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The Braid Arrangement

The braid arrangement (or type A Coxeter arrangement) is the
hyperplane arrangement in Rn defined by

An−1 = {xi − xj = 0 : 1 ≤ i < j ≤ n}.

x=y
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x=z
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312
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Regions are open cones of form

Rσ := {x ∈ Rn : xσ(1) < xσ(2) < · · · < xσ(n)}, where σ ∈ Sn.

So An−1 has |Sn| = n! regions.



Some deformations of the braid arrangement

An−1 = {xi − xj = 0 : 1 ≤ i < j ≤ n} ⊆ Rn.

Linial arrangement: xi − xj = 1

# alternating trees

Shi arrangement: xi − xj = 0, 1

(n + 1)n−1

Catalan arrangement: xi − xj = −1, 0, 1

n!Cn

Semiorder arrangement: xi − xj = −1, 1

# semiorders on [n]

Theorem (Postnikov-Stanley (2000))

# regions of the Linial arrangement in Rn is equal to # alternating
trees on [n + 1] := {1, 2, . . . , n + 1}.

An alternating tree is a tree in which each node is either greater
than all its neighbors or smaller than all its neighbors.
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Hetyei’s homogenized Linial arrangement

Hyperplane arrangement in R2n defined by

H2n−3 := {xi − xj = yi : 1 ≤ i < j ≤ n}.

If we intersect H2n−3 with

the subspace y1 = · · · = yn = 0, we get the braid arrangement

the subspace y1 = · · · = yn = 1, we get the Linial arrangement

Theorem (Hetyei (2017))

# regions of H2n−1 is equal to the median Genocchi number hn.
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The Genocchi numbers
n 1 2 3 4 5 6

gn 1 1 3 17 155 2073
hn 2 8 56 608 9440 198272∑

n≥1

gn
x2n

(2n)!
= x tan

x

2

Seidel triangle (1877) relates Genocchi numbers gn to median
Genocchi numbers hn.

Barsky-Dumont (1979):∑
n≥1

gnxn =
∑
n≥1

(n − 1)!n! xn∏n
k=1(1 + k2x)

∑
n≥1

hnxn =
∑
n≥1

n!(n + 1)!xn∏n
k=1(1 + k(k + 1)x)
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Combinatorial definition - Dumont 1974

n 1 2 3 4 5 6

gn 1 1 3 17 155 2073
hn 2 8 56 608 9440 198272

Genocchi numbers:

gn = |{σ ∈ S2n−2 : i ≤ σ(i) if i is odd; i > σ(i) if i is even}|.

These are called Dumont permutations.

g3 = |{(1, 2)(3, 4), (1, 3, 4, 2), (1, 4, 2)(3)}| = 3.

median Genocchi numbers:

hn = |{σ ∈ S2n+2 : i < σ(i) if i is odd; i > σ(i) if i is even}|.

These are called Dumont derangements.

h1 = |{(1, 2)(3, 4), (1, 3, 4, 2)}| = 2.



Zaslavsky’s formula for the number of regions

Let L(A) be the lattice of intersections of the hyperplane
arrangement A ordered by reverse inclusion.

For the braid arrangement

An−1 = {xi − xj = 0 : 1 ≤ i < j ≤ n} ⊆ Rn,

L(An−1) is the partition lattice Πn

12 | 3 | 4 13 | 2 | 4 14 | 2 | 3 23 | 1 | 4 24 | 1 | 3 34 | 1 | 2

123 | 4 134 | 2 124 | 3 234 | 1 12 | 34 13 | 24 14 | 23

1234

0̂ = 1|2|3|4



Zaslavsky’s formula for the number of regions

Let P be a finite ranked poset of length r with a minimum element
0̂. Define the characteristic polynomial of P to be

χP(t) :=
∑
x∈P

µP(0̂, x)tr−rk(x),

where µP(x , y) is the Möbius function and rk(x) is the rank of x .

Theorem (Zaslavsky (1975))

Let A be a hyperplane arrangement. The number of regions of A
is equal to |χL(A)(−1)|.

For the braid arrangement An−1,

χL(An−1)(t) = χΠn (t) =
n∑

k=1

s(n, k)tk−1

where s(n, k) is the Stirling number of the first kind, which is
equal to (−1)n−k times the number of permutations in Sn with
exactly k cycles.
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Zaslavsky’s formula: #regions of A = |χL(A)(−1)|
Hetyei’s approach to proving that the number of regions of H2n−1

equals hn:

He uses the finite field method of Athanasiadis to obtain a
recurrence for χL(H2n−1)(t).

