Phase transitions of composition schemes: Mittag-Leffler and mixed Poisson distributions AEC Conference (TU Wien)

Michael Wallner

(joint work with Cyril Banderier and Markus Kuba)

Institute of Discrete Mathematics and Geometry, TU Wien, Austria (Austrian Science Fund (FWF): J 4162 and P 34142)

https://dmg.tuwien.ac.at/mwallner

July 5, 2022

Phase transitions of composition schemes: Mittag-Leffler and mixed Poisson distributions, arXiv:2103.03751, submitted.

Combinatorial structures

Frequent observation

Combinatorial structure = assemblage of basic building blocks

- random walks
- Pólya urns
- Galton–Watson processes
- trees

Frequent observation

Combinatorial structure = assemblage of basic building blocks

random walks	permutations	tilings
 Pólya urns 	random mappings	 graphs
 Galton–Watson processes 	set partitions	maps
trees	integer partitions	•

A composition scheme for generating functions

F(z) = G(H(z))M(z)

Let ρ_G and ρ_H be the radii of convergence of G(z) and H(z), resp. Then, the composition scheme is *critical* if $H(\rho_H) = \rho_G$ and $\rho_M \ge \rho_H$.

Frequent observation

Combinatorial structure = assemblage of basic building blocks

random walks	permutations	tilings
Pólya urns	random mappings	 graphs
 Galton–Watson processes 	set partitions	maps
trees	integer partitions	•

A composition scheme for generating functions

$$F(z) = G(H(z))M(z)$$

Let ρ_G and ρ_H be the radii of convergence of G(z) and H(z), resp. Then, the composition scheme is *critical* if $H(\rho_H) = \rho_G$ and $\rho_M \ge \rho_H$.

Examples:

- Bicoloured supertrees: F(z) = C(2zC(z))
- Factorization of walks: $W(z) = \frac{1}{1-A(z)}M(z)$

Goal 1: Analyse F(z, u) = G(uH(z))M(z)

Goal 1: Analyse F(z, u) = G(uH(z))M(z)

Number of \mathcal{H} -components: Define the discrete r.v. X_n of the *core size*:

$$\mathbb{P}\{X_n = k\} = \frac{[z^n u^k]F(z, u)}{[z^n]F(z, 1)}$$

Note that H(z) has typically the following singular expansion

$$H(z) = \tau_H + c_H \left(1 - \frac{z}{\rho_H}\right)^{\lambda_H} + \dots$$

 \Rightarrow the asymptotic behaviour of $\mathbb{P}\{X_n = k\}$ depends on the *singular exponent* λ_H !

Goal 1: Analyse F(z, u) = G(uH(z))M(z)

Number of \mathcal{H} -components: Define the discrete r.v. X_n of the *core size*:

$$\mathbb{P}\{X_n = k\} = \frac{[z^n u^k]F(z, u)}{[z^n]F(z, 1)}$$

Note that H(z) has typically the following singular expansion

$$H(z) = \tau_H + c_H \left(1 - \frac{z}{\rho_H}\right)^{\lambda_H} + \dots$$

 \Rightarrow the asymptotic behaviour of $\mathbb{P}\{X_n = k\}$ depends on the *singular exponent* λ_H !

Limit law of X_n related to certain distributions:

- $\lambda_H < 0$: scheme *not* critical as H(z) diverges at $z = \rho_H$ (called supercritical, typically Gaussian)
- $0 < \lambda_H < 1$: generalized Mittag-Leffler distribution (this talk!) $(\lambda_H = 1/2, M(z) = 1$: Rayleigh distribution)

Goal 2: Analyse $F_j(z, v) = G(H(z) - (1 - v)h_j z^j)M(z)$

Goal 2: Analyse
$$F_j(z,v) = G(H(z) - (1-v)h_j z^j)M(z)$$

Profile: Number of \mathcal{H} -components of given size *j* Let $H(z) = \sum_{n \ge 0} h_j z^n$ and define the discrete random variable $X_{n,j}$:

$$\mathbb{P}\{X_{n,j}=k\}=\frac{[z^nv^k]F_j(z,v)}{[z^n]F_j(z,1)}$$

• $X_{n,j}$ naturally refines X_n :

$$\sum_{j\in\mathbb{N}}X_{n,j}=X_n.$$

leads to mixed Poisson distributions (also in this talk!)

