
The Digital Logic Level

The Instruction Set Architecture Level
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

The Digital Logic Level

Contents

1. Overview.

2. Data Types.

3. Instruction Formats.

4. Addressing.

5. Instruction Types.

6. A Pentium II Program.

7. The Intel IA-64.

Wolfgang Schreiner 1

The Digital Logic Level

Overview

Wolfgang Schreiner 2

The Digital Logic Level

The Instruction Set Level

Originally, the only architecture level.

• Also called: “architecture” or “machine language”.
– Target of compilers of high-level languages.

– Compromise between wishes of hardware engineers and of compiler writers.

• Backward compatibility: ISA of new computer embeds old ISA.
– Old programs run without change on new computer.

Software

Hardware

Hardware

C program

ISA level

ISA program executed
by microprogram or hardware

FORTRAN 90
program

FORTRAN 90
program compiled
to ISA program

C program
compiled
to ISA program

Wolfgang Schreiner 3

The Digital Logic Level

Properties of the ISA Level

Features that are important for a compiler.

• Various components.
– Memory model.

– Registers.

– Data types and instructions.

• ISA level often formally specified.
– SPARC V9, JVM.

– Multiple chip vendors for SPARC processors; multiple JVM implementations.

– No formal definition of Pentium II ISA: only Intel can produce it.

•Often two execution modes.
– Kernel mode: all instructions are allowed; intended to run operating system.

– User mode: some instructions are forbidden; intended to run application programs.

Wolfgang Schreiner 4

The Digital Logic Level

Memory Models

All computers divide memory in cells that have consecutive addresses.

• Today: memory cells of 8 bits (bytes).
– Originally: 7 bit ASCII character plus parity bit.

• Bytes are grouped into 4-byte (32-bit) or 8-byte (64-bit) words.
– Words are often required to be aligned on natural address boundaries.

– Memories operate more efficiently if accessed that way.

24

Address

Aligned 8-byte
word at address 8

16
815 14 13 12 11

(a)

10 9 8

0

8 Bytes

24

Address

Nonaligned 8-byte
word at address 12

16
815 14 13 12

19

(b)

18 17 16

0

8 Bytes

Wolfgang Schreiner 5

The Digital Logic Level

Registers

Not all microarchitecture registers are visible on ISA level.

• Special-purpose registers: program counter, stack pointer.
• General-purpose registers: rapid access to heavily-used data.

– Local variables and intermediate calculation results.

– Compilers and OS adopt convention how registers are used.

∗ Some registers hold procedure parameters, others are scratch registers.

• Kernel registers: only available in kernel mode.
– Used by operating system to control caches, memory, I/O devices.

• PSW (Program Status Word): various bits needed by CPU.
– Condition codes: set on every ALU cycle to reflect status of most recent operation.

∗ Result was wegative (N), result was zero (Z), result caused overflow (V), . . .

∗ Used by comparison and conditional branch instructions.

Wolfgang Schreiner 6

The Digital Logic Level

Pentium II ISA Level

IA-32 architecture: 32-bit architecture starting with the 80386.

• 3 operating modes.
– Real mode: Pentium II behaves exactly like 8088.

– Virtual 8086 mode: Pentium II runs 8088 code in protected way.

∗ Special isolated environment: if program crashes, OS is notified.

∗ Used in MS Windows when MS-DOS window is started.

– Protected mode: normal mode with 4 PSW-controlled privilege levels.

∗ Level 0: kernel mode (full access to machine).

∗ Level 3: user mode (application programs).

• 232 bytes address space.
– Divided into 16,384 segments (not used by Unix or Windows).

– Byte-addressed, 32 bit words, little-endian format.

Wolfgang Schreiner 7

The Digital Logic Level

Pentium II Registers
• Four general-purpose registers: EAX, EBX, ECX, EDX.

– EAX is the main arithmetic registers.

– EDX is needed for multiplication/division.

∗ EAX and EDX hold 64-bit products/dividends.

– Each register holds 16-bit register and 8-bit registers.

∗ Compatibility with 8088 and 80286.

• Special-purpose registers.

– ESI and EDI: string manipulation instructions (source and destination).

– EBP: points to base of current stack frame (frame pointer).

– ESP: points to top of stack (stack pointer).

– EIP: program counter.

