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–G. H. Hardy

“There is always more in one of Ramanujan’s formulae 
than meets the eye, as anyone who gets to verify those 

which look the easiest will soon discover” 



THE VERIFICATION OF ENTRY 12

1985: Adiga, Berndt, Bhargava and Watson

Acknowledge “help” from Askey and Bressoud

1989: Jacobsen (Lorentzen)

1987: Ramanathan

Proofs use the Bailey-Daum summation, Heine’s 
transformation, Heine’s continued fraction, contiguous 
relations



IN THIS TALK: TWO PROOFS

1. Euler’s method

2. The “standard” q-orthogonal polynomial method 



EULER’S METHOD (1776)
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From such a humble beginning, Ramanujan wrote down several generalizations

and special cases, in the process sometimes rediscovering some continued fractions
found earlier by Gauss, Eisenstein and Rogers. As was his way, he did not record
his proofs.

Proofs were provided over the years, by many mathematicians. We mention
specially Andrews [2] and Adiga, Berndt, Bhargava, and Watson [1]. Proofs have
been compiled in [3] and [5].

The purpose of this article is to show how to formally derive nine continued
fractions that appear in Ramanujan’s Lost Notebook [16] (see Andrews and Berndt
[3, ch. 6]) and his earlier Second Notebook (see Berndt [5, ch. 16]).

Ramanujan was a master of manipulatorics in the class of Euler himself. Thus
it is appropriate that the continued fraction formulas of Ramanujan here are all
derived by using the same approach as the one taken by Euler [8] for the “trans-
formation of the divergent series 1�mx+m(m+ n)x2 �m(m+ n)(m+ 2n)x3 +
m(m+ n)(m+ 2n)(m+ 3n)x4+ etc. into a continued fraction”.

2. Euler’s Approach: The Rogers-Ramanujan Continued Fraction

Euler used the elementary identity:

N

D
= 1 +

N �D

D
(2.1)

1 + a1x+ a2x2 + a3x3 + · · ·
1 + b1x+ b2x2 + b3x3 + · · · = 1+

(1 + a1x+ a2x2 + · · · )� (1 + b1x+ b2x2 + · · · )
1 + b1x+ b2x2 + b3x3 + · · ·

This is simply one step of long division, provided the quotient when the numer-
ator N is divided by the denominator D is 1. This identity is used to ‘divide’ a
formal power series of the form 1 + a1z + a2z2 + · · · with another series of the
same form. You may also enjoy spotting (2.1) (and a continued fraction above) in
Gowers’ [10, p. 41–45] proof that the Golden Ratio is irrational.

All the continued fractions considered in this paper have a special parameter q in
them. The associated series found here are of a particular type known as q-series.
They are recognizable by the presence of the q-rising factorial (a; q)k, defined as:

(a; q)k :=

�
1 if k = 0,

(1� a)(1� aq) · · · (1� aqk�1) if k ⇤ 1.

Similarly, the infinite q-rising factorial is defined as:

(A; q)⇥ :=
⇥⇤

j=0

(1�Aqj), for |q| < 1.
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ator N is divided by the denominator D is 1. This identity is used to ‘divide’ a
formal power series of the form 1 + a1z + a2z2 + · · · with another series of the
same form. You may also enjoy spotting (2.1) (and a continued fraction above) in
Gowers’ [10, p. 41–45] proof that the Golden Ratio is irrational.

All the continued fractions considered in this paper have a special parameter q in
them. The associated series found here are of a particular type known as q-series.
They are recognizable by the presence of the q-rising factorial (a; q)k, defined as:

(a; q)k :=

�
1 if k = 0,

(1� a)(1� aq) · · · (1� aqk�1) if k ⇤ 1.

Similarly, the infinite q-rising factorial is defined as:

(A; q)⇥ :=
⇥⇤

j=0

(1�Aqj), for |q| < 1.

• In Ramanujan 125, we proved all of Ramanujan’s q-continued 
fractions by this method.

• All except for one! 



EXAMPLE: 
WHAT RAMANUJAN DID

Ramanujan Extended
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Abstract. By using Euler’s approach of using Euclid’s algorithm to expand
a power series into a continued fraction, we show how to derive Ramanujan’s
q-continued fractions in a systematic manner.
Keywords: Rogers–Ramanujan Continued Fraction, Ramanujan, the Lost
Notebook.