Main results

Three different regimes

Our model:

$$F(z, u) = G(uH(z)) \cdot M(z),$$

for F/G/H/M analytic at the origin, with nonnegative coefficients, and singular exponents $\lambda_F/\lambda_G/\lambda_H/\lambda_M$, such that $0 < \lambda_H < 1$, $H(\rho_H) = \rho_G$, and $\rho_M = \rho_H$. For example:

$$F(z) = \tau_F + c_F (1 - z/\rho_F)^{\lambda_F} + \dots$$

Three different regimes

Our model:

$$F(z, u) = G(uH(z)) \cdot M(z),$$

for F/G/H/M analytic at the origin, with nonnegative coefficients, and singular exponents $\lambda_F/\lambda_G/\lambda_H/\lambda_M$, such that $0 < \lambda_H < 1$, $H(\rho_H) = \rho_G$, and $\rho_M = \rho_H$. For example:

$$F(z) = \tau_F + c_F (1 - z/\rho_F)^{\lambda_F} + \dots$$

Three regimes:

Composition scheme: pure case

The beta-Mittag-Leffler distribution BML(α, θ, β) has the density:

$$f(x) = \frac{\Gamma(\theta + \beta)}{\Gamma(\theta/\alpha)} \sum_{j \ge 0} \frac{(-1)^j}{j! \Gamma(\beta - j\alpha)} x^{\theta/\alpha + j - 1}$$

Remark: BML $(\alpha, \theta, \beta) \stackrel{d}{=} ML(\alpha, \theta) \cdot Beta(\theta, \beta)^{\alpha}$.

Composition scheme: pure case

The beta-Mittag-Leffler distribution BML(α, θ, β) has the density:

$$f(x) = \frac{\Gamma(\theta + \beta)}{\Gamma(\theta/\alpha)} \sum_{j \ge 0} \frac{(-1)^j}{j! \Gamma(\beta - j\alpha)} x^{\theta/\alpha + j - 1}.$$

Remark: BML $(\alpha, \theta, \beta) \stackrel{d}{=} ML(\alpha, \theta) \cdot Beta(\theta, \beta)^{\alpha}$.

Theorem

In a pure critical composition scheme

$$F(z, u) = G(uH(z))M(z),$$

the core size X_n converges in distribution and moments to a beta-Mittag-Leffler:

$$\frac{X_n}{\kappa \cdot n^{\lambda_H}} \xrightarrow{d} \mathsf{BML}(\alpha, \theta, \beta),$$

where $\alpha = \lambda_H$, $\theta = -\lambda_G \lambda_H$, $\beta = -\min(0, \lambda_M)$, $\kappa = \frac{\tau_H}{-c_H}$.

Moreover, we have a local limit theorem $\mathbb{P}\{X_n = x \cdot \kappa n^{\lambda_H}\} \sim \frac{1}{\kappa n^{\lambda_H}} \cdot f(x)$.

The three different regimes

Bimodal case for confluent scheme:

- **1** first mode: small *k* (discrete Boltzmann)
- **2** second mode: larger $k \approx n^{\lambda_H}$ (continuous Mittag-Leffler)

Theorem

Consider a size-refined pure critical composition scheme

$$F_j(z,v) = G(H(z) - (1-v)h_j z^j)M(z),$$

with $j \in \mathbb{N}$. Let $\xi_{n,j} = \frac{\rho_H^j}{-c_H} h_j n^{\lambda_H}$.

Theorem

Consider a size-refined pure critical composition scheme $F_j(z, v) = G(H(z) - (1 - v)h_j z^j)M(z),$ with $j \in \mathbb{N}$. Let $\xi_{n,j} = \frac{\rho_j^i}{-c_H}h_j n^{\lambda_H}$. Then, $j \ll n^{\frac{\lambda_H}{1+\lambda_H}}$: we have $\xi_{n,j} \to +\infty$ and $\frac{\chi_{n,j}}{\xi_{n,j}} \xrightarrow{d} X,$ with $X \stackrel{d}{=} BML(\alpha, \theta, \beta)$

is beta-Mittag-Leffler with $\alpha = \lambda_H$, $\theta = -\lambda_G \lambda_H$, and $\beta = -\min(0, \lambda_M)$.

