
Software processes

What is…

• Software process:

– set of activities that lead to production of

software

Software specifications

Software design and implementation

Software validation

Software evolution

What is…

• Software process model:

– abstract representation of a software process

• Paradigms (general models):

Waterfall

Incremental development

Reuse-oriented SE

Waterfall model

• derived from system engineering processes

Activities

• Requirements definition:

– services, constraints, goals are defined

– serve as system specification

• System & software design

– System design: partition the requirements
(hardware / software), overall architecture

– Software design: describe fundamental
software system abstractions

Activities (2)

• Implementation & unit testing

– write programs / program units

– test each unit, check if it meets specifications

• Integration & system testing

– Units are integrated & tested as a complete
system

After testing, the software is delivered.

Activities (3)

• Operation and maintenance

– Operation:

• Install the system, put it to practical use

• Train user

– Maintenance:

• Fix errors

• Improve implementation

• Adapt to new requirements

Waterfall model: products

• result of each phase:

– one or more documents (expensive), approved

– next phase can start only after the current phase has

finished

• there is a certain overlapping

– problems in phase p is identified in phase p+1

– each activity is executed as a sequence of iterations

– after some iterations, parts of development are frozen

Waterfall model: conclusions

• Advantages:

– good documentation

– agrees with other engineering process models

• Disadvantages

– inflexible partitioning of the project into distinct

phases

– difficult to change requirements

– requires commitment to what has been signed

Incremental development

→Develop an initial implementation

→Expose to the user

→Refine until an adequate system is obtained

Incremental development principles

– work with the customer

– start with parts that are understood

– evolve with new features proposed by customer

Incremental development

Incremental development: conclusions

• Advantages:

– Specifications can develop incrementally

– Systems better tailored to the needs of

customers than in waterfall approach

• Disadvantages:

– The evolution of the process is not visible

– Problems with documentation

• Poor documentation, but cheap or

• Extensive documentation, very expensive

– Poorly structured systems

Reuse-oriented SE

• Reuse of existing software

– Find software similar to what is needed

– Modify it

– Incorporate it into the system under

development

• There are lots of reusable software components

• There are frameworks for integrating them

Reuse-oriented SE

Reuse-oriented SE: conclusions

• Advantages:

– Reduced effort for developing own software

– Faster delivery

• Disadvantages

– Requirements compromises

– System may go astray from what the user needs

– Most components are not developed in-house

→No control of the specs of new versions

Coping with Changes

requirements change

priorities change

technologies change

• freezing specs & design may lead to

outdated software

• iterative processes:

– specs are developed along with the software

Coping with Changes

• Approaches:

– Avoid change

• Anticipate deviations before committing

– Tolerate change

• design the process to easily integrate changes

• Practices

– System prototyping

– Incremental delivery

System prototyping

• Develop quickly a simplified version

• Allow the customer to experiment with it

check customer’s requirements

validate design decisions

• Benefits

– users play with the prototype before delivery

of the whole system

 fewer requirements changes after delivery

 Change avoidance

Incremental delivery

• System features– split into increments,

delivered in turns

• Priorities are assigned to requirements

• Increments provide services with highest

priorities first

Incremental delivery: conclusions

• Advantages:

– Customers get something useful earlier

– By using delivered systems (even incomplete),

customers gain insight

– Low risk of overall failure

– Most important services get most testing

 Change avoidance and tolerance

• Disadvantages:

– Increments should have similar “size”

– Hard to see from the beginning common facilities

needed by all parts of the system

Activities in software processes

Activities: Requirements

Activities: Design

Activities: Implementation

translate the output

of the design activities

into code

Activities: Debugging

Activities: Validation & Verification

Activities: V&V – Testing

Software evolution

CASE

• Software that supports software process

activities

• Types:

– Tools

– Workbenches

– Frameworks

CASE tools

Tool type Examples

Planning tools PERT tools, estimation tools, spreadsheets

Editing tools Text editors, diagram editors, word processors

Change management tools Requirements traceability tools, change control systems

Configuration management tools Version management systems, system building tools

Prototyping tools Very high-level languages, user interface generators

Method-support tools Design editors, data dictionaries, code generators

Language-processing tools Compilers, interpreters

Program analysis tools Cross refe rence generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Re-engineering tools Cross-reference systems, program re-structuring systems

CASE tools

Specification Design Implementation Verification

and

Validation

Re-eng ineering tools

Testing tools

Debugg ing tools

Prog ram analy sis tools

Language-processing

tools

Method suppor t tools

Prototyping tools

Configuration

management tools

Change management tools

Documentation tools

Editing tools

Planning tools

CASE tools

Single-method

workbenches

General-purpose

workbenches

Multi-method

workbenches

Langua ge-specific

workbenches

Programming Testing
Analysis and

design

Integ rated

environments

Process-centr ed

environments

File

compar ators
CompilersEditors

EnvironmentsWor kbenchesTools

CASE

technolo gy

C#

Ms Visual C# 201x Express

• Download e.g. from
https://www.visualstudio.com/thank-you-downloading-visual-

studio/?sku=Community&rel=15

C# / MVS

• Start Ms Visual C# 201* Community Edition

– . . . and be patient.

you shall get a Start Page

First project

• Click on “New Project”

• Select “Console Application” from the list

of possible project types

• Give a reasonable name to the new

project

Environment visual settings

• Arrange necessary views to get your

favorite environment configuration, e.g.:

Simple “Hello World” project

• Add the following line to the “Main”
function:

Console.WriteLine("Hello World!");

• Run the project, by clicking on the usual
button.

 you will not see much. Why?

The HelloWorld program

using System;

namespace MyFirstProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

 }

}

C# fundamentals

• C# program

– one or more files

– .cs files contain C# code
• “using” directives – to import types defined in other

namespaces

• 0 or more namespaces, containing:
– inner namespaces

– classes

– structs

– enums

– delegates

• the last four concepts are considered type
definitions.

.NET [C#] fundamentals

• After compilation, assemblies are generated

– executable (.exe), or

– dynamic-link libraries (DLLs, .dll).

• assemblies contain special assembly code

– MSIL – Ms Intermediate Language

• native code is generated at execution time

– by a just-in-time (JIT) compiler

C# fundamentals (continued)

• Everything must be inside a class!

– there are no stand-alone functions,

– there are no global data.

some object-oriented programming concepts:

– objects: defined by state and behaviour

– classes: blueprints for objects

 objects – instances of classes

– inheritance: from general to specialized classes

– interfaces: common behaviour aspects

 this is new!

C# classes

• Concepts: (similar to C++)

– Class

– Instances of the class

– Member

• Data → states

• Functions → behaviour

– Class members, instance members

– Access modifiers (public, internal, protected…)

For individual study…

• C# documentation at MSDN

• C# programming guide

• General structure of a C# program

• C# language specifications

http://msdn.microsoft.com/en-US/library/vstudio/z1zx9t92%28v=vs.100%29
http://msdn.microsoft.com/en-US/library/vstudio/67ef8sbd%28v=vs.100%29
http://msdn.microsoft.com/en-US/library/vstudio/w2a9a9s3%28v=vs.100%29
http://msdn.microsoft.com/en-us/library/aa645596

Homework

• What kind of software process (waterfall, exploratory, component-based,

iterative, etc.) is recommended for each of the following projects?

1. Client: OeBB.

Problem: Optimal assignment of locomotive duties to locomotive drivers.

Circumstances: The requirements are quite well known by the OeBB and comprehensible to

you: The specifications are not expected to change for quite a few years. OeBB has a good

idea about what they want. The project needs to be extensively documented.

2. Client: A company that produces sensors for railroads.

Problem: Graphical editor for railroad tracks in railroad stations.

Circumstances: The company needs a basic editor pretty fast. In later phases, additional

features are to be implemented.

3. Client: A taxi company.

Problem: An app for ordering taxis from mobile devices.

Circumstances: The taxi company has no clear idea about how this app should run.