(Ramanujan’s) mastery of continued fractions was, on the formal side at any rate, beyond

that of any mathematician in the world... ⇠G. H. Hardy [12, p. XXX]
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followed the pattern. Moreover, our proof of Section 2 begins with the products
and shows how one can find the continued fraction expansion. If indeed this was
similar to Ramanujan’s own approach, it will explain why the first term of many
of Ramanujan’s continued fractions does not quite fit the pattern of the rest of the
terms.

We require the following definitions and notations from Lorentzen and Waade-
land [9] and Gasper and Rahman [6].

(1) Continued fractions: Let {an}1n=1 and {bn}1n=0 be sequences of complex
numbers, an 6= 0. Consider the sequence of mappings

s0(w) = b0 + w; sn(w) =
an

bn + w
, for n = 1, 2, . . .

These mappings are from C⇤ to C⇤, where C⇤ denotes the extended complex
numbers C [ {1}. Let Sn(w) be defined as follows:

S0(w) = s0(w) = b0 + w;Sn(w) = Sn�1(sn(w)).

Then Sn(w) can be written as

Sn(w) = b0 +
a1
b1 +

a2
b2 + · · · +

an
bn + w

.

Note that since an 6= 0, the sk(w) are non-singular linear fractional transfor-
mations. The Sn are compositions of these, and are thus also non-singular
linear fractional transformations. A continued fraction is an ordered pair
(({an}, {bn}), Sn(0)), where an, bn and Sn are as above.

(2) Convergence of continued fractions: When Sn(0) converges to an ex-
tended complex number S, we say that the continued fraction converges,
and we write

S = b0 +
a1
b1 +

a2
b2 + · · · .

The convergence of Sn(w) (or even Sn(wn), for suitably chosen wn) is called
modified convergence.

(3) Factorial notation: The q-rising factorial (a; q)n is defined as

(a; q)n :=

(
1 for n = 0

(1� aq)(1� aq2) · · · (1� aqn�1) for n = 1, 2, . . . .

In addition

(a; q)1 :=
1Y

k=0

(1� aqk) for |q| < 1.

We use the short-hand notation

(a1, a2, . . . , ar; q)k := (a1; q)k(a2; q)k · · · (ar; q)k.

(4) Basic hypergeometric series (or r�s series): This series is of the form

r�s


a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

�
:=

1X

k=0

(a1, a2, . . . , ar; q)k
(q, b1, b2, . . . , bs; q)k

⇣
(�1)kq(

k
2)
⌘1+s�r

zk.

When r = s+ 1, the series converges for |z| < 1.

to
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From such a humble beginning, Ramanujan wrote down several generalizations
and special cases, in the process sometimes rediscovering some continued fractions
found earlier by Gauss, Eisenstein and Rogers. As was his way, he did not record
his proofs.

Proofs were provided over the years, by many mathematicians. We mention
specially Andrews [2] and Adiga, Berndt, Bhargava, and Watson [1]. Proofs have
been compiled in [3] and [5].

The purpose of this article is to show how to formally derive nine continued
fractions that appear in Ramanujan’s Lost Notebook [16] (see Andrews and Berndt
[3, ch. 6]) and his earlier Second Notebook (see Berndt [5, ch. 16]).

Ramanujan was a master of manipulatorics in the class of Euler himself. Thus
it is appropriate that the continued fraction formulas of Ramanujan here are all
derived by using the same approach as the one taken by Euler [8] for the “trans-
formation of the divergent series 1�mx+m(m+ n)x2 �m(m+ n)(m+ 2n)x3 +
m(m+ n)(m+ 2n)(m+ 3n)x4+ etc. into a continued fraction”.

2. Euler’s Approach: The Rogers-Ramanujan Continued Fraction

Euler used the elementary identity:

N

D
= 1 +

N �D

D
. (2.1)

This is simply one step of long division, provided the quotient when the numerator
N is divided by the denominator D is 1. This identity is used to ‘divide’ a formal
power series of the form 1+ a1z + a2z2 + · · · with another series of the same form.
You may also enjoy spotting (2.1) (and a continued fraction above) in Gowers’ [10,
p. 41–45] proof that the Golden Ratio is irrational.

All the continued fractions considered in this paper have a special parameter q in
them. The associated series found here are of a particular type known as q-series.
They are recognizable by the presence of the q-rising factorial (a; q)k, defined as:

(a; q)k :=

�
1 if k = 0,

(1� a)(1� aq) · · · (1� aqk�1) if k ⇤ 1.

Similarly, the infinite q-rising factorial is defined as:

(A; q)⇥ :=
⇥⇤

j=0

(1�Aqj), for |q| < 1.