Theorem

Consider a size-refined pure critical composition scheme $F_i(z, v) = G(H(z) - (1 - v)h_i z^j)M(z),$ with $j \in \mathbb{N}$. Let $\xi_{n,j} = \frac{\rho_{H}^{j}}{-c_{H}}h_{j}n^{\lambda_{H}}$. Then, $I \quad i \ll n^{\frac{\lambda_H}{1+\lambda_H}}: \text{ we have } \xi_{n,i} \to +\infty \text{ and }$ $\frac{X_{n,j}}{\xi_{n,i}} \xrightarrow{d} X, \quad \text{with} \quad X \stackrel{d}{=} \mathsf{BML}(\alpha, \theta, \beta)$ is beta-Mittag-Leffler with $\alpha = \lambda_H$, $\theta = -\lambda_G \lambda_H$, and $\beta = -\min(0, \lambda_M)$. 2 $j \sim r \cdot n^{\frac{\lambda_H}{1+\lambda_H}}$, $r \in (0,\infty)$: we have $\xi_{n,j} \to \xi$ with $\xi = r^{-\frac{\lambda_H}{1+\lambda_H}} \cdot \frac{1}{-\Gamma(-\chi_{t})}$ and $X_n : \xrightarrow{d} MPo(\xi X),$

is a mixed Poisson distribution with mixing distribution X. ($\mathbb{P}\{X_{n,j} = \ell\} = \frac{\xi^{\ell}}{\ell!} \int_{\mathbb{R}^+} X^{\ell} e^{-\xi X} dU$)

Theorem

Consider a size-refined pure critical composition scheme $F_i(z, v) = G(H(z) - (1 - v)h_i z^j)M(z),$ with $j \in \mathbb{N}$. Let $\xi_{n,j} = \frac{\rho_{H}^{j}}{-c_{H}}h_{j}n^{\lambda_{H}}$. Then, $I \quad i \ll n^{\frac{\lambda_H}{1+\lambda_H}}: \text{ we have } \xi_{n,i} \to +\infty \text{ and }$ $\frac{X_{n,j}}{\xi_{n,i}} \xrightarrow{d} X, \quad \text{with} \quad X \stackrel{d}{=} \mathsf{BML}(\alpha, \theta, \beta)$ is beta-Mittag-Leffler with $\alpha = \lambda_H$, $\theta = -\lambda_G \lambda_H$, and $\beta = -\min(0, \lambda_M)$. 2 $j \sim r \cdot n^{\frac{\lambda_H}{1+\lambda_H}}$, $r \in (0,\infty)$: we have $\xi_{n,j} \to \xi$ with $\xi = r^{-\frac{\lambda_H}{1+\lambda_H}} \cdot \frac{1}{-\Gamma(-\lambda_H)}$ and $X_n : \xrightarrow{d} MPo(\xi X),$ is a mixed Poisson distribution with mixing distribution X. $\left(\mathbb{P}\{X_{n,i}=\ell\}=\frac{\xi^{\ell}}{\ell!}\int_{\mathbb{T}^+}X^{\ell}e^{-\xi X}dU\right)$

3 $j \gg n^{\frac{\lambda_H}{1+\lambda_H}}$: we have $\xi_{n,j} \to 0$ and $X_{n,j}$ converges to a Dirac distr. at 0.

Universal phase transition for the profile

1 For large *n* there are many small $(j \ll n^{\frac{\lambda_H}{1+\lambda_H}})$, some giant $(j \sim rn^{\frac{\lambda_H}{1+\lambda_H}})$, and no super-giant $(j \gg n^{\frac{\lambda_H}{1+\lambda_H}})$ \mathcal{H} -components of size *j*.

2 Universality of the window $\Theta(n^{1/3})$: ubiquitous square-root behaviour $(\lambda_H = \frac{1}{2})$ \Rightarrow universality of the window $j = \Theta(n^{\frac{\lambda_H}{1+\lambda_H}}) = \Theta(n^{1/3}).$

Applications

Applications

- **1** Core size of **supertrees**
- 2 Returns to zero in walks and bridges with drift zero
- 3 Initial returns in coloured bridges
- 4 Sign changes in Motzkin walks
- 5 Table sizes in the Chinese restaurant process
- 6 Compositions in balanced triangular urn models
- 7 Root degree and branching structure in **bilabelled increasing trees**

See our paper for full details extending/unifying works of [Drmota, Soria 97], [Banderier, Flajolet, Schaeffer, Soria 01], [Janson 06 and 10], [Pitman 06], [Flajolet, Dumas, Puyhaubert 06], [Kuba, Panholzer 06], [James 15], [Goldschmidt, Haas, Sénizergues 20], ...

