Software processes

What Is...

« Software process:

— set of activities that lead to production of
software
» Software specifications
» Software design and implementation
» Software validation
» Software evolution

What Is...

« Software process model:
— abstract representation of a software process

« Paradigms (general models):
>Waterfall
“*Incremental development
‘*Reuse-oriented SE

Waterfall model

» derived from system engineering processes
System amrl Il
‘ and unit tesing h

Integration and
system testing
Operatmn and

mamtenance

Activities

* Requirements definition:
— services, constraints, goals are defined
— serve as system specification

« System & software design

— System design: partition the requirements
(hardware / software), overall architecture

— Software design: describe fundamental
software system abstractions

Activities (2)

* Implementation & unit testing
— Write programs / program units
— test each unit, check If it meets specifications

* Integration & system testing

— Units are integrated & tested as a complete
system

After testing, the software is delivered.

Activities (3)

* Operation and maintenance

— Operation:
* |nstall the system, put it to practical use
* Train user

— Maintenance:
* Fix errors

* Improve implementation
« Adapt to new requirements

Waterfall model: products

 result of each phase:
— one or more documents (expensive), approved

— next phase can start only after the current phase has
finished

 there Is a certain overlapping
— problems in phase p is identified in phase p+1
— each activity is executed as a sequence of iterations
— after some iterations, parts of development are frozen

Waterfall model: conclusions

« Advantages:
— good documentation
— agrees with other engineering process models

* Disadvantages

— Inflexible partitioning of the project into distinct
phases

— difficult to change requirements
— requires commitment to what has been signed

Incremental development

— Develop an initial implementation
— EXpose to the user
— Refine until an adequate system is obtained

Incremental development principles

— work with the customer
— start with parts that are understood
— evolve with new features proposed by customer

Incremental development

Concurrent
activities

Tiatial
VErs101

Cutline Devel ¢ Inter mediate
description evelopimen Versions
o Fimal
Validation —_— ——

Specification

Incremental development: conclusions

* Advantages:
— Specifications can develop incrementally
— Systems better tailored to the needs of
customers than in waterfall approach
« Disadvantages:
— The evolution of the process is not visible

— Problems with documentation
* Poor documentation, but cheap or
« Extensive documentation, very expensive

— Poorly structured systems

Reuse-oriented SE

* Reuse of existing software
— Find software similar to what is needed
— Modify it
— Incorporate it into the system under
development

* There are lots of reusable software components
* There are frameworks for integrating them

Reuse-oriented SE

Requirements
specification

Requirements
modification

Sy stem design
with reuse

Component
analy sis

Development
and integ ration

Sy stem
validation

Reuse-oriented SE: conclusions

* Advantages:
— Reduced effort for developing own software
— Faster delivery

* Disadvantages
— Requirements compromises
— System may go astray from what the user needs

— Most components are not developed in-house
—~No control of the specs of new versions

Coping with Changes

»requirements change
»priorities change
»technologies change

 freezing specs & design may lead to
outdated software

* |terative processes:
— specs are developed along with the software

Coping with Changes

* Approaches:

— Avoid change
 Anticipate deviations before committing

— Tolerate change
» design the process to easily integrate changes
* Practices
— System prototyping
— Incremental delivery

System prototyping

* Develop quickly a simplified version

* Allow the customer to experiment with it
»check customer’'s requirements
»Vvalidate design decisions

 Benefits

— users play with the prototype before delivery
of the whole system
» fewer requirements changes after delivery

- Change avoidance

Incremental delivery

» System features— split into iIncrements,
delivered In turns

Define Outline Assign Requirements Design System Develop System
Requirements to Increments Architecture Increment
]

[
System
Incomplete?

Integrate Validate Deploy
Increment System Increment

System
, Complete?