– EFLAGS: program status word.

• Segment registers: CS, SS, DS, ES, FS, GS.

– 8088 compatibility.

EAXALAH
A X

EBXBLBH
B X

ECXCLCH
C X

EDX

ESI

EDI

EBP

ESP

DL

CS

EIP

EFLAGS

SS

DS

ES

FS

GS

DH
D X

8816Bits

Wolfgang Schreiner 8

The Digital Logic Level

Data Types

Wolfgang Schreiner 9

The Digital Logic Level

Data Types

• Numeric data types.
– Integer types: 8, 16, 32, 64 bits (counting and identification).

– Floating-point types: 32, 64, 128 bits (measuring).

– Often separate registers for integer data and floating-point data.

– Some computers support decimal numbers (2 decimal digits per byte).

• Nonnumeric data types.
– Characters: ASCII (7 bits), UNICODE (16 bits).

– Strings: arrays of characters.

– Boolean values: bytes 0 and 1.

– Bit maps: array of boolean values (32-bit word = 32 booleans).

– Pointers: machine address.

Other data types have to be implemented in software.

Wolfgang Schreiner 10

The Digital Logic Level

Data Types on the Pentium II

Type 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits

Signed Integer × × ×
Unsigned Integer × × ×
Binary Coded Decimal Integer ×
Floating Point × ×

• Arithmetic instructions also on 8 and 16 bit integers.
•Operations do not have to be aligned in memory.

– Better performance if word addresses are multiples of 4 bytes.

•Operations for copying and searching character strings.
– Strings whose length are known as well as strings whose end is marked.

– Used in string manipulation libraries.

Wolfgang Schreiner 11

The Digital Logic Level

Instruction Formats

Wolfgang Schreiner 12

The Digital Logic Level

Instruction Formats

Instruction consists of opcode and addresses operands.

• Zero to three addresses.

OPCODE

(a) (b)

(c) (d)

OPCODE

OPCODE ADDR1 ADDR2 ADDR3OPCODE ADDRESS1 ADDRESS2

ADDRESS

• Instructions may or may not have same length.

Instruction

Instruction

Instruction

Instruction

(a)

1 Word

Instruction

Instruction Instruction Instr. Instr.

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

(b)

1 Word

Instruction

Instruction

(c)

1 Word

Wolfgang Schreiner 13

The Digital Logic Level

Expanding Opcodes
00004-bit

opcode 15 3-address
instructions

xxxx

16 bits

Bit number

yyyy zzzz
0001 xxxx yyyy zzzz
0010 xxxx yyyy zzzz

1100 xxxx yyyy zzzz
1101 xxxx yyyy zzzz
1110 xxxx yyyy zzzz

11118-bit
opcode 14 2-address

instructions

0000 yyyy zzzz
1111 0001 yyyy zzzz
1111 0010 yyyy zzzz

1111 1011 yyyy zzzz
1111 1100 yyyy zzzz
1111 1101 yyyy zzzz

1111 1110 1110 zzzz
1111 1110 1111 zzzz
1111 1111 0000 zzzz
1111 1111 0001 zzzz

111112-bit
opcode 31 1-address

instructions

1110 0000 zzzz
1111 1110 0001 zzzz

1111 1111 1101 zzzz
1111 1111 1110 zzzz

111116-bit
opcode 16 0-address

instructions

1111 1111 0000
1111 1111 1111 0001
1111 1111 1111 0010

1111 1111 1111 1101
1111 1111 1111 1110
1111 1111 1111 1111

15 12 11 8 7 4 3 0

…
…

…
…

…

Size of opcode versus size of operand fields.

• 4 bit opcode except 1111.
– 15 3-address instructions.

• 8 bit opcode 1111 xxxx except 1111 111x.
– 14 2-address instructions.

• 12 bit opcode 1111 111x xxxx
except 1111 1111 1111.
– 31 1-address instructions.

• 16 bit opcode 1111 1111 1111 xxxx.
– 16 0-address instructions.

Variable-length opcode to design instruction set.

Wolfgang Schreiner 14

The Digital Logic Level

The Pentium II Instruction Format

PREFIX

INSTRUCTION

Which operand is source?

