ON A CONTINUED FRACTION OF RAMANUJAN

Gaurav Bhatnagar and Mourad E. H. Ismail OPSFA 2019

Hagenberg, July 2I, 2019

$$
\text { 12. } \begin{aligned}
& \frac{\text { II }\left(-a^{2} x^{3}, x^{4}\right) \text { II }\left(-b^{2} x^{3}, x^{4}\right)}{\text { II }\left(-a^{2} \alpha, x^{4}\right) \text { II }\left(b^{2}, x^{4}\right)} \\
= & 1-a b+\frac{(a-b x)(b-a x)}{\left(1+x^{2}\right)(1-a b)}+\frac{\left(a-b x^{2}\right)\left(b-a x^{3}\right)}{\left(1+x^{4}\right)(1-a b)+}
\end{aligned}
$$

"There is always more in one of Ramanujan's formulae than meets the eye, as anyone who gets to verify those which look the easiest will soon discover"

-G. H. Hardy

THE VERIFICATION OF ENTRY 12

- 1985:Adiga, Berndt, Bhargava and Watson
- Acknowledge "help" from Askey and Bressoud
- 1989: Jacobsen (Lorentzen)
- I987: Ramanathan
- Proofs use the Bailey-Daum summation, Heine's transformation, Heine's continued fraction, contiguous relations

INTHIS TALK:TWO PROOFS

I. Euler's method
2. The "standard" q-orthogonal polynomial method

EULER'S METHOD (I776)

$\Longrightarrow(36)=$
DE.
TRANSFORMATIONE SERIEI DIVERGENTIS

$$
\begin{gathered}
\mathrm{x}-m x+m(m+n) x^{2}-m(m+n)(m+2 n) x^{5} \\
+m(m+n)(m+2 n)(m+3 n) x^{4} \text { etc. }
\end{gathered}
$$

IN FRACTIONEM CONTINVAM,
Auctore
L. EVLERO.

Conuent. exbib. d. 1 Ian. 1776.

EULER'S METHOD

$$
\begin{gathered}
\frac{N}{D}=1+\frac{N-D}{D} \\
\frac{1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots}{1+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots}=1+\frac{\left(1+a_{1} x+a_{2} x^{2}+\cdots\right)-\left(1+b_{1} x+b_{2} x^{2}+\cdots\right)}{1+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots}
\end{gathered}
$$

- In Ramanujan 125, we proved all of Ramanujan's q-continued fractions by this method.
- All except for one!

EXAMPLE: WHAT RAMANUJAN DID

Rogers-Ramanujan Continued Fraction

Ramanujan Extended

$$
1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}
$$

to

$$
1+\frac{q}{1+\frac{q^{2}}{1+\frac{q^{3}}{1+\cdots}}}
$$

$$
(a ; q)_{n}:= \begin{cases}1 & \text { for } n=0 \\ (1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{n-1}\right) & \text { for } n=1,2, \ldots\end{cases}
$$

$$
\frac{\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(q ; q)_{k}} a^{k}}{\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(q ; q)_{k}} a^{k}}=\frac{1}{1+\frac{a q}{1+\frac{a q^{2}}{1+\frac{a q^{3}}{1+\cdots}}}}
$$

$$
\frac{\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(q ; q)_{k}} a^{k}}{\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(q ; q)_{k}} a^{k}}=\frac{1}{\sum_{\frac{k=0}{\infty}}^{\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(q ; q)_{k}} a^{k}} \frac{q^{k^{2}+k}}{(q ; q)_{k}} a^{k}}
$$

$$
\frac{N}{D}=1+\frac{N-D}{D}
$$

$$
\frac{1}{1+\frac{\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(q ; q)_{k}} a^{k}-\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(q ; q)_{k}} a^{k}}{\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(q ; q)_{k}} a^{k}} \text { (}+1 \text {. }}
$$

Consider:

$$
\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(q ; q)_{k}} a^{k}-\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(q ; q)_{k}} a^{k}=\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(q ; q)_{k}} a^{k}\left(1-q^{k}\right)
$$

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{q^{k^{2}}}{(q ; q)_{k}} a^{k}\left(1-q^{k}\right) & =\sum_{k=1}^{\infty} \frac{q^{k^{2}}}{(q ; q)_{k-1}} a^{k} \\
& =\sum_{k=0}^{\infty} \frac{q^{(k+1)^{2}}}{(q ; q)_{k}} a^{k+1} \\
& =a q \sum_{k=0}^{\infty} \frac{q^{k^{2}+2 k}}{(q ; q)_{k}} a^{k}
\end{aligned}
$$

