
Application architecture

System architecture

• System structuring:
– Repository

– Client-server

– Layered

• Control:
– Centralized

• Call-return

• Manager

– Event-based
• Broadcast

• Interrupt-driven

Application perspective

• Generic types of applications

1. Data-processing

2. Transaction-processing

3. Event-processing

4. Language-processing

Data-processing systems

Data-processing systems

• Systems that are data-centered

• No or reduced user intervention
– Examples: payroll, billing, accounting

• The databases are usually orders of magnitude

larger than the software itself

• Data is input and output in batches

– Input: A set of customer numbers and associated

readings of an electricity meter;

– Output: A corresponding set of bills, one for each

customer number.

• Usually have an input-process-output structure.

Data processing applications

System

Input Process Output
Printer

Database

Input-Process-Output

• Input:
– reads data from a file or database,

– checks its validity

– queues the valid data for processing.

• Process
– takes a transaction from the queue (input),

– performs computations

– creates a new record with the results of the
computation.

• Output
– reads these records,

– formats them accordingly

– writes them to the database or sends them to a printer

Representation

• Records are processed serially

• No need to store state information

Function-oriented systems (rather than object-

oriented)

Data-flow diagrams are suitable models

• Show data as it moves through the system

• Show end-to-end processing

– All functions that act on data are visible

Example: data-flow for payroll

Transaction-processing systems

Transaction-processing systems

• Database-centered

• Process user requests

• Update information in a system database.

• Examples:

– interactive banking,

– e-commerce,

– booking systems,

– information systems

Transaction-processing systems

• Process

– requests for information from a database

– requests to update a database.

• From a user perspective a transaction is:

Any coherent sequence of operations that
satisfies a goal

• The requests are asynchronous

• They are processed by a transaction
manager.

Structure of TP Apps

I/O
processing

Application
logic

Transaction
manager

Database

Transactions

• are defined from the database point of view

– a transaction is a set of operations treated as

a single unit (atomic)

– all operations in a transactions must be

completed before changes in the database

are made permanent

– failure of operations within a transaction

should not lead to database inconsistencies

Example: cash dispenser

Specifics of TP applications

• Highly distributed

• Many types of terminals that interact with users
May include middleware:

 infrastructure software that help manage interactions
between distributed entities and system database

Transaction management middleware :
• handle communications with different terminal types

• serializes data

• sends data for processing

Typical examples

• Information management systems

• Resource management systems

Information management systems

• An information

system allows

controlled access

to a large base of

information

User inter face

Information retrieval and modification

Database

Transaction management

User communications

Resource management systems

• Manage a limited amount of some resources

• The resources are allocated to users who

requests them

• Examples:

– Ticketing systems

– Timetabling systems (the resource is a time period)

– Library systems

– Air traffic management systems (the resource is a

segment of airspace)

Resource allocation system model

User interface

Resource
management

Resource policy
control

Resource
allocation

User
authentication

Query
management

Resource database

Resource
delivery

Transaction management

Event-processing systems

Event-processing systems

• respond to events in the system’s
environment

• key characteristic:

– event timing is unpredictable,

– the architecture has to be organized to
handle this.

• common systems:

– word processors,

– games, etc.

Typical event-processing systems

• Real-time systems

• Editing systems

– Single user systems;

– Must provide rapid feedback to user actions;

– Organized around long transactions so may

include recovery facilities

Editing systems architecture

File System

Save
Open

Editor data

Editing
commands

Ancillary data

Ancillary
commands

Command

Interpret

Screen

Refresh

Display

Update

Event

Process

Language processing systems

Language processing systems

• Accept a natural / artificial language as input

• Generate some other representation of that
language

• [May include an interpreter to act on the instructions in

the language that is being processed]

• Used in situations where the easiest way to
solve a problem is to describe an algorithm or
describe the system data

– Meta-case tools process tool descriptions, method
rules, etc. and generate tools.

