
Application architecture 



System architecture 

• System structuring:  
– Repository 

– Client-server 

– Layered 

• Control: 
– Centralized 

• Call-return 

• Manager 

– Event-based 
• Broadcast 

• Interrupt-driven 



Application perspective 

• Generic types of applications 

1. Data-processing 

2. Transaction-processing 

3. Event-processing 

4. Language-processing 



Data-processing systems 



Data-processing systems 

• Systems that are data-centered 

• No or reduced user intervention 
– Examples: payroll, billing, accounting 

• The databases are usually orders of magnitude 

larger than the software itself 

• Data is input and output in batches 

– Input: A set of customer numbers and associated 

readings of an electricity meter; 

– Output: A corresponding set of bills, one for each 

customer number. 

• Usually have an input-process-output structure. 
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Input-Process-Output 

• Input:  
– reads data from a file or database, 

– checks its validity 

– queues the valid data for processing. 

• Process  
– takes a transaction from the queue (input),  

– performs computations  

– creates a new record with the results of the 
computation. 

• Output  
– reads these records, 

– formats them accordingly  

– writes them to the database or sends them to a printer 



Representation 

• Records are processed serially 

• No need to store state information 

Function-oriented systems (rather than object-

oriented) 

Data-flow diagrams are suitable models 

• Show data as it moves through the system 

• Show end-to-end processing 

– All functions that act on data are visible 



Example: data-flow for payroll 



Transaction-processing systems 



Transaction-processing systems 

• Database-centered 

• Process user requests   

• Update information in a system database. 

• Examples:  

– interactive banking,  

– e-commerce,  

– booking systems,  

– information systems 



Transaction-processing systems 

• Process  

– requests for information from a database 

– requests to update a database. 

• From a user perspective a transaction is: 

Any coherent sequence of operations that 
satisfies a goal 

• The requests are asynchronous  

• They are processed by a transaction 
manager. 



Structure of TP Apps 
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Transactions 

• are defined from the database point of view 

– a transaction is a set of operations treated as 

a single unit (atomic) 

– all operations in a transactions must be 

completed before changes in the database 

are made permanent 

– failure of operations within a transaction 

should not lead to database inconsistencies 



Example: cash dispenser 



Specifics of TP applications 

• Highly distributed 

• Many types of terminals that interact with users 
May include middleware:  

 infrastructure software that help manage interactions 
between distributed entities and system database 

Transaction management middleware :  
• handle communications with different terminal types 

• serializes data  

• sends data for processing 



Typical examples 

• Information management systems 

• Resource management systems 



Information management systems 
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Resource management systems 

• Manage a limited amount of some resources 

• The resources are allocated to users who 

requests them 

• Examples: 

– Ticketing systems 

– Timetabling systems (the resource is a time period) 

– Library systems 

– Air traffic management systems (the resource is a 

segment of airspace) 



Resource allocation system model 
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Event-processing systems 



Event-processing systems 

• respond to events in the system’s 
environment 

• key characteristic:  

– event timing is unpredictable,  

– the architecture has to be organized to 
handle this. 

• common systems:  

– word processors,  

– games, etc. 



Typical event-processing systems 

• Real-time systems  

• Editing systems  

– Single user systems; 

– Must provide rapid feedback to user actions; 

– Organized around long transactions so may 

include recovery facilities 



Editing systems architecture 
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Language processing systems 



Language processing systems 

• Accept a natural / artificial language as input  

• Generate some other representation of that 
language  

• [ May include an interpreter to act on the instructions in 

the language that is being processed ] 

• Used in situations where the easiest way to 
solve a problem is to describe an algorithm or 
describe the system data 

– Meta-case tools process tool descriptions, method 
rules, etc. and generate tools. 



Interpreters: Generic architecture  
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Compilers: repository model 



Compilers: data-flow model 



C# Lecture 

Graphical User Interfaces: 

.NET Windows Forms 



• Introductory remark: 

– There are currently 2 platforms that provide 
support for creating GUIs with C#: 

1. .NET Windows Forms 

2. .NET Windows Presentation Foundation 
(WPF). 