Byte/word

SCALE INDEX BASE

MOD REG R/M

OPCODE MODE SIB DISPLACEMENT IMMEDIATE

0 - 5

6 3321Bits Bits

332Bits

Bytes

1

1 - 2 0 - 1 0 - 1 0 - 4 0 - 4

• Highly complex and irregular with up to six variable-length fields.
– Reflects long evolution history (and some poor design decisions).

– Single byte opcode, prefix byte to change action, escape code for second opcode byte.

• For instance: 2 operand instructions.
– Add two registers, add register to memory, add memory to register.

– Not: add memory word to another memory word.

Wolfgang Schreiner 15

The Digital Logic Level

Addressing

Wolfgang Schreiner 16

The Digital Logic Level

Addressing

Main part of instruction specifies where operands come from.

• ADD instruction: a = b + c (two sources and one destination).
– Naive specification: 8-bit opcode and three 32-bit addresses.

• Goal: reduce the size of specification.

1. Move operands to registers: r1 = r2 + c.

– Faster access possible; fewer bits required to specify operands.

– Explicit LOAD required.

∗ Only pays off, if loaded operand is used more than once.

2. Specify operand implicitly: r = r + c.

– Use operand as a source and a destination.

– May require to move original value of r to other register.

Various addressing modes possible.
Wolfgang Schreiner 17

The Digital Logic Level

Addressing Modes

How are bits of an address field interpreted to find the operand?

1. Immediate addressing.

2. Direct addressing.

3. Register addressing.

4. Register indirect addressing.

5. Indexed addressing.

6. Based-indexed addressing.

7. Stack addressing.

8. Addressing modes for branch instructions.

Wolfgang Schreiner 18

The Digital Logic Level

Addressing Modes

• Immediate addressing:
– Address part of operand contains operand itself.

– MOV R1, #4: MOVI 1 4

– Load constant 4 to register 1.

– Only small integer constants can be specified in this way.

•Direct addressing:
– Give full address of operand in memory.

– MOV R1, #A: MOVA 1 213474

– Load word from address of static variable A to register 1.

• Register addressing.
– Specify register number rather than address.

– MOV R1, R2: MOVR 1 2

– Copy content of register 2 to register 1.

Wolfgang Schreiner 19

The Digital Logic Level

Register Indirect Addressing

Operand address is not contained in instruction but in a register.

•Operand address is a pointer.
– ADD R1, (R2): add to register R1 word at address contained in R2. ADDRI 1 2

– Can refer to different addresses in different instruction.

– Example: assembly code for adding the elements of an array.

MOV R1, #0 ; accumulate sum in R1, initially 0

MOV R2, #A ; R2 = address of the array A

MOV R3, #A+4096 ; R3 = address of first word beyond A

LOOP: ADD R1, (R2) ; register indirect through R2 to get operand

ADD R2, #4 ; increment R2 by one word (4 bytes)

CMP R2, R3 ; are we done yet?

BLT LOOP ; if R2 < R3, we are not done, so continue

Wolfgang Schreiner 20

The Digital Logic Level

Indexed Addressing

Memory is addressed by giving a register plus a constant offset.

• Example: processing of static arrays.
– MOV R4, A(R2): load into R1 word whose address has offset A from content of R2.

– Array is at a fixed address; register contains current index. MOVIA 1 2 12430

– Example: assembly code for computing
∑
iAi ∗Bi.

MOV R1, #0 ; accumulate the sum in R1, initially 0

MOV R2, #0 ; R2 = index i

MOV R3, #4096 ; R3 = first index value not in use

LOOP: MOV R4, A(R2) ; R4 = A[i]

MUL R4, B(R2) ; R4 = A[i] * B[i]

ADD R1, R4 ; sum all the products into R1

ADD R2, #4 ; i = i+4 (1 word = 4 bytes)

CMP R2, R3 ; are we done yet?

BLT LOOP ; if R2 < R3, we are not done, so continue

Wolfgang Schreiner 21

The Digital Logic Level

Based-Indexed Addressing

Address is computed by sum of two registers plus optional offset.

• Processing of dynamic arrays.
– MOV R4, (R2+R5): load inot R4 word whose address is the sum of R2 and R5.

– R5 is the base address of the array. MOVBIA 4 2 5

– R2 is the current index.

– Replace loop code in previous example as follows:

...