Ex. 1: Bicoloured supertrees

Composition scheme: $F(z, u) = C(u \cdot 2zC(z))$ where $C(z) = \frac{1-\sqrt{1-4z}}{2}$ is the generating function of plane trees.

Ex. 1: Bicoloured supertrees

Composition scheme: $F(z, u) = C(u \cdot 2zC(z))$

where $C(z) = \frac{1-\sqrt{1-4z}}{2}$ is the generating function of plane trees.

The core size X_n in supertrees of size n has factorial moments

$$\mathbb{E}(X_n^{\underline{s}}) \sim n^{s/2} \cdot \mu_s, \qquad \mu_s = \frac{\Gamma(s - \frac{1}{2})\Gamma(-\frac{1}{4})}{\Gamma(-\frac{1}{2})\Gamma(\frac{s}{2} - \frac{1}{4})}$$

Convergence in distribution and all moments to a generalized Mittag-Leffler:

$$\frac{X_n}{n^{1/2}} \xrightarrow{d} \mathsf{ML}\left(\frac{1}{2}, -\frac{1}{4}\right).$$

Moreover, we have the local limit theorem $\mathbb{P}\{X_n = x \cdot n^{1/2}\} \sim n^{-1/2}f(x)$.

Ex. 1: Bicoloured supertrees refined

Refined scheme:
$$F_j(z, v) = C(2zC(z) + (v-1)2c_{j-1}z^j)$$

where $C(z) = \frac{1-\sqrt{1-4z}}{2}$ is the generating function of plane trees.

Theorem (Size-refined)

The number of coloured trees of size *j* in supertrees of size *n* has factorial moments of mixed Poisson type given by

$$\mathbb{E}(X_{n,j}^{\underline{s}}) = \xi_{n,j}^{s} \cdot \mu_{s} \cdot (1 + o(1)),$$

with $\xi_{n,j} = 2(\frac{1}{4})^{j-1}c_{j-1}n^{1/2}$ and mixing distribution $X = ML(\frac{1}{2}, -\frac{1}{4})$.

Furthermore, the random variable $X_{n,j}$ possesses the three distinct asymptotic régimes (ML, MPo, Dirac), with a phase transition at $j = \Theta(n^{1/3})$.

Ex. 2: Returns to zero in walks

- Walk "=" initial bridge B(z) + final walk $M(z) = \frac{W(z)}{B(z)}$ (not returning to 0)
- Bridge contains all returns to zero
- Decompose bridge into a sequence of "minimal bridges" $B(z) = \frac{1}{1-A(z)}$

$$\Rightarrow \qquad W(z,u) = \frac{1}{1 - uA(z)} \frac{W(z)}{B(z)}$$

Ex. 2: Profile of returns to zero

Corollary (Size-refined counting)

Let $X_{n,j}$ be the number of distance-j-zeroes in walks (bridges) with zero drift of length n. Then, $X_{n,j}$ has factorial moments of mixed Poisson type

$$\mathbb{E}(X_{n,j}^{\underline{s}}) = \xi_{n,j}^{\underline{s}} \cdot \mathbb{E}(X^{\underline{s}}) \left(1 + o(1)\right),$$

with $\xi_{n,j} = \sqrt{\frac{P(1)}{2P''(1)}} \frac{h_j}{P(1)^j} \cdot n^{1/2}$, where X is given by

$$X = \begin{cases} Halfnormal(\sigma) & \text{for walks,} \\ Rayleigh(\sigma) & \text{for bridges,} \end{cases} \qquad \sigma = \sqrt{\frac{P(\sigma)}{P''}}$$

Furthermore, the random variable $X_{n,j}$ possesses our three distinct asymptotic régimes (BML, MPo, Dirac), with a phase transition at $j = \Theta(n^{1/3})$.

Conclusion: automatic limit laws for schemes!

