Genocchi numbers and hyperplane arrangements

Michelle Wachs
University of Miami

Joint work with Alex Lazar

The Braid Arrangement

The braid arrangement (or type A Coxeter arrangement) is the hyperplane arrangement in \mathbb{R}^{n} defined by

$$
\mathcal{A}_{n-1}=\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\} .
$$

Regions are open cones of form

$$
R_{\sigma}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{\sigma(1)}<x_{\sigma(2)}<\cdots<x_{\sigma(n)}\right\}, \text { where } \sigma \in \mathfrak{S}_{n} .
$$

So \mathcal{A}_{n-1} has $\left|\mathfrak{S}_{n}\right|=n$! regions.

Some deformations of the braid arrangement

$$
\mathcal{A}_{n-1}=\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\} \subseteq \mathbb{R}^{n}
$$

- Linial arrangement: $x_{i}-x_{j}=1$
- Shi arrangement: $x_{i}-x_{j}=0,1$
- Catalan arrangement: $x_{i}-x_{j}=-1,0,1$
- Semiorder arrangement: $x_{i}-x_{j}=-1,1$

Some deformations of the braid arrangement

$$
\mathcal{A}_{n-1}=\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\} \subseteq \mathbb{R}^{n}
$$

- Linial arrangement: $x_{i}-x_{j}=1$
- Shi arrangement: $x_{i}-x_{j}=0,1$
- Catalan arrangement: $x_{i}-x_{j}=-1,0,1$
- Semiorder arrangement: $x_{i}-x_{j}=-1,1$

Theorem (Postnikov-Stanley (2000))

\# regions of the Linial arrangement in \mathbb{R}^{n} is equal to \# alternating trees on $[n+1]:=\{1,2, \ldots, n+1\}$.

An alternating tree is a tree in which each node is either greater than all its neighbors or smaller than all its neighbors.

Some deformations of the braid arrangement

$$
\mathcal{A}_{n-1}=\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\} \subseteq \mathbb{R}^{n}
$$

- Linial arrangement: $x_{i}-x_{j}=1$
- Shi arrangement: $x_{i}-x_{j}=0,1$
\# alternating trees

$$
(n+1)^{n-1}
$$

- Catalan arrangement: $x_{i}-x_{j}=-1,0,1$ $n!C_{n}$
- Semiorder arrangement: $x_{i}-x_{j}=-1,1 \quad \#$ semiorders on [n]

Theorem (Postnikov-Stanley (2000))

\# regions of the Linial arrangement in \mathbb{R}^{n} is equal to \# alternating trees on $[n+1]:=\{1,2, \ldots, n+1\}$.

An alternating tree is a tree in which each node is either greater than all its neighbors or smaller than all its neighbors.

Hetyei's homogenized Linial arrangement

Hyperplane arrangement in $\mathbb{R}^{2 n}$ defined by

$$
\mathcal{H}_{2 n-3}:=\left\{x_{i}-x_{j}=y_{i}: 1 \leq i<j \leq n\right\} .
$$

If we intersect $\mathcal{H}_{2 n-3}$ with

- the subspace $y_{1}=\cdots=y_{n}=0$, we get the braid arrangement
- the subspace $y_{1}=\cdots=y_{n}=1$, we get the Linial arrangement

Hetyei's homogenized Linial arrangement

Hyperplane arrangement in $\mathbb{R}^{2 n}$ defined by

$$
\mathcal{H}_{2 n-3}:=\left\{x_{i}-x_{j}=y_{i}: 1 \leq i<j \leq n\right\} .
$$

If we intersect $\mathcal{H}_{2 n-3}$ with