MOV R5, #A ; R5 = address of A

MOV R6, #B ; R6 = address of B

LOOP: MOV R4, (R2+R5) ; R4 = A[i]

MUL R4, (R2+R6) ; R4 = A[i] * B[i]

...

Wolfgang Schreiner 22

The Digital Logic Level

Stack Addressing

Zero-address instructions use stack to avoid explicit memory addresses.

• Example: code for evaluation of (8 + 2× 5)/(1 + 3× 2− 4).
– Reverse Polish notation: 8 2 5× + 1 3 2× +4− /.

Step Remaining String Instruction Stack

1 8 2 5×+ 1 3 2×+ 4− / BIPUSH 8 8
2 2 5×+ 1 3 2 ×+ 4− / BIPUSH 2 8, 2
3 5×+ 1 3 2×+ 4− / BIPUSH 5 8, 2, 5
4 ×+ 1 3 2×+ 4− / IMUL 8, 10
5 + 1 3 2×+ 4− / IADD 18
6 13 2×+ 4− / BIPUSH 1 18, 1
7 3 2×+ 4− / BIPUSH 3 18, 1, 3
8 2×+ 4− / BIPUSH 2 18, 1, 3, 2
9 ×+ 4− / IMUL 18, 1, 6

10 + 4− / IADD 18, 7
11 4− / BIPUSH 4 18, 7, 4
12 −/ ISUB 18, 3
13 / IDIV 6

Wolfgang Schreiner 23

The Digital Logic Level

Addressing Modes for Branch Instructions

How to specify target address of branch instructions/procedure calls?

•Direct addressing: unconditional branches (gotos).
– Generated from conditionals and loops.

• Register indirect addressing or indexed mode.
– Program may compute target address (computed goto, switch).

• PC-relative addressing: indexed mode where PC acts as register.
– Target address is specified as offset to current instruction.

Modes presented so far are also useful for branch instructions.

Wolfgang Schreiner 24

The Digital Logic Level

Orthagonality of Opcodes and Addressing Modes

In a clean design, every opcode should permit every addressing mode.

• Three-address machine:

OPCODE OFFSET3

OPCODE DEST SRC1 OFFSET2 1

OPCODE DEST SRC1 SRC21 0

8Bits 5 5 5 81

– Two formats selected by bit.

– 1 special format for branches.

• Two-address machine: OPCODE MODE

8Bits 3

MODE

3

REG

5

OFFSET

4

REG

5

OFFSET

4

(Optional 32-bit direct address or offset)

(Optional 32-bit direct address or offset)– Each operand specified by 12 bits.

– Mode, register, offset.

– Optional 32-bit word for address.

In reality, instruction sets are often not that clean.

Wolfgang Schreiner 25

The Digital Logic Level

The Pentium II Addressing Modes

Highly irregular structure.

• 32-bit addressing modes.
– Addressing modes controlled by MODE byte.

– One operand specified by combination of MOD and R/M.

– Other operand is register specified by REG.

MOD

R/M 00 01 10 11

000 M[EAXO] M[EAX+OFFSET8] M[EAX+OFFSET32] EAX or AL
001 M[ECX] M[ECX+OFFSET8] M[ECX+OFFSET32] ECX or CL
010 M[EDX] M[EDX+OFFSET8] M[EDX+OFFSET32] EDX or DL
011 M[EBX] M[EBX+OFFSET8] M[EBX+OFFSET32] EBX or BL
100 SIB SIB with OFFSET8 SIB with OFFSET32 ESP or AH
101 Direct M[EBP+OFFSET8] M[EBP+OFFSET32] EBP or CH
110 M[ESI] M[ESI+OFFSET8] M[ESI+OFFSET32] ESI or DH
111 M[EDI] M[EDI+OFFSET8] M[EDI+OFFSET32] EDI or BH

Wolfgang Schreiner 26

The Digital Logic Level

The Pentium II Addressing Mode

In some modes, a SIB byte follows the mode byte.

• SIB (Scale, Index, Base): specifies scale factor and two registers.

– Operand address is computed by multiplying index register by SCALE (1, 2, 4, 8), adding it

to the base register, and (depending on MOD) adding a displacement (8 or 32-bit).