Composition scheme	Symbolic form	Limit law
Ordinary	F(z,u) = G(uH(z))	generalized Mittag-Leffler
Extended	F(z,u) = M(z)G(uH(z))	beta-Mittag-Leffler and Boltzmann distribution
Cyclic	$F(z,u) = -\log\left(1 - uH(z) ight)$	Mittag-Leffler
Multivariate extended	$F(z,\mathbf{u})=M(z)\prod_{\ell=1}^m G_\ellig(u_\ell H_\ell(z)ig)$	multivariate product distribution
Refined	$F(z,v) = M(z)G(H(z) - z^{j}h_{j}(1-v))$	mixed Poisson type phase transition
Refined cyclic	$F(z,v) = -\log\left(1 - \left(H(z) - (1-v)h_j z^j/j!\right)\right)$	mixed Poisson type phase transition
Multivariate size-refined	$F(z,\mathbf{v}) = M(z) \prod_{\ell=1}^m G_\ell \big(H_\ell(z) - z^{j_\ell} h_{\ell,j_\ell}(1 - v_\ell) \big)$	mv. mixed Poisson type phase transition

Conclusion: automatic limit laws for schemes!

Composition scheme	Symbolic form	Limit law	
Ordinary	F(z,u) = G(uH(z))	generalized Mittag-Leffler	
Extended	F(z,u) = M(z)G(uH(z))	beta-Mittag-Leffler and Boltzmann distribution	
Cyclic	$F(z,u) = -\log\left(1-uH(z) ight)$	Mittag-Leffler	
Multivariate extended	$F(z,\mathbf{u})=M(z)\prod_{\ell=1}^m G_\ellig(u_\ell H_\ell(z)ig)$	multivariate product distribution	
Refined	$F(z,v) = M(z)G(H(z) - z^{j}h_{j}(1-v))$	mixed Poisson type phase transition	
Refined cyclic	$F(z,v) = -\log\left(1 - \left(H(z) - (1-v)h_j z^j/j!\right)\right)$	mixed Poisson type phase transition	
Multivariate size-refined	$F(z,\mathbf{v}) = M(z) \prod_{\ell=1}^{m} G_{\ell} \big(H_{\ell}(z) - z^{j_{\ell}} h_{\ell,j_{\ell}}(1-v_{\ell}) \big)$	mv. mixed Poisson type phase transition	

Bonus

Ex. 3: Balanced triangular Pólya urns

Limit law for balanced triangular Pólya urns

Problem 1.15. [Janson 06]

Find better descriptions of the limits of triangular Pólya urns.

- Closed form of the moments known [Theorem 1.7, Janson 06]
- For $b_0 > 0$ and $w_0 = 0$ (or β) Janson observed a moment-tilted stable law

History generating function [Flajolet, Dumas, Puyhaubert 06]:

$$F(z,u) = u^{w_0}(1-\sigma z)^{-b_0/\sigma} \left(1-u^{\alpha}\left(1-(1-\sigma z)^{\alpha/\sigma}\right)\right)^{-w_0/\alpha}$$

Corollary

Let W_n be the rv for the number of white balls in a balanced triangular urn with initially $w_0 > 0$ white and $b_0 \ge 0$ black balls. Then, we have a convergence in distr., with convergence of all moments, to a beta-Mittag-Leffler distr.

$$\frac{\mathcal{W}_n}{\alpha n^{\alpha/\sigma}} \xrightarrow[]{d}{m} \mathsf{BML}\left(\frac{\alpha}{\sigma}, \frac{w_0}{\alpha}, \frac{b_0}{\alpha}\right).$$

Same limit for urns with noninteger weights [Goldschmidt, Haas, Sénizergues 20]

Ex. 4: Initial returns in coloured walks with zero drift

A 4-coloured bridge, with all its initial returns to zero marked by red dots:

Generating functions for *m*-colored bridges and walks:

$$B_m(z, u) = \left(\frac{1}{1 - uA(z)} - 1\right) (B(z) - 1)^{m-1}$$
$$W_m(z, u) = (1 + B_m(z, u)) \frac{W(z)}{B(z)}$$

 \Rightarrow apply our blackbox theorems!