We get

Euler's method

$$
\frac{N}{D}=1+\frac{N-D}{D}
$$

$$
\frac{1}{1}+\frac{a q}{1+\frac{\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(q ; q)_{k}} a^{k}\left(1-q^{k}\right)}{\sum_{k=0}^{\infty} \frac{q^{k^{2}+2 k}}{(q ; q)_{k}} a^{k}}}
$$

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(q ; q)_{k}} a^{k}\left(1-q^{k}\right) & =\sum_{k=1}^{\infty} \frac{q^{k^{2}+k}}{(q ; q)_{k-1}} a^{k} \\
& =\sum_{k=0}^{\infty} \frac{q^{(k+1)^{2}+k+1}}{(q ; q)_{k}} a^{k+1} \\
& =a q^{2} \sum_{k=0}^{\infty} \frac{q^{k^{2}+3 k}}{(q ; q)_{k}} a^{k}
\end{aligned}
$$

IN GENERAL

$$
\begin{gathered}
R(s):=\sum_{k=0}^{\infty} \frac{q^{k^{2}+s k}}{(q ; q)_{k}} a^{k} \\
\frac{R(s)}{R(s+1)}=1+\frac{a q^{s+1}}{\frac{R(s+1)}{R(s+2)}} \\
\frac{R(1)}{R(0)}=\frac{1}{\frac{R(0)}{R(1)}}=\frac{1}{1}+\frac{a q}{1}+\frac{a q^{2}}{1}+\cdots+\frac{a q^{s+1}}{\frac{R(s+1)}{R(s+2)}}
\end{gathered}
$$

ENTRY 12

PROOF BY EULER'S METHOD

Define, for $s=0,1,2,3, \ldots$

$$
D(s):=\sum_{k=0}^{\infty} \frac{\left(b q^{2 s-1} / a,-b q / a ; q^{2}\right)_{k}}{\left(q^{2},-q^{2 s} ; q^{2}\right)_{k}}\left(a^{2} q\right)^{k}={ }_{2} \phi_{1}\left[\begin{array}{c}
b q^{2 s-1} / a,-b q / a ; q^{2}, a^{2} q \\
-q^{2}
\end{array}\right]
$$

Theorem. For $|q|<1$ and $|a|<1$, and $s=0,1,2,3, \ldots$, we have

$$
\begin{aligned}
& \frac{\left(a^{2} q^{3}, b^{2} q^{3} ; q^{4}\right)_{\infty}}{\left(a^{2} q, b^{2} q ; q^{4}\right)_{\infty}}= \\
& \frac{1}{1-a b}+\frac{(a-b q)(b-a q)}{(1-a b)\left(1+q^{2}\right)}+\frac{\left(a-b q^{3}\right)\left(b-a q^{3}\right)}{(1-a b)\left(1+q^{4}\right)}+\cdots
\end{aligned}
$$

- Immediately gives "modified convergence"
- Ordinary convergence requires some more work

STEPS

Step 1

$$
\frac{\left(a^{2} q^{3}, b^{2} q^{3} ; q^{4}\right)_{\infty}}{\left(a^{2} q, b^{2} q ; q^{4}\right)_{\infty}}=\frac{\sum_{k=0}^{\infty} \frac{\left(b q / a,-b q / a ; q^{2}\right)_{k}}{\left(q^{2},-q^{2} ; q^{2}\right)_{k}}\left(a^{2} q\right)^{k}}{\sum_{k=0}^{\infty} \frac{\left(b / a q,-b / a q ; q^{2}\right)_{k}}{\left(q^{2},-q^{2} ; q^{2}\right)_{k}}\left(a^{2} q^{3}\right)^{k}}
$$

Using q-binomial theorem

Step II

$$
\frac{{ }_{2} \phi_{1}\left[\begin{array}{c}
b / a q,-b / a q \\
-q^{2}
\end{array} q^{2}, a^{2} q^{3}\right.}{}{ }_{2} \phi_{1}\left[\begin{array}{c}
b q / a,-b q / a \\
-q^{2}
\end{array} ; q^{2}, a^{2} q\right] .
$$

Using Euler's Method
Step III

$$
\text { For } s=0,1,2, \ldots,
$$

$$
\left(1+q^{2 s}\right) \frac{D(s)}{D(s+1)}=(1-a b)\left(1+q^{2 s}\right)+\frac{\left(a-b q^{2 s+1}\right)\left(b-a q^{2 s+1}\right)}{\left(1+q^{2 s+2}\right) \frac{D(s+1)}{D(s+2)}}
$$

TOUGHEST PART OFTHIS PROOF

$$
\frac{\left(1+b q^{2 k+1} / a\right)\left(a^{2} q^{2 s+1}+a b q^{2 s}\right)}{\left(1+q^{2 s}\right)\left(1+q^{2 k+2 s+2}\right)}=a b+\frac{a\left(a q^{2 s+1}-b\right)\left(1-b q^{2 k+2 s+1} / a\right)}{\left(1+q^{2 s}\right)\left(1+q^{2 k+2 s+2}\right)}
$$