– Useful for array processing: for (i = 0; i < n; i++) a[i] = 0;

Other
local
variables

Stack
frame

a [0]

a [1]

a [2]

EBP + 8

EBP + 12

EBP + 16

SIB Mode references
M[4 * EAX + EBP + 8]

i in EAX

EBP

Wolfgang Schreiner 27

The Digital Logic Level

Instruction Types

Wolfgang Schreiner 28

The Digital Logic Level

Instruction Types

Which kind of instruction is denoted by the opcode?

1. Data movement instructions.

2. Dyadic operations.

3. Monadic operations.

4. Comparisons and conditional branches.

5. Procedure call instructions.

6. Loop control.

7. Input/output.

Wolfgang Schreiner 29

The Digital Logic Level

Data Movement Instructions

Copy data from one place to another.

• Assignment of values to variables.
– A = B;

– Copy value at memory address B to location A.

• Prepare data for efficient access and use.
– Two possibles sources and destinations (memory or register).

– LOAD to go from memory to register.

– STORE to go from register to memory.

– MOVE to go from register to another register.

– Usually no instruction to copy from memory to memory.

Amount to be moved is usually exactly one word.

Wolfgang Schreiner 30

The Digital Logic Level

Dyadic Operations

Combine two operands to produce a result.

• Arithmetic instructions.
– Integer and floating-point arithmetic.

• Boolean instructions.
– AND, OR, NOT; sometimes XOR, NOR, NAND.

– Important for setting/extracting bits from words.

– Example: extract second byte from 32 bit word.

10110111 10111100 11011011 10001011 A

00000000 11111111 00000000 00000000 B (mask)

00000000 10111100 00000000 00000000 A AND B

00000000 00000000 00000000 10111110 (A AND B) >> 16

Wolfgang Schreiner 31

The Digital Logic Level

Monadic Operations

Take one operand and produce one result.

• Shift or rotate contents of a word.
– Shift: bits shifted off the end of the word are lost.

– Rotate: bits shifted off the end of of the word reappear on the other end.

00000000 00000000 00000000 01110011 A
00000000 00000000 00000000 00011100 A shifted right 2 bits
11000000 00000000 00000000 00011100 A rotated right 2 bits

• Right shift with sign extension.
– Bits on the left are filled with value of highest bit.

11111111 11111111 11111111 11110000 A
00111111 111111111 11111111 11111100 A shifted without sign extension
11111111 111111111 11111111 11111100 A shifted with sign extension.

Used to speed up multiplication by powers of 2.

Wolfgang Schreiner 32

The Digital Logic Level

Comparisons and Conditional Branches

Alter the sequence of instructions based on a test result.

• Usually performed by two instructions:
– Test some condition.

– If condition is met, branch to a particular memory address.

• Test instruction:
– Is a bit 0 or not?

– Is a word 0 or not?

– Compare two words for equality or size.

• Conditional branch instruction:
– Previous test instruction sets condition bit.

– Branch instruction tests the bit and branches, if it is set.

Wolfgang Schreiner 33

The Digital Logic Level

Procedure Call Instructions

Invoke group of instructions to perform a certain task.

•When procedure has finished its task, it must return to the caller.
– Return address must be stored for the time of the invocation.

• There are various places to store a return address:
– Fixed memory location: procedure cannot call another procedure.

– First word of procedure: procedure cannot call itself recursively.

– Register: leave task to store it in save place to register.

– Stack: caller pushes return address on stack, procedure pops it from stack.

Return address is usually stored on the stack.

Wolfgang Schreiner 34

The Digital Logic Level

Loop Control

Support to execute a group of instruction a fixed number of times.

• Counter is increased/decreased until upper/lower bound.

for (i = 0; i < n; i++) { statements; }

i = 1; i = 1 ;

L1: if (i >= n) goto L2; if (i >= n) goto L2;

statements; L1: statements;

i = i+1; i = i+1;

goto L1; if (i < n) goto L1;

L2: ... L2: ...

Goal is to minimize number of statements per iterations.

Wolfgang Schreiner 35

The Digital Logic Level

Input/Output

Large variety across different architectures.

• Programmed I/O with busy waiting.
– Single character is transferred between fixed processor register and selected device.

