegate declaration defines a [reference] type that encapsulates a

method with a particular set of arguments and return type

[<access>] delegate <return_type> <name>(<param_list>)

– delegates can be composed using the "+" operator

– an instance of a delegate is created with new

 public delegate void SendString (string s);

. . .

 SendString mySendStringDelegate = new SendString(DisplayMessage);

. . .

 private void DisplayMessage(string s)

 { . . . }

Events

• Sources – event generators

• Listeners – event consumers

– must provide event handlers

event source

listener

listener

listener

Events

• from MSDN:

An event in C# is a way for a class to provide notifications

to clients of that class when some interesting thing happens

to an object.

• an object transmits a notification, to whatever is

interested, that something has happened / changed

• events are declared using delegates.

Events

public class MyClassWithEvent {

public event SendString NewMessage;

public void MyFunction() {

 bool ok = true; . . .

if (!ok) OnNewMessage(“Not OK!”);

}

private void OnNewMessage(string msg) {

 if (NewMessage != null)

 NewMessage(msg);

}

}

public class AnotherClass

{

 . . .

 MyClassWithEvent myClass = new MyClassWithEvent ();

 myClass.NewMessage += new SendString(DisplayMessage);

}

Event mechanism

• The event consumers must:

– register its event handling function to the event

source (also called wiring)

• Example - adding a click handler to a button:

myBrowseButton.Click +=

 new System.EventHandler(browseButton_Click);

void browseButton_Click(object sender, EventArgs e)

{

 // . . .

}

Event handlers

• recommended:

public delegate void MyEventHandlingDelegate

 (object sender, TArgs e);

• where TArgs is a type derived from EventArgs.

Events for UI-components

• mouse events (Click, MouseUp, MouseDown, …)

• key events (KeyPress, KeyDown, …)

• selection events (SelectedIndexChanged, …)

• check events (CheckedChanged)

• form-specific events (Load, Resize, …)

Homework

• Reason on part “Road network” in the

diagram on slide 10

– is it self-contained, or some other parts need

to be defined?

– can you define a specification for it?

• what would be the main services in this

specification?

• write it as a C# interface

 I will ask you to write one or more method declarations

on the blackboard.