Cor Entry 1I.16.15

Rogers-Ramanujan
 Continued Fraction
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We proceed to apply Euler’s approach to derive the famous Rogers-Ramanujan
continued fraction, due to Rogers [17] and Ramanujan [5, Cor. to Entry 15, ch. 16]:
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We have shifted the index so that the sum once again runs from 0 to ⇤. In the
process, we extracted the common factor aq from the sum. The ratio of sums on
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From such a humble beginning, Ramanujan wrote down several generalizations
and special cases, in the process sometimes rediscovering some continued fractions
found earlier by Gauss, Eisenstein and Rogers. As was his way, he did not record
his proofs.

Proofs were provided over the years, by many mathematicians. We mention
specially Andrews [2] and Adiga, Berndt, Bhargava, and Watson [1]. Proofs have
been compiled in [3] and [5].

The purpose of this tutorial is to help the reader learn how to prove some of
Ramanujan’s q-continued fraction formulas. In particular, we will show how to
derive nine continued fractions that appear in Ramanujan’s Lost Notebook [19]
(see Andrews and Berndt [3, ch. 6]) and his earlier Second Notebook (see Berndt
[5, ch. 16]). Lorentzen [16] has an alternative approach to Ramanujan’s continued
fractions.

Ramanujan was a master of manipulatorics in the class of Euler himself. Thus
it is appropriate that the continued fraction formulas of Ramanujan here are all
derived by using the same approach as the one taken by Euler [7] for the “trans-
formation of the divergent series 1�mx+m(m+ n)x2

�m(m+ n)(m+ 2n)x3 +
m(m+ n)(m+ 2n)(m+ 3n)x4+ etc. into a continued fraction”.

2. Euler’s approach

Euler [7] used the elementary identity:

(2.1)
N

D

= 1 +
N �D

D

.

This is simply one step of long division, provided the quotient when the numerator
N is divided by the denominator D is 1. This identity is used to ‘divide’ a formal
power series of the form 1+ a1z + a2z

2 + · · · with another series of the same form.
This elementary identity is used repeatedly to derive all the continued fraction
formulas in this paper.

The following exercise will help you discover for yourself the key idea of Euler’s
approach.

Exercise. Use (2.1) repeatedly to expand the fraction 13/8 into a continued

fraction.

You may also enjoy spotting (2.1) (and a continued fraction mentioned in the
introduction) in Gowers’ [9, p. 41–45] proof that the Golden Ratio is irrational.

3. The Rogers-Ramanujan Continued Fraction

We proceed to apply Euler’s approach to prove a slight generalization of (1.1),
the famous Rogers-Ramanujan continued fraction. This continued fraction is due
to Rogers [20] and Ramanujan [5, ch. 16].

All the continued fractions considered in this paper have a special parameter q
in them. The associated series found here are of a particular type known as q-series.
They are recognizable by the presence of the q-rising factorial (a; q)k, defined as:

(a; q)k :=

(
1 if k = 0,

(1� a)(1� aq) · · · (1� aq

k�1) if k � 1.
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the LHS of (2.2) can be written as
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Once again, divide the two sums using (2.1) and find that the LHS of (2.2) equals:
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This time the common factor aq2 pops out, and we find that the LHS of (2.2) can
be written as:
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.

This process can be repeated.
The pattern is clear. Define R(s), for s = 0, 1, 2, . . . , as follows:

R(s) :=
⇥�

k=0

qk
2+sk

(q; q)k
ak.

Then, using (2.1) we have

R(s)

R(s+ 1)
= 1 +
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= 1 +
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⇥�
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(q; q)k
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= 1 +
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⇥�

k=1

qk
2+sk

(q; q)k�1

ak
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We get

Euler’s method

2 GAURAV BHATNAGAR

From such a humble beginning, Ramanujan wrote down several generalizations
and special cases, in the process sometimes rediscovering some continued fractions
found earlier by Gauss, Eisenstein and Rogers. As was his way, he did not record
his proofs.

Proofs were provided over the years, by many mathematicians. We mention
specially Andrews [2] and Adiga, Berndt, Bhargava, and Watson [1]. Proofs have
been compiled in [3] and [5].

The purpose of this tutorial is to help the reader learn how to prove some of
Ramanujan’s q-continued fraction formulas. In particular, we will show how to
derive nine continued fractions that appear in Ramanujan’s Lost Notebook [19]
(see Andrews and Berndt [3, ch. 6]) and his earlier Second Notebook (see Berndt
[5, ch. 16]). Lorentzen [16] has an alternative approach to Ramanujan’s continued
fractions.