– CPU checks in loop whether device has set status bit in processor register.

static void output(int buf[], int count) {

int status, i, ready;

for (i = 0; i < count; i++) {

do {

status = in(DISPLAY_STATUS);

ready = (statys << 7) & 0x01;

} while (ready == 1);

out(DISPLAY_BUFFER, buf[i]);

}

}

Character available

Character received Character to display

Keyboard status

Interrupt enabled

Ready for next character

Display status

Interrupt enabled

Keyboard buffer Display buffer

Used only in embedded systems or real-time systems.
Wolfgang Schreiner 36

The Digital Logic Level

Input/Output Instructions

General-purpose computers use interrupt-driven I/O or DMA I/O.

• Interrupt-driven I/O:
– Device generates interrupt when I/O operation is completed.

– CPU can execute other programs in the mean time (multi-tasking).

– Interrupt is generated for each single character transmitted.

•DMA (Direct Memory Access) I/O:
– DMA controller transfers block of data from device to memory.

– CPU initializes registers in DMA controller.

– DMA controller generates interrupt

when I/O operation has been finished.

Terminal

CPU DMA

Address

Count 100
32

4
1

Device Direction

Bus

Memory

100 RS232C
Controller

…
…

Wolfgang Schreiner 37

The Digital Logic Level

The Pentium II Instructions

Very complex instruction set.

•Mixture of instruction sets.
– 8088 instructions.

– 32-bit instructions.

• Special support:
– BCD (binary coded decimal arithmetic).

∗ 8 bit contain two decimal digits.

– String processsing.

 Moves
MOV DST,SRC Move SRC to DST

PUSH SRC Push SRC onto the stack

POP DST Pop a word from the stack to DST

X
�

CHG DS1,DS2 Exchange DS1 and DS2

LEA DST,SRC Load effective addr of SRC into DST

C
�

MOV DST,SRC C
�

onditional move

 Arithmetic
A

�
DD DST,SRC A

�
dd SRC to DST

S
�

UB DST,SRC S
�

ubtract DST from SRC

MUL SRC Multiply EAX by SRC (unsigned)

IMUL SRC Multiply EAX by SRC (signed)

DIV SRC Divide EDX:EAX by SRC (unsigned)

IDIV SRC Divide EDX:EAX by SRC (signed)

A
�

DC DST,SRC A
�

dd SRC to DST, then add carry bit

S
�

BB DST,SRC S
�

ubtract DST & carry from SRC

INC DST A
�

dd 1 to DST

DEC DST S
�

ubtract 1 from DST

NEG DST Negate DST (subtract it from 0)