When t = −1, the recurrence reduces to a known recurrence
for the median Genocchi numbers.

Our approach:

We show that tχL(H2n−1)(t) equals the chromatic polynomial
chΓn (t) of a certain graph Γn.

We show that the coefficients of chΓn (t) can be described in
terms of a class of alternating forests.

We construct a bijection from this class of alternating forests
to a class of Dumont-like permutations.

We construct a bijection from the Dumont-like permutations
to a class of surjective staircases that is known to be
enumerated by the median Genocchi number hn.
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Our approach also yields

Theorem (Lazar-W.)∑
n≥1

χL(H2n−1)(t) xn =
∑
n≥1

(t − 1)n−1(t − 1)n xn∏n
k=1(1− k(t − k)x)

,

where (a)n denotes the falling factorial a(a− 1) · · · (a− n + 1).

Set t = −1. We get Barsky-Dumont generating function for hn:∑
n≥1

(−χL(H2n−1)(−1))xn =
∑
n≥1

n!(n + 1)! xn∏n
k=1(1 + k(k + 1)x)

.

Set t = 0. We get Barsky-Dumont generating function for gn:∑
n≥1

(−χL(H2n−1)(0))xn =
∑
n≥1

(n − 1)!n! xn∏n
k=1(1 + k2x)

.

Thus µ(L(H2n−1)) = −gn

We also obtain type B analogs and Dowling arrangement
generalizations of these type A results.
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Chromatic polynomial chΓn
(t)

Let Γn be the bipartite graph on vertex set {1, 3, . . . , 2n − 1}t
{2, 4, . . . , 2n} with an edge between 2i − 1 and 2j for all i ≤ j .

1

3

5

2

4

6

Whitney (1932): For any graph G on vertex set [n],

chG (t) = tχLG
(t),

where LG is the bond lattice of G , that is, the induced subposet of
the partition lattice Πn consisting of partitions whose blocks induce
connected subgraphs of G .

Theorem (Lazar-W.)

L(H2n−1) is isomorphic to the bond lattice LΓn of Γn. Consequently

χL(H2n−1)(t) = χLΓn
(t) = t−1chΓn (t).
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Increasing-decreasing forests

The Rota-Whitney NBC theorem is used compute chΓn (t).

A rooted forest on finite node set A ⊂ Z+ is increasing-decreasing
(ID) if the trees are rooted at their largest node and for each
a ∈ A,

if a is odd then a is less than all its descendants and all its
children are even.

if a is even then a is greater than all its descendants and all
its children are odd.

8

1 73

4 2

5

12 11 10

9

6



Increasing-decreasing forests

With an appropriate ordering of the edges of Γn, the NBC sets are
the ID-forests.

Theorem (Lazar-W)

Let F2n,k be the set of ID forests on [2n] with k trees. Then

χH2n−1(t) = t−1chΓn (t) =
2n∑

k=1

(−1)k |F2n,k |tk−1.

Consequently,

−χH2n−1(0) = # ID trees on [2n]

# regions of H2n−1 = −χH2n−1(−1) = # ID forests on [2n]



A map from the ID forests on [2n] to S2n

Let T be an ID tree on node set A. Order the children of each
even node of T in increasing order and the children of each odd
node in decreasing order.

8

1 73

4 62

5

T  =

ψ(T ) = (4, 2, 1, 5, 6, 3, 7, 8)

This turns T into a rooted planar tree, which can be traversed in
postorder.

Let α := α1, · · · , α|A| be the word obtained by traversing T in
postorder.
Now let ψ(T ) be the permutation whose cycle form is (α).

Extend ψ to the set F2n of ID forests on [2n]. We can show that
ψ : F2n → S2n is injective.

What is the range?
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The range of ψ : F2n → S2n: Dumont-like permutations

We say σ ∈ S2n is a D-permutation if i ≤ σ(i) whenever i is odd
and i ≥ σ(i) whenever i is even.

Example: ψ(T ) = (4, 2, 1, 5, 6, 3, 7, 8) is a D-cycle.

D2n = {D-permutations on [2n]}, DC2n = {D-cycles on [2n]}.

Note

DC2n ⊆ {Dumont derange. on [2n]} ⊆ {Dumont perm. on [2n]} ⊆ D2n.