THE "STANDARD" q-ORTHOGONAL POLYNOMIAL METHOD

WE CONSIDER

$$
\begin{aligned}
H(x):=\frac{1-a b}{x(1-a b)+(1-a b)}+\frac{(a-b q)(b-a q)}{x(1-a b)+(1-a b) q^{2}}+ \\
\frac{\left(a-b q^{3}\right)\left(b-a q^{3}\right)}{x(1-a b)+(1-a b) q^{4}}+\frac{\left(a-b q^{5}\right)\left(b-a q^{5}\right)}{x(1-a b)+(1-a b) q^{6}}+\cdots
\end{aligned}
$$

What we need

$$
C=\frac{1}{1-a b}+\frac{(a-b q)(b-a q)}{(1-a b)\left(1+q^{2}\right)}+\frac{\left(a-b q^{3}\right)\left(b-a q^{3}\right)}{(1-a b)\left(1+q^{4}\right)}+\cdots
$$

$$
K=\frac{H(1)}{1-a b}=\frac{1}{2(1-a b)}+\frac{(a-b q)(b-a q)}{(1-a b)\left(1+q^{2}\right)}+\frac{\left(a-b q^{3}\right)\left(b-a q^{3}\right)}{(1-a b)\left(1+q^{4}\right)}+\cdots
$$

$$
\frac{1}{K}-(1-a b)=\frac{1}{C}
$$

WE FIND THE VALUE OF H(I)

Theorem. Let $|q|<1,|a b|<1$ and $\left|a^{2} q\right|<1$. Then

$$
H(1)=\frac{(1-a b)}{2} \cdot \frac{{ }^{2} \phi_{1}\left[\begin{array}{c}
-b q / a, b q / a \\
-q^{2}
\end{array} q^{2}, a^{2} q\right.}{}{ }_{2} \phi_{1}\left[\begin{array}{c}
-b q / a, b / a q \\
-1
\end{array} ; q^{2}, a^{2} q\right] .
$$

Corollary. (Ramanujan's Entry II.16.12) Let $|q|<1$ and $|a b|<1$. Then, we have

$$
\frac{\left(a^{2} q^{3}, b^{2} q^{3} ; q^{4}\right)_{\infty}}{\left(a^{2} q, b^{2} q ; q^{4}\right)_{\infty}}=\frac{1}{1-a b}+\frac{(a-b q)(b-a q)}{(1-a b)\left(1+q^{2}\right)}+\frac{\left(a-b q^{3}\right)\left(b-a q^{3}\right)}{(1-a b)\left(1+q^{4}\right)}+\cdots
$$

Again uses $\frac{{ }_{2} \phi_{1}\left[\begin{array}{c}b / a q,-b / a q \\ -q^{2}\end{array} q^{2}, a^{2} q^{3}\right]}{{ }_{2} \phi_{1}\left[\begin{array}{c}b q / a,-b q / a \\ -q^{2}\end{array} q^{2}, a^{2} q\right]}=1-a b+\frac{(a-b q)(b-a q)}{\left(1+q^{2}\right) \frac{D(1)}{D(2)}}$

THE STANDARD OP APPROACH

J-fraction $\frac{A_{0}}{A_{0} x+B_{0}}-\frac{C_{1}}{A_{1} x+B_{1}}-\frac{C_{2}}{A_{2} x+B_{2}}-\cdots$
Convergent $\quad \frac{N_{k}(x)}{D_{k}(x)}:=\frac{A_{0}}{A_{0} x+B_{0}}-\frac{C_{1}}{A_{1} x+B_{1}}-\cdots-\frac{C_{k-1}}{A_{k-1} x+B_{k-1}}$

The numerator and denominator polynomials satisfy a 3-term recurrence

$$
\begin{aligned}
& y_{k+1}(x)=\left((1-a b) x+(1-a b) q^{2 k}\right) y_{k}(x)+ \\
& \quad a b\left(1-b q^{2 k-1} / a\right)\left(1-a q^{2 k-1} / b\right) y_{k-1}(x), \text { for } k>0 \\
& N_{0}(x)=0, N_{1}(x)=1-a b ; D_{0}(x)=1, D_{1}(x)=(1-a b)(x+1)
\end{aligned}
$$