 Binary coded decimal
DAA Decimal adjust

DAS Decimal adjust for subtraction

A
�

AA A
�

SCII adjust for addition

A
�

AS A
�

SCII adjust for subtraction

A
�

AM A
�

SCII adjust for multiplication

A
�

AD A
�

SCII adjust for division

 Boolean
A

�
ND DST,SRC Boolean AND SRC into DST

O
�

R DST,SRC Boolean OR SRC into DST

X
�

OR DST,SRC Boolean Exclusive OR SRC to DST

NOT DST Replace DST with 1’s complement

 Shift/rotate
S

�
AL/SAR DST,# S

�
hift DST left/right # bits

S
�

HL/SHR DST,# Logical shift DST left/right # bits

ROL/ROR DST,# Rotate DST left/right # bits

RCL/RCR DST,# Rotate DST through carry # bits

 Test/compare
T

�
ST SRC1,SRC2 Boolean AND operands, set flags

C
�

MP SRC1,SRC2 S
�

et flags based on SRC1 - SRC2

 Transfer of control
J

�
MP ADDR J

�
ump to ADDR

J
�

xx ADDR C
�

onditional jumps based on flags

C
�

ALL ADDR C
�

all procedure at ADDR

RET Return from procedure

IRET Return from interrupt

LOOPxx Loop until condition met

INT ADDR Initiate a software interrupt

INTO Interrupt if overflow bit is set

 Strings
LODS Load string

S
�

TOS S
�

tore string

MOVS Move string

C
�

MPS C
�

ompare two strings

S
�

CAS S
�

can Strings

 Condition codes
S

�
TC S

�
et carry bit in EFLAGS register

C
�

LC C
�

lear carry bit in EFLAGS register

C
�

MC C
�

omplement carry bit in EFLAGS

S
�

TD S
�

et direction bit in EFLAGS register

C
�

LD C
�

lear direction bit in EFLAGS reg

S
�

TI S
�

et interrupt bit in EFLAGS register

C
�

LI C
�

lear interrupt bit in EFLAGS reg

PUSHFD Push EFLAGS register onto stack

POPFD Pop EFLAGS register from stack

LAHF Load AH from EFLAGS register

S
�

AHF S
�

tore AH in EFLAGS register

 Miscellaneous
S

�
WAP DST C

�
hange endianness of DST

C
�

WQ Extend EAX to EDX:EAX for division

C
�

WDE Extend 16-bit number in AX to EAX

ENTER SIZE,LV C
�

reate stack frame with SIZE bytes

LEAVE Undo stack frame built by ENTER

NOP No operation

HLT Halt

IN AL,PORT Input a byte from PORT to AL

O
�

UT PORT,AL O
�

utput a byte from AL to PORT

W
�

AIT W
�

ait for an interrupt

S
�

RC = source # = shift/rotate count
DST = destination LV = # locals

Backward compatibility.

Wolfgang Schreiner 38

The Digital Logic Level

A Pentium II Program

Wolfgang Schreiner 39

The Digital Logic Level

Program Example

Towers of Hanoi

static void towers(int n,int i, int j) {

int k;

if (n == 1)

printf("Move disk from %d to %d\n", i, j);

else {

k = 6-i-j;

towers(n-1, i, k);

towers(1, i, j);

towers(n-1, k, j);

}

}

Wolfgang Schreiner 40

The Digital Logic Level

Stack View

n = 3
i = 1
j = 3

�
Return addr

Old FP
k

n = 3
i = 1
j = 3

�
Return addr

Old FP
k = 2

n = 3
i = 1
j = 3

�
Return addr

Old FP
k = 2

n = 3
i = 1
j = 3

�
Return addr

Old FP
k = 2

n = 3

(a) (b) (c) (d) (e)

i = 1
j = 3

�
Return addr

Old FP
k = 2

n = 2
i = 1
j = 2

�
Return addr

Old FP = 1000
k

n = 2
i = 1
j = 2

�
Return addr

Old FP = 1000
k = 3

n = 2
i = 1
j = 2

�
Return addr

Old FP = 1000
k = 3

n = 2
i = 1
j = 2

�
Return addr

Old FP = 1000
k = 3

n = 1
i = 1
j = 3

�
Return addr

Old FP = 1024
k

n = 1
i = 1
j = 2

�
Return addr

Old FP = 1024
k = 3

1000
1004
1008
1012
1016
1020
1024
1028
1032
1036
1040
1044
1048
1052
1056
1060
1064
1068

Address

FP

SP

SP

FP

FP

SP

FP

SP

Wolfgang Schreiner 41

The Digital Logic Level

Stack View for the Pentium II

• EBP register is used as the frame pointer.
– First two words are used for linkage (old PC and old EBP).

– Parameters n, i, j are at EBP+8, EBP+12, EBP+16.

– Local variable k is at EBP+20.

• Procedure start: new frame is established at end of old one.
– Stack grows downwards (push: ESP is decreased)

– Stack pointer ESP is copied to frame pointer EBP.

• Procedure call: parameters are pushed in reverse order.
– C calling convention.

– First parameter has constant offset.

– Number of parameters may be variable

• Procedure return: parameters are popped off the stack.
– Stack pointer ESP is adjusted (increased).

Wolfgang Schreiner 42

The Digital Logic Level

Pentium II Assembly Language Program

.586 ; compile for Pentium (not 8088)

.MODEL FLAT

PUBLIC _towers ; export ’towers’

EXTERN _printf: NEAR ; import printf

.CODE

_towers: PUSH EBP ; save EBP (frame pointer)

MOV EBP, ESP ; set new frame pointer above ESP

CMP [EBP+8], 1 ; if (n == 1)

JNE L1 ; branch if n is not 1

MOV EAX, [EBP+16] ; EAX := j

PUSH EAX ; push j on stack

MOV EXAX, [EBP+12] ; EAX := i

PUSH EAX ; push i on stack

PUSH OFFSET FLAT:format ; push address of format

CALL _printf ; call printf

ADD ESP, 12 ; remove params from the stack

JMP Done ; we are finished

...

Wolfgang Schreiner 43

The Digital Logic Level

Pentium II Assembly Language Program

...