Corollary

The random variable X_n counting the number of initial returns in a m-coloured walk (resp. bridge) of length n satisfies

$$\mathbb{E}(X_n^{\underline{s}}) \sim n^{s/2} \left(\frac{\sigma}{\sqrt{2}}\right)^n \mu_s, \quad \sigma = \sqrt{\frac{P(1)}{P''(1)}}, \quad \mu_s = \begin{cases} \frac{\Gamma(s+1)\Gamma((m+1)/2)}{\Gamma((m+s+1)/2)}, & \text{for walks,} \\ \frac{\Gamma(s+1)\Gamma(m/2)}{\Gamma((m+s)/2)}, & \text{for bridges} \end{cases}$$

The random variable $X_n/n^{1/2}$ converges in distribution with convergence of all moments to the product of a Rayleigh and a scaled beta distribution:

$$\frac{X_n}{n^{1/2}} \stackrel{d}{\longrightarrow} X, \qquad \qquad X \stackrel{d}{=} \mathsf{Rayleigh}(\sigma) \cdot B^{1/2},$$

with independent random variables

$$Rayleigh(\sigma) \quad and \quad B = \begin{cases} \mathsf{Beta}\left(\frac{1}{2}, \frac{m}{2}\right), & \text{for walks,} \\ \mathsf{Beta}\left(\frac{1}{2}, \frac{m-1}{2}\right), & \text{for bridges.} \end{cases}$$

We have the local limit theorem $\mathbb{P}\{X_n = x \cdot n^{1/2}\} \sim n^{-1/2} \cdot f_X(x)$, where, for bridges

$$f_X(x) = \sqrt{\frac{2}{\pi\sigma^2}} \Gamma\left(\frac{m}{2}\right) e^{-\frac{x^2}{2\sigma^2}} U\left(\frac{m}{2} - 1, \frac{1}{2}, \frac{x^2}{2\sigma^2}\right),$$

where U(a, b, x) is the confluent hypergeometric function of the second kind. For walks, one replaces m by m + 1.

Ex. 5: Sign changes in Motzkin walks with zero drift

A Motzkin walk (i.e., step set $S = \{-1, 0, 1\}$) with 4 sign changes marked in red.

Corollary (Size-refined counting)

Let $X_{n,j}$ be the number of distance-j-sign changes in Motzkin walks/bridges of length n with zero drift. Then, $X_{n,j}$ has factorial moments of mixed Poisson type

$$\mathbb{E}(X^{\underline{s}}_{n,j}) = \xi^s_{n,j} \cdot \mathbb{E}(X^s) \left(1 + o(1)\right),$$

with $\xi_{n,j} = \frac{1}{2} \sqrt{\frac{P''(1)}{2P(1)}} \frac{h_j}{P(1)^j} \cdot n^{1/2}$ and mixing distributions $X \stackrel{d}{=} \begin{cases} Halfnormal(\sigma) & \text{for walks,} \\ Rayleigh(\sigma) & \text{for bridges,} \end{cases} \qquad \sigma = \frac{1}{2} \sqrt{\frac{P''(1)}{P(1)}}.$

Furthermore, the r.v. $X_{n,j}$ (for walks and for bridges) possesses our three distinct asymptotic régimes (BML, MPo, Dirac), with a phase transition at $j = \Theta(n^{1/3})$.

Phase transitions of composition schemes | Applications

Ex. 6: Tables in the Chinese restaurant process

- Studied by Aldous, Pitman, Yor, ...
- Discrete-time stochastic process: at time n a set partition of $\{1, \ldots, n\}$
 - Start at time *n* = 1 with the partition {{1}}
 - Given partition $T = \{t_1, \ldots, t_k\}$ of [n] either add n + 1 to $t_i \in T$ with prob.

$$\mathbb{P}\{n+1 \hookrightarrow t_i\} = \frac{|t_i| - \alpha}{n+\theta}, \quad 1 \le i \le k,$$

• or as a new singleton block with remaining probability.

Embedding into plane-oriented recursive trees [Kuba, Panholzer 16] \Rightarrow Number of tables with *j* customers $\stackrel{d}{=}$ branches of size *j*

Theorem (Size-refined counting)

Let a > 0, b > -1. The random variable $X_{n,j}$ counting the number of tables with j customers in a Chinese restaurant process of parameter

$$\alpha = \frac{1}{1+a} \qquad \qquad \theta = \frac{b}{1+a},$$

with a total of n - 1 customers possesses our three distinct asymptotic régimes, with a phase transition at $j = \Theta(n^{1/(a+2)})$:

I For $j \ll n^{\frac{1}{a+2}}$ we have $\xi_{n,j} = \frac{\alpha n^{\alpha}}{j} {j-1-\alpha \choose j-1} \to \infty$ and $\frac{X_{n,j}}{\xi_{n,j}}$ converges in distr. with convergence of all moments, to a generalized Mittag-Leffler distr.:

$$\frac{X_{n,j}}{\xi_{n,j}} \xrightarrow{d} X \quad \text{with} \quad X \stackrel{d}{=} \mathsf{ML}(\alpha, \theta).$$

2 For $j \sim r \cdot n^{\frac{1}{a+2}}$, $r \in (0, \infty)$, we have $\xi_{n,j} \to \xi$, and the $X_{n,j}$ converges in distr. with convergence of all moments, to a mixed Poisson distr.:

$$X_{n,j} \xrightarrow{d} MPo(\xi X).$$

3 For $j \gg n^{\frac{1}{a+2}}$, $\xi_{n,j} \to 0$, and $X_{n,j}$ converges to a Dirac distribution at 0.

Pure case: simplifications

1
$$\lambda_M \ge 0$$
 (which includes $F(z, u) = G(uH(z))$):
 $X_1 \stackrel{d}{=} BML(\lambda_H, -\lambda_G\lambda_H, 0) \stackrel{d}{=} ML(\lambda_H, -\lambda_G\lambda_H)$
In particular, for $\lambda_G = -1$ and $\lambda_H = \frac{1}{2}$:
 $X_1 \stackrel{d}{=} Rayleigh$
Sequence scheme [Drmota, Soria 97]
2 $\lambda_M < 0, \lambda_G = -1, \text{ and } \lambda_H - \lambda_M = 1$:
 $X_2 \stackrel{d}{=} BML(\lambda_H, \lambda_H, 1 - \lambda_H) \stackrel{d}{=} ML(\lambda_H)$.
In particular, for $\lambda_H = \frac{1}{2}$:
 $X_2 \stackrel{d}{=} Halfnormal$
Sequence scheme [Wallner 20]

Note that $\lambda_{G} = -1$ "=" sequences of \mathcal{H} -components

 $f_{X_1}(x) = \frac{x}{2} \exp\left(-\frac{x^2}{4}\right)$

 $f_{X_2}(x) = \frac{1}{\sqrt{\pi}} \exp\left(-\frac{x^2}{4}\right)$

Composition scheme: degenerate case

Theorem

In a degenerate critical composition scheme

$$F(z, u) = G(uH(z))M(z)$$

the core size X_n converges for $0 < \lambda_G < 1$ and $\lambda_M < \lambda_G \lambda_H$ to a Boltzmann distribution:

$$\mathbb{P}\{X_n=k\}\to\mathbb{P}\{\mathcal{B}_G(\rho_G)=k\}=\frac{g_k\rho_G^k}{G(\rho_G)}.$$

The case $\lambda_G > 1$ is similar.

Definition (Boltzmann distribution $\mathcal{B}_G(x)$) Let $G(z) = \sum_{n \ge 0} g_n z^n$ be a generating function and x > 0 inside the radius of convergence. Then, the Boltzmann distribution $\mathcal{B}_G(x)$ is defined by $\mathbb{P}\{X = n\} = \frac{g_n x^n}{G(x)}, \quad n \ge 0.$

Composition scheme: confluent case

Theorem

In a confluent (i.e., $0 < \lambda_G < 1$ and $\lambda_M = \lambda_G \lambda_H$) ext. crit. comp. scheme

$$F(z,u) = G(uH(z))M(z)$$

the core size X_n is a convex combination of a Boltzmann distribution $\mathcal{B}_G(\rho_G)$ and an asymptotically continuous random variable Z_n :

$$X_n \sim \operatorname{Be}(p) \cdot \mathcal{B}_G(\rho_G) + (1 - \operatorname{Be}(p)) \cdot Z_n, \qquad \frac{Z_n}{\kappa \cdot n^{\lambda_H}} \xrightarrow{d} \operatorname{ML}(\lambda_H, -\lambda_G \lambda_H),$$

where $p = \frac{c_M G(\rho_G)}{c_M G(\rho_G) + \tau_M c_G(-c_H/\rho_G)^{\lambda_G}}$, and indep. rv's Be(p), $\mathcal{B}_G(\rho_G)$, Z_n , and ML.

Figure: Core size in first part of pairs of supertrees: $\frac{1}{2} \mathcal{B}_{C}(\frac{1}{4}) + \frac{1}{2} \sqrt{n} ML(\frac{1}{2}, -\frac{1}{4})$.