Interpreters: Generic architecture

Translator

Check syntax
Check semantics
Generate

Interpreter

Fetch
Execute

Abstract m/c
instructions

Data Results

Instructions

Compilers: repository model

Compilers: data-flow model

C# Lecture

Graphical User Interfaces:

.NET Windows Forms

• Introductory remark:

– There are currently 2 platforms that provide
support for creating GUIs with C#:

1. .NET Windows Forms

2. .NET Windows Presentation Foundation
(WPF).

– I will only speak about the first platform.

Graphical user interfaces

• C# project type: Windows Forms
Application

– reference to System.Windows.Forms
automatically added

– ...and to other packages necessary for, e.g.,
drawing.

• A class that is supposed to have
windowed user interface must inherit from
Form.

Windows

public partial class Form1 : Form

{

 public Form1()

 {

 InitializeComponent();

 }

}

partial :

– the code of the class is split into more .cs-files

– each file contains a part of the class

– this is the normal file structure generated automatically

by the Visual Studio designer.

Windows

• Showing a window:

– In program.cs / Main:

Application.Run(new Form1());

– ...but it is possible to create and show a window

at any time (for instance, dialog-boxes):

Form f = new Form();

f.Show();

Windows

• Add controls:
- A few buttons,

- A Panel

Controls

• Placing controls

– The components hosting controls are containers

– Examples of containers:

• Form,

• Panel,

• GroupBox,

• TabControl

– Other controls can be added to containers

Placing controls

• Laying out controls:

– In the designer

• fine-tuning possible, using “Properties” view, in Visual Studio

– In code

• *.Designer.cs contains values set in designer (do not modify: it

is automatically [re]created by Visual Studio designer!)

• directly in the form’s .cs file

• Layout concepts:

– Docking,

– Anchoring.

Other controls

Delegates

• from MSDN:

– a delegate is similar to a function pointer in C or C++

– encapsulates a reference to a method

– a delegate declaration defines a [reference] type that encapsulates a

method with a particular set of arguments and return type

[<access>] delegate <return_type> <name>(<param_list>)

– delegates can be composed using the "+" operator

– an instance of a delegate is created with new

public delegate void SendString (string s);

. . .

 SendString mySendStringDelegate = new SendString(DisplayMessage);

. . .

 private void DisplayMessage(string s)

 { . . . }

Events

• Sources – event generators

• Listeners – event consumers

– must provide event handlers

event source

listener

listener

listener

Events

• from MSDN:

An event in C# is a way for a class to provide notifications

to clients of that class when some interesting thing happens

to an object.

• the object transmits a notification, to whatever is

interested, that something has happened / changed

• events are declared using delegates.

Events

public class MyClassWithEvent {

public event SendString NewMessage;

public void MyFunction() {

 bool ok = true; . . .

if (!ok) OnNewMessage(“Not OK!”);

}

private void OnNewMessage(string msg) {

 if (NewMessage != null)

 NewMessage(msg);

}

}

public class AnotherClass

{

 . . .

 MyClassWithEvent myClass = new MyClassWithEvent ();

 myClass.NewMessage += new SendString(DisplayMessage);

}

Event mechanism

• The event consumers must:

– register its event handling function to the event

source (also called wiring)

• Example - adding a click handler to a button:

myBrowseButton.Click +=

 new System.EventHandler(browseButton_Click);

void browseButton_Click(object sender, EventArgs e)

{

 // . . .

}

Event handlers

• recommended:

public delegate void MyEventHandlingDelegate

 (object sender, TArgs e);

• where TArgs is a type derived from EventArgs.

Events for UI-components

• mouse events (Click, MouseUp, MouseDown, …)

• key events (KeyPress, KeyDown, …)

• selection events (SelectedIndexChanged, …)

• check events (CheckedChanged)

• form-specific events (Load, Resize, …)

Homework

• Using the four generic application types, can you classify

any of the following systems (or parts of them)?

– ADMSys

– Leo dictionary

– The system behind the website geizhals.at