 

– I will only speak about the first platform. 

 



Graphical user interfaces 

• C# project type: Windows Forms 
Application 

– reference to System.Windows.Forms 
automatically added  

– ...and to other packages necessary for, e.g., 
drawing. 

• A class that is supposed to have 
windowed user interface must inherit from 
Form. 

 



Windows 

public partial class Form1 : Form 

{ 

        public Form1() 

        { 

            InitializeComponent(); 

        } 

} 

partial :  

– the code of the class is split into more .cs-files 

– each file contains a part of the class 

– this is the normal file structure generated automatically 

by the Visual Studio designer. 



Windows 

• Showing a window: 

– In program.cs / Main: 

 

Application.Run(new Form1()); 

 

– ...but it is possible to create and show a window 

at any time (for instance, dialog-boxes): 

Form f = new Form(); 

f.Show(); 

 

 



Windows 

• Add controls: 
- A few buttons, 

- A Panel 



Controls 

• Placing controls  

– The components hosting controls are containers 

– Examples of containers: 

• Form, 

• Panel, 

• GroupBox, 

• TabControl 

– Other controls can be added to containers 

 



Placing controls 

• Laying out controls: 

– In the designer 

• fine-tuning possible, using “Properties” view, in Visual Studio 

– In code 

• *.Designer.cs contains values set in designer (do not modify: it 

is automatically [re]created by Visual Studio designer!) 

• directly in the form’s .cs file 

• Layout concepts: 

– Docking, 

– Anchoring. 

 



Other controls 

 



Delegates 

• from MSDN: 

– a delegate is similar to a function pointer in C or C++ 

– encapsulates a reference to a method 

– a delegate declaration defines a [reference] type that encapsulates a 

method with a particular set of arguments and return type 

[<access>] delegate <return_type> <name>(<param_list>) 

– delegates can be composed using the "+" operator 

– an instance of a delegate is created with new 

public delegate void SendString (string s); 

. . . 

         SendString mySendStringDelegate = new SendString(DisplayMessage); 

. . . 

    private void DisplayMessage(string s) 

    { . . . } 

 



Events 

• Sources – event generators 

• Listeners – event consumers 

– must provide event handlers 
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Events 

• from MSDN: 

 

An event in C# is a way for a class to provide notifications 

to clients of that class when some interesting thing happens 

to an object.  

 

• the object transmits a notification, to whatever is 

interested, that something has happened / changed 

• events are declared using delegates. 

 



Events 

public class MyClassWithEvent { 

public event SendString NewMessage; 

public void MyFunction() { 

 bool ok = true; . . . 

if (!ok) OnNewMessage(“Not OK!”); 

} 

private void OnNewMessage(string msg) { 

 if (NewMessage != null) 

     NewMessage(msg); 

} 

} 

public class AnotherClass 

{ 

 . . . 

 MyClassWithEvent myClass = new MyClassWithEvent (); 

 myClass.NewMessage += new SendString(DisplayMessage); 

} 

 



Event mechanism 

• The event consumers must: 

– register its event handling function to the event 

source (also called wiring) 

• Example - adding a click handler to a button: 
 

myBrowseButton.Click +=  

  new System.EventHandler(browseButton_Click);  

 

void browseButton_Click(object sender, EventArgs e) 

{ 

 // . . . 

} 



Event handlers 

• recommended: 

 

public delegate void MyEventHandlingDelegate 

  (object sender, TArgs e); 

 

• where TArgs is a type derived from EventArgs. 



Events for UI-components 

• mouse events (Click, MouseUp, MouseDown, …) 

• key events (KeyPress, KeyDown, …) 

• selection events (SelectedIndexChanged, …) 

• check events (CheckedChanged)  

• form-specific events (Load, Resize, …) 

 



Homework 

• Using the four generic application types, can you classify 

any of the following systems (or parts of them)? 

– ADMSys 

– Leo dictionary 

– The system behind the website geizhals.at 

 