FORMULAS FOR NUMERATOR AND DENOMINATOR

We consider

$$
\widehat{D}_{k}(x):=\frac{D_{k}(x)}{\left(b q / a ; q^{2}\right)_{k}}
$$

Find its generating function

$$
\begin{gathered}
\widehat{D}(t)=\frac{(1-b / a q)}{\left(1-\delta_{1} t\right)\left(1-\delta_{2} t\right)} \sum_{m=0}^{\infty} \frac{\left(-a q t / b, a^{2} q t ; q^{2}\right)_{m}}{\left.\delta_{1} q^{2} t, \delta_{2} q^{2} ; q^{2}\right)_{m}}\left(\frac{b}{a q}\right)^{m} \\
\text { where, } \\
1-(1-a b) x t-a b t^{2}=\left(1-\delta_{1} t\right)\left(1-\delta_{2} t\right) . \\
\text { When x }=1 \quad \delta_{1}=1, \delta_{2}=-a b .
\end{gathered}
$$

Using Darboux's method

$$
\widehat{D}_{k}(1) \sim \frac{(1-b / a q)}{1+a b}{ }_{2} \phi_{1}\left[\begin{array}{c}
-a q / b, a^{2} q \\
-a b q^{2}
\end{array} ; q^{2}, \frac{b}{a q}\right] .
$$

STEPS IN STANDARD q-OP METHOD

- The numerator and denominator of the convergents are polynomials that satisfy a three-term recurrence relation
- We find the generating function
- We find asymptotic formulas using Darboux's method
- The convergence is due to Markov's theorem

$$
\begin{aligned}
x P_{k}(x)=P_{k+1}(x)+ & c q^{2 k} P_{k}(x) \\
& +\frac{1}{4}\left(1-b q^{2 k-1} / a\right)\left(1-a q^{2 k-1} / b\right) P_{k-1}(x), \text { for } k>0
\end{aligned}
$$

where

$$
c=-\frac{(1-a b)}{2 \sqrt{-a b}}
$$

We assume that $P_{k}(x)$ satisfies the initial conditions

$$
X(x)=\lim _{k \rightarrow \infty} \frac{P_{k}^{*}(x)}{P_{k}(x)}
$$

$$
P_{0}(x)=1, P_{1}(x)=x-c
$$

Let $\rho_{1}=e^{-i \vartheta} \rho_{2}=e^{i \vartheta}$.
Theorem. Let γ_{1} and γ_{2} given by

$$
\gamma_{1}, \gamma_{2}=\frac{a q}{2 b}\left(c \pm \sqrt{c^{2}-1}\right)
$$

Let F and G be defined as follows:

$$
F(\rho)={ }_{2} \phi_{1}\left[\begin{array}{c}
2 \gamma_{1} \rho, 2 \gamma_{2} \rho \\
q^{2} \rho^{2}
\end{array} ; q^{2}, \frac{b q}{a}\right],
$$

and

$$
G(\rho)=(1-b / a q)_{2} \phi_{1}\left[\begin{array}{c}
2 \gamma_{1} \rho, 2 \gamma_{2} \rho \\
q^{2} \rho^{2}
\end{array} ; q^{2}, \frac{b}{a q}\right] .
$$

Then $X(x)$ converges for all complex numbers $x \notin(-1,1)$, except possibly a finite set of points, and is given by

$$
X(x)=2 \rho \frac{F(\rho)}{G(\rho)}
$$

where ρ is given by:

$$
\rho= \begin{cases}\rho_{1}, & \text { if } \operatorname{Im}(x)>0, \text { or } x>1(x \text { real }) \\ \rho_{2}, & \text { if } \operatorname{Im}(x)<0, \text { or } x<-1(x \text { real }) \\ 1, & \text { if } x=1 \\ -1, & \text { if } x=-1\end{cases}
$$

ON RAMANUJAN

- If Ramanujan had considered this, it would have been easier

$$
\frac{1}{2(1-a b)}+\frac{(a-b q)(b-a q)}{(1-a b)\left(1+q^{2}\right)}+\frac{\left(a-b q^{3}\right)\left(b-a q^{3}\right)}{(1-a b)\left(1+q^{4}\right)}+\cdots
$$

- But then the answer would not have been so nice
- The first term of Ramanujan's Entry 12 is a bit off
- If Ramanujan began from the product side and used Euler's method, then that would explain why the first term is a bit off
- Indeed, many of Ramanujan's continued fractions are expansions of ratios of series. If there is a product form, it is because the series is summable. (Ramanujan I25 (2014))
- Further, in most of Ramanujan's continued fractions, the first term is a bit off!
"Methods for proving these continued fraction formulas are varied and at times ad hoc. Ramanujan evidently had a systematic procedure for proving these continued fractions, but we don't know what it is."
-Bruce Berndt (2009)

THANKYOU

OPSFA Community, Organizers OPSFA Maryland, Hong Kong, Tianjin, Hagenberg, AMS special sessions,... In addition: Peter Paule and Christian Krattenthaler