(Generalized) Mittag-Leffler distribution

A positive random var. S_{α} follows a stable law of parameter $\alpha \in (0,1)$ if $\mathbb{E}(e^{-tS_{\alpha}}) = e^{-t^{\alpha}}.$

• A random variable M_{α} follows a **Mittag-Leffler distribution** ML(α) if

$$M_{\alpha} \stackrel{d}{=} (S_{\alpha})^{-\alpha}.$$

 \Rightarrow Its MGF $\mathbb{E}(e^{xM_{\alpha}})$ is the Mittag-Leffler function $E_{\alpha}(x) = \sum_{k \ge 0} \frac{x^k}{\Gamma(1+\alpha k)}$.

Definition ([Pitman 06, James 15])

Let $\alpha \in (0,1)$ and $\theta > -\alpha$. Then, the generalized Mittag-Leffler distribution $ML(\alpha, \theta)$ is uniquely defined by its moments

$$\mathbb{E}(X^{s}) = \frac{\Gamma\left(s + \frac{\theta}{\alpha} + 1\right)\Gamma(\theta + 1)}{\Gamma(\alpha s + \theta + 1)\Gamma\left(\frac{\theta}{\alpha} + 1\right)} = \frac{\Gamma\left(s + \frac{\theta}{\alpha}\right)\Gamma(\theta)}{\Gamma(\alpha s + \theta)\Gamma\left(\frac{\theta}{\alpha}\right)}.$$

ML(α, 0) = M_α
ML(1/2, 0): half-normal distribution |N(0, σ²)| of parameter σ = √2
ML(1/2, 1/2): Rayleigh distribution of parameter √2

Beta-Mittag-Leffler distribution

The distributions of *critical composition schemes* will be the **beta-Mittag-Leffler** distributions BML(α, θ, β) defined as

$$Z \stackrel{d}{=} Y \cdot B^{lpha}$$

where $Y \stackrel{d}{=} ML(\alpha, \theta)$ and $B \stackrel{d}{=} Beta(\theta, \beta)$ are independent, such that $0 < \alpha < 1$, $\theta > 0$, and $\beta \ge 0$.

Lemma

The beta-Mittag-Leffler distribution BML (α, θ, β) has the following moments $\mathbb{E}(Z^{s}) = \frac{\Gamma\left(s + \frac{\theta}{\alpha}\right)\Gamma\left(\theta + \beta\right)}{\Gamma\left(\alpha s + \theta + \beta\right)\Gamma\left(\frac{\theta}{\alpha}\right)}.$

One has the following identity

$$Z \stackrel{d}{=} \mathsf{ML}(\alpha, \theta) \operatorname{\mathsf{Beta}}(\theta, \beta)^{\alpha} \stackrel{d}{=} \mathsf{ML}(\alpha, \theta + \beta) \operatorname{\mathsf{Beta}}(\frac{\theta}{\alpha}, \frac{\beta}{\alpha}).$$

distribution with moments of Gamma type [Janson 10]

explicit representation of its density by integrals or hypergeometric functions

Mixed Poisson distribution

- First introduced for actuarial math./insurance modelling [Dubourdieu 39]
- studied by Lundberg under the name "compound Poisson processes"
- used in bacteriology [Neyman 39]
- unimodality properties [Masse, Theodorescu 05]
- tail asymptotics [Willmot, Lin 01]

Definition

Let X be a nonneg. random variable with cumulative distribution function U. Then, Y has a **mixed Poisson distribution with mixing distribution** U and scale parameter $\xi \ge 0$, if its probability mass function is given for $\ell \ge 0$ by

$$\mathbb{P}\{Y=\ell\}=\frac{\xi^{\ell}}{\ell!}\int_{\mathbb{R}^+}X^{\ell}e^{-\xi X}dU=\frac{\xi^{\ell}}{\ell!}\mathbb{E}(X^{\ell}e^{-\xi X}).$$

Notation: $Y \stackrel{d}{=} \mathsf{MPo}(\xi U)$ or $Y \stackrel{d}{=} \mathsf{MPo}(\xi X)$.

Important: $\mathbb{E}(Y^{\underline{s}}) = \xi^{s} \mathbb{E}(X^{s}), \quad s \geq 1.$