L1: MOV EAX, 6 ; EAX = 6

SUB EAX, [EBP+12] ; EAX = 6-i

SUB EAX, [EBP+16] ; EAX = 6-i-j

MOV [EBP+20], EAX ; k = EAX

PUSH EAX ; push k on stack

MOV EAX, [EBP+12] ; EAX = i

PUSH EAX ; push i on stack

MOV EAX, [EBP+8] ; EAX = n

DEC EAX ; EAX = n-1

PUSH EAX ; push n-1 on stack

CALL _towers ; call towers(n-1, i, 6-i-j)

ADD ESP, 12 ; remove params from the stack

...

Wolfgang Schreiner 44

The Digital Logic Level

Pentium II Assembly Language Program

...

PUSH EAX ; start towers(n-1, 1, k)

...

ADD ESP, 12 ; remove params from the stack

PUSH EAX ; start towers(n-1, 6-i-j, i)

...

ADD ESP, 12 ; remove params from the stack

Done: LEAVE ; prepare to exit

RET 0 ; return to the caller

.DATA

format DB "Move disk from %d to %d\n" ; format string

END

Wolfgang Schreiner 45

The Digital Logic Level

The Intel IA-64

Wolfgang Schreiner 46

The Digital Logic Level

The Intel IA-64

The IA-32 line has reached its limits.

• IA-32: wrong properties for current technology.
– Irregular instructions which are hard to decode.

– Two-address memory-oriented (rather than register-oriented) ISA.

– Small and irregular register set.

– 32 bit addresses limit programs to 4 GB of memory.

• IA-64: New 64 bit architecture.
– Designed completely from scratch.

– Dual mode: also capable of running IA-32 programs.

– Going to be implemented by a series of CPUs.

– Near future: high-end servers; later: also desktops.

The Intel architecture for the next decades.

Wolfgang Schreiner 47

The Digital Logic Level

The IA-64 Model

What is new compared to the IA-32?

• Load/store architecture.
– Instructions operate on registers rather than on memory.

• 64-bit addresses and 64-bit registers.
– 64 general registers available to all IA-64 programs.

– Additional registers available to IA-32 programs.

• All instructions have same fixed format.
– Opcode, two 6-bit source register fields, 6-bit destination register field, 6-bit predicate register.

– Most instructions take two register operands and put result to destination register.

– Many functional units for doing different operations in parallel.

Modern architecture in the line of current RISC machines.

Wolfgang Schreiner 48

The Digital Logic Level

EPIC (Explicitly Parallel Instruction Computing)

• Instructions are grouped to bundles.
– 128-bit bundle contains three 40-bit instructions and 8-bit template.

– Bundles are chained together by bit in template.

∗ Bundles can contain more than three instructions.

– Template contains scheduling information.

∗ Tells CPU which instructions can be executed in parallel.

Instructions
can be
chained
together

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

R2R1

PREDICATE
REGISTER

R3

CPU parallelism is exposed for scheduling at compile-time.
Wolfgang Schreiner 49

The Digital Logic Level

Predication

Reduce the number of conditional branches.

• Predicated instructions:
– Instruction contains number of predicate register.

– Instruction is only executed, if predicate register contains 1.

– Test instruction sets pair of predicate registers to condition and its negation.

if (R1 == R2) CMP R1, R2 CMPEQ R1, R2, P4

R3 = R4+R5; BNE L1 <P4> ADD R3, R4, R5

else MOV R3, R4 <P5> SUB R6, R4, R5

R6 = R4-R5; ADD R3, R5

BR L2

L1: MOV R6, R4

SUB R6, R5

L2: ...

Processor pipeline can be efficiently utilized.

Wolfgang Schreiner 50

The Digital Logic Level

Speculative Loads

Support for speculative execution.

• Speculative LOAD:
– LOAD instruction whose result may not be needed.

– Must not cause exception:

∗ Cache miss stops CPU until cache line is loaded.

• Speculative LOAD may fail.
– If result is not in cache, poison bit is set for loaded register.

• CHECK instruction.
– Must be inserted by compiler, before speculatively loaded register is used.

– If poison bit is set, pending exception occurs at that point.

Operands may be fetched in advance without penalty.

Wolfgang Schreiner 51