We show that the range of ψ is D2n. Hence

ψ : F2n → D2n

is a bijection that takes a forest {T1, . . . ,Tk} in F2n to a
permutation in D2n whose cycles are ψ(T1), . . . , ψ(Tk ).
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The characteristic polynomial

Theorem (Lazar-W)

χL(H2n−1)(t) =
∑
σ∈D2n

(−1)cyc(σ) tcyc(σ)−1,

where cyc(σ) is the number of cycles in σ.

Corollary

µ(L(H2n−1)) = |DC2n|.

# regions H2n−1 = |D2n|.



D-permutations and Genocchi numbers

From the last slide

Corollary

µ(L(H2n−1)) = |DC2n|

= gn

# regions H2n−1 = |D2n|

Recall

DC2n ⊆ {Dumont derange. on [2n]} ⊆ {Dumont perm. on [2n]} ⊆ D2n.

Theorem (Lazar-W)

|D2n| = hn

We use the theory of surjective staircases to prove this.
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Surjective staircases - Dumont (1992)

1 2 3 4 5 6 7 8 9 10

10
8
6
4
2

X X X X

X X

X

X X

X

one X in each column

at least one X in each row.

Some statistics:

even maxima
em = 1

odd maxima
om = 3

double fixed points
dfix = 3

single fixed points
sfix = 1

Generalized Dumont-Foata polynomial:

P2n(x1, x2, x3, x4) =
∑

F∈X2n

x
om(F )+1
1 x

sfix(F )+1
2 x

em(F )
3 x

dfix(F )
4



Surjective staircase: P2n(x) =
∑

F∈X2n
x

om(F )+1
1 x

sfix(F )+1
2 x

em(F )
3 x

dfix(F )
4

Theorem (Randrianarivony-Zeng (1996))

∑
n≥1

P2n(x)zn =
∑
n≥1

(x1)(n)(x3 + x4)(n)zn∏n
k=1(1 + (x1 + k)(x3 + x4 − x2 + k)z)

,

where (x)(n) = x(x + 1) . . . (x + n − 1).

Using various bijections we obtain,∑
σ∈D2n

tcyc(σ) = P2n(t, t + 1, t + 1, 0)

Recall χL(H2n−1)(t) =
∑

σ∈D2n
(−1)cyc(σ)tcyc(σ)−1.

Theorem (Lazar-W)∑
n≥1

χL(H2n−1)(t) zn =
∑
n≥1

(t − 1)n−1(t − 1)n zn∏n
k=1(1− k(t − k)z)

.
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∑
n≥1

(t − 1)n−1(t − 1)n zn∏n
k=1(1− k(t − k)z)

.



Another model for the (median) Genocchi numbers

Recall

σ ∈ S2n is a D-permutation if i ≤ σ(i) whenever i is odd and
i ≥ σ(i) whenever i is even.

σ ∈ S2n is a a E-permutation if i > σ(i) implies i is even and σ(i)
is odd.

{(1, 2)(3, 4), (1, 2, 4)(3), (1, 3, 4)(2), (1, 2)(3)(4),
(1, 4)(2)(3), (3, 4)(1)(2), (1, 2, 3, 4), (1)(2)(3)(4)}

EC2n = {E -cycles on [2n]}, E2n = {E -permutations on [2n]}.

Theorem (Lazar-W.)

hn = |D2n| = |E2n|
gn = |DC2n|

Conjecture (Lazar-W.)

gn = |EC2n|

Conjecture proved by Lin-Yan (2021) and Pan-Zeng (2021).
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Another model for the (median) Genocchi numbers

Recall Γn is the bipartite graph on vertex set
{1, 3, . . . , 2n− 1} t {2, 4, . . . , 2n} with an edge between 2i − 1 and
2j for all i ≤ j .

Observation: Γn is the incomparability graph of the poset Pn on
[2n] with order relation given by x <Pn y if:

x < y and x ≡ y mod 2

x < y , x is even, and y is odd.

1

3

5

2

4

6

P6

1

3

5

2

4

6

inc(P6)
P3 Γ3 = inc(P3)



Another model for the (median) Genocchi numbers

A permutation σ of the vertices of a poset P has a P-drop at x if
x >P σ(x).

Chung-Graham (1995): For any finite poset P,

chinc(P)(t) =

|P|−1∑
k=0

d(P, k)

(
k + t

|P|

)
,

where d(P, k) is the number of permutations of P with exactly k
P-drops.