1
Final
System

* Priorities are assigned to requirements

* Increments provide services with highest
priorities first

Incremental delivery: conclusions

« Advantages:
— Customers get something useful earlier

— By using delivered systems (even incomplete),
customers gain insight

— Low risk of overall failure
— Most important services get most testing
- Change avoidance and tolerance

« Disadvantages:

— Increments should have similar “size”

— Hard to see from the beginning common facilities
needed by all parts of the system

Activities In software processes

Activities: Requirements

Recquirements

Feasibility

elicitation and

study
’ anal ysig

Feazibility
report

S ystem

models

Requirements
gpecification

Y

Requirements
validation

User and system
requirements

\J

| Requirements

document
o

Activities: Design

Requirements
specificdion &
Achitectural 7 Abstract
design specificaion £

Design actiitics

Interface _/ Component
design design

Algorithm

Data :
Sy stem Software Interface Component S{ruc ture Algorithm
architec tue specificdion specificdion specificdion P specificdion
specificdion

Design poducts

Activities: Implementation

translate the output
of the design activities
into code

Activities: Debugging

Locate Design Repair Re-test
error error repair error program

Activities: Validation & Verification

' '

Conponent System Acceptance
testing testing testing

Activities: V&V — Testing

Renreretis

specification

mystetn
specification

System Detaled
design design

Systetmn Sub-system Module and
Acceptance :
test ol mtegration mtegration unit code
=l plan test plan test plan and test

Acceptance
test

mystem
integration test

Sub-systemn
integration test

Software evolution

Define sy stem
requirem ents

Assess existing
Sy stems

Existing
Sy stems

Propose sy stem
changes

Modify
Sy stems

New
Sy stem

CASE

« Software that supports software process
activities
* Types:
— Tools
— Workbenches
— Frameworks

CASE tools

Tool type

Planning tools

Editing tools

Change management tools
Configuration management tools
Prototyping tools
Method-support tools
Language-processing tools
Program analysis tools
Testing tools

Debugging tools
Documentation tools

Re-engineering tools

Examples

PERT tools, estimation tools, spreadsheets

Text editors, diagram editors, word processors
Requirements traceability tools, change control systems
Version management systems, system building tools
Very high-level languages, user interface generators
Design editors, data dictionaries, code generators
Compilers, interpreters

Cross reference generators, static analysers, dynamic analysers
T est data generators, file comparators

Interactive debugging systems

Page layout programs, image editors

Cross-reference systems, program re-structuring systems

CASE tools

Re-eng ineering tools ®

Testing tools ® ®

Debugg ing tools ® ®

Program analysis tools L °

Language-processing ° °

tools

Method suppor t tools L L

Prototy ping tools e °

Configuration

management tools ® L

Change management tools * . ® ®

Documentation tools * ° L o

Editing tools ® ° ® ®

Planning tools L o ° °
Specification Design Implementation \érification

and
Validation

CASE tools

CASE
technolo gy
‘ Tools I ‘ Wor kbenches I ‘ Environments I
Editors Compilers File InFeg rated Procgss—centr ed
compar ators environments environments

Programming Esting I

Multi-method Single-method General-purpose Langua ge-specific

workbenches workbenches workbenches workbenches

Analysis and
design

Ms Visual C# 201x Express

* Download e.g. from

https://www.visualstudio.com/thank-you-downloading-visual-
studio/?sku=Community&rel=15

C# [MVS

« Start Ms Visual C# 201* Community Ed

— ... and be patient.
->you shall get a Start Page

Hile

P S A @ 4 B9] b |

X0g|00] .

Edit View UDebug lools Window Help

Start Page X

@ New Project.
@ Open Project...

Recent Projects

[¥] Close page after project load
[¥] Show page on startup

Micrgsofee %
kﬂVlsuaI C#¥ 2010 Express

Get Started

Welcome

Latest News

Learn

Upgrade

Welcome to Visual C# 2010 Express

The tradition continues! Visual C# 2010 Express
helps developers quickly create exciting
interactive applications for Windows. With the
new Visual C# 2010 Express development
environment, improved performance, and lots
of new features, moving from great idea to
great application has never been easier. Kick
off your learning at the Beginner Developer
Learning Center, or find the latest and coolest
projects on Coding4Fun.