Ramanujan was a master of manipulatorics in the class of Euler himself. Thus
it is appropriate that the continued fraction formulas of Ramanujan here are all
derived by using the same approach as the one taken by Euler [7] for the “trans-
formation of the divergent series 1�mx+m(m+ n)x2

�m(m+ n)(m+ 2n)x3 +
m(m+ n)(m+ 2n)(m+ 3n)x4+ etc. into a continued fraction”.

2. Euler’s approach

Euler [7] used the elementary identity:

(2.1)
N

D

= 1 +
N �D

D

.

This is simply one step of long division, provided the quotient when the numerator
N is divided by the denominator D is 1. This identity is used to ‘divide’ a formal
power series of the form 1+ a1z + a2z

2 + · · · with another series of the same form.
This elementary identity is used repeatedly to derive all the continued fraction
formulas in this paper.

The following exercise will help you discover for yourself the key idea of Euler’s
approach.

Exercise. Use (2.1) repeatedly to expand the fraction 13/8 into a continued

fraction.

You may also enjoy spotting (2.1) (and a continued fraction mentioned in the
introduction) in Gowers’ [9, p. 41–45] proof that the Golden Ratio is irrational.

3. The Rogers-Ramanujan Continued Fraction

We proceed to apply Euler’s approach to prove a slight generalization of (1.1),
the famous Rogers-Ramanujan continued fraction. This continued fraction is due
to Rogers [20] and Ramanujan [5, ch. 16].

All the continued fractions considered in this paper have a special parameter q
in them. The associated series found here are of a particular type known as q-series.
They are recognizable by the presence of the q-rising factorial (a; q)k, defined as:

(a; q)k :=

(
1 if k = 0,

(1� a)(1� aq) · · · (1� aq

k�1) if k � 1.
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Now, as before, note that:
⇥�

k=0

qk
2+k

(q; q)k
ak(1� qk) =

⇥�

k=1

qk
2+k

(q; q)k�1

ak

=
⇥�

k=0

q(k+1)2+k+1

(q; q)k
ak+1

= aq2
⇥�

k=0

qk
2+3k

(q; q)k
ak

This time the common factor aq2 pops out, and we find that the LHS of (2.2) can
be written as:
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This process can be repeated.
The pattern is clear. Define R(s), for s = 0, 1, 2, . . . , as follows:

R(s) :=
⇥�

k=0

qk
2+sk

(q; q)k
ak

R(s)

R(s+ 1)
= 1 +

aqs+1

R(s+ 1)

R(s+ 2)

R(1)

R(0)
=

1

R(0)

R(1)

=
1

1 +

aq

1 +

aq2

1 + · · · +
aqs+1

R(s+ 1)

R(s+ 2)

Take limits as s ⇤ ⌅ to obtain (2.2), assuming the continued fraction converges,
and converges to the required limit. This completes the derivation of (2.2).
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PROOF BY EULER’S METHOD

• Immediately gives “modified convergence”
• Ordinary convergence requires some more work



STEPS

Step III

Step II

Using Euler’s Method

Step 1

Using q-binomial theorem



TOUGHEST PART OF THIS PROOF



THE “STANDARD” q-ORTHOGONAL 
POLYNOMIAL METHOD



WE CONSIDER 

What we need



WE FIND THE VALUE OF H(1)

Again uses



THE STANDARD OP APPROACH

J-fraction

Convergent

The numerator and denominator polynomials
satisfy a 3-term recurrence



FORMULAS FOR NUMERATOR 
AND DENOMINATOR

We consider

Find its generating function

where,

When x =1

Using Darboux’s method

Similarly, for the numerator polynomials, and for general x 



STEPS IN STANDARD 
q-OP METHOD

The numerator and denominator of the convergents are 
polynomials that satisfy a three-term recurrence relation

We find the generating function

We find asymptotic formulas using Darboux’s method

The convergence is due to Markov’s theorem



In general



ON RAMANUJAN

If Ramanujan had considered this, it would have been easier

But then the answer would not have been so nice 

The first term of Ramanujan’s Entry 12 is a bit off

If Ramanujan began from the product side and used Euler’s method, then that would explain 
why the first term is a bit off

Indeed, many of Ramanujan’s continued fractions are expansions of ratios of series. If there 
is a product form, it is because the series is summable. (Ramanujan 125 (2014))

Further, in most of Ramanujan’s continued fractions, the first term is a bit off!



–Bruce Berndt (2009)

“Methods for proving these continued fraction formulas 
are varied and at times ad hoc. Ramanujan evidently had 

a systematic procedure for proving these continued 
fractions, but we don’t know what it is.” 
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