Set t = −1,

chinc(P)(−1) =

|P|−1∑
k=0

d(P, k)

(
k − 1

|P|

)
= (−1)|P|d(P, 0).
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Another model for the (median) Genocchi numbers

1

3

5

2

4

6

P6

1

3

5

2

4

6

inc(P6)P3 Γ3 = inc(P3)

Example: The cycle (532164) has P3-drops at 5, 3, 6 only. Not 2

A permutation in σ ∈ S2n has no Pn-drops if for all i ∈ [2n],
i > σ(i) implies i is even and σ(i) is odd, i.e. σ ∈ E2n

We have

hn = chΓ2n (−1) = chinc(Pn)(−1) = d(Pn, 0) = |E2n|



Type B

The type B braid arrangement in Rn:

Bn = {xi ± xj = 0 : 1 ≤ i < j ≤ n} ∪ {xi = 0 : 1 ≤ i ≤ n}.

x=yx= -y x=0

y=0

12

21

2̄1

1̄2̄ 12̄

2̄1̄

21̄

1̄2

# regions = |Bn| = 2nn!

The type B homogenized Linial arrangement in R2n:

HB
2n−1 = {xi ± xj = yi : 1 ≤ i < j ≤ n} ∪ {xi = yi : i = 1 . . . , n}.

# regions = ? We can describe this with signed ID forests and
signed D-permutations.
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Type B

The type B analog of∑
n≥1

χL(H2n−1)(t) zn =
∑
n≥1

(t − 1)n−1(t − 1)n zn∏n
k=1(1− k(t − k)z)

is

Theorem (Lazar-W)∑
n≥1

χL(HB
2n−1)(t) zn =

∑
n≥1

(t − 1)2n−1 zn∏n
k=1(1− 2k(t − 2k)z)

.

By setting t = −1,∑
n≥1

r B
n zn =

∑
n≥1

(2n)! zn∏n
k=1(1 + 2k(2k + 1)z)

.

By setting t = 0,∑
n≥1

µ(L(HB
2n−1)) zn =

∑
n≥1

(2n − 1)! zn∏n
k=1(1 + (2k)2z)

.
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Dowling arrangement

Let ω = e
2πi
m . The Dowling arrangement Am

n in Cn:

{xi − ωl xj = 0 : 1 ≤ i < j ≤ n, 0 ≤ l < m} ∪ {xi = 0 : 1 ≤ i ≤ n}.

A1
n is the complexified braid arrangement An

A2
n is the complexified type B braid arrangement Bn.

The intersection lattice L(Am
n ) is isomorphic to the classical

Dowling lattice Qn(Zm).

The homogenized Linial-Dowling arrangement Hm
2n−1 in C2n:

{xi−ω`xj = yi : 1 ≤ i < j ≤ n, 0 ≤ ` < m}∪{xi = yi : 1 ≤ i ≤ n}.

H1
2n−1 is a complexified version of H2n−1.

H2
2n−1 is a complexified version of HB

2n−1.
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The intersection lattice L(Hm
2n−1)

We show that the intersection lattice is isomorphic to a
subposet of the Dowling lattice Qn(Zm), analogous to the
bond lattice of Γn.

We describe the coefficients of the characteristic polynomial in
terms of m-labeled ID-forests and m-labeled D-permutations.

Then we use the correspondence between D-permutations and
surjective staircases to obtain the following general formula.

Theorem (Lazar-W)∑
n≥1

χL(Hm
2n−1)(t) zn =

∑
n≥1

(t − 1)n,m(t −m)n−1,m zn∏n
k=1(1−mk(t −mk)z)

.

where (a)n,m = a(a−m)(a− 2m) · · · (a− (n − 1)m).

This reduces to the type A and type B generating function
formulas when m = 1, 2.



m-analog of Genocchi numbers

gn(m) = −χL(Hm
2n−1)(0), hn(m) = −χL(Hm

2n−1)(−1)

n gn(m) hn(m)

0 1

1 1 2

2 m 4(m + 1)

3 m2(m + 2) 4(m + 1)(m2 + 4m + 2)

4 m3(3m2 + 8m + 6) 4(m + 1)(3m4 + 17m3 + 32m2 + 20m + 4)

Theorem (Lazar-W)

gn(m) = m2n−1Gn(m−1),

where Gn(x) is the nth Gandhi polynomial.
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