Beginner Developer Learning Center
Coding4Fun
More on Visual C# 2010 Express

Quickly Create Your First Application

ition

~ Solution Explorer ~ It X

il

First project

* Click on “New Project’

» Select “Console Application” from the list
of possible project types

« Glve a reasonable name \o the new
project -

A project for creating a command-line
application

Environment visual settings

I@ SE - Microsoft Visual C& 2010 Express

Tools Window Help
D% b e] = 2
Solution Explorer

|
boa| o sE(E
= | @ G E

= |Hex

e

* Arrange necessary views to get your

5|3~
3 Selution 'SE' (1 project)

Program.cs X
4 [MyFirstProgram

-

»

=d| Properties

-|

favorite environment configuration, e.g.:

3] References

4% MyFirstProgram.Program
#] Program.cs

—-lusing System;

using System.Collections.Generic;
using System.Ling;
using System.Text;

1

E=E =R
L“-@E?CEEEH:

~| g¥ Main(string[] args)

—-Inamespace MyFirstProgram

class Program
{

1

static woid Main(string[] args)
h

Simple “Hello World” project

* Add the following line to the “Main”
function:

Console.Writeline ("Hello World!");

* Run the project, by clicking on the usual
button.

-> you will not see much. Why?

The HelloWorld program

using System;

namespace MyFirstProgram

{

class Program

{

static void Main(string[] args)

{
Console.WritelLine ("Hello World!");

C# fundamentals

* C# program
— one or more files

— .cs files contain C# code

 “using” directives — to import types defined in other
namespaces

« 0 or more namespaces, containing:
— Inner namespaces
— classes
— structs
— enums
— delegates

* the last four concepts are considered type
definitions.

NET [C#] fundamentals

 After compilation, assemblies are generated
— executable (.exe), or
— dynamic-link libraries (DLLs, .dll).

« assemblies contain special assembly code
— MSIL — Ms Intermediate Language

* native code is generated at execution time
— by a just-in-time (JIT) compiler

C# fundamentals (continued)

* Everything must be inside a class!
— there are no stand-alone functions,
— there are no global data.

some object-oriented programming concepts:
— objects: defined by state and behaviour

— classes: blueprints for objects
- objects — instances of classes
— Inheritance: from general to specialized classes

— Interfaces: common behaviour aspects
- this is new!

C# classes

« Concepts: (similar to C++)

— Class
— Instances of the class
— Member

e Data — states

* Functions — behaviour
— Class members, instance members
— Access modifiers (public, internal, protected...)

For individual study...

 C# documentation at MSDN
» C# programming guide
» General structure of a C# program

* C# language specifications

http://msdn.microsoft.com/en-US/library/vstudio/z1zx9t92%28v=vs.100%29
http://msdn.microsoft.com/en-US/library/vstudio/67ef8sbd%28v=vs.100%29
http://msdn.microsoft.com/en-US/library/vstudio/w2a9a9s3%28v=vs.100%29
http://msdn.microsoft.com/en-us/library/aa645596

Homework

 What kind of software process (waterfall, exploratory, component-based,
iterative, etc.) is recommended for each of the following projects?

1. Client: OeBB.
Problem: Optimal assignment of locomotive duties to locomotive drivers.
Circumstances: The requirements are quite well known by the OeBB and comprehensible to
you: The specifications are not expected to change for quite a few years. OeBB has a good
idea about what they want. The project needs to be extensively documented.

2. Client: A company that produces sensors for railroads.
Problem: Graphical editor for railroad tracks in railroad stations.
Circumstances: The company needs a basic editor pretty fast. In later phases, additional
features are to be implemented.

3. Client: A taxi company.
Problem: An app for ordering taxis from mobile devices.
Circumstances: The taxi company has no clear idea about how this app should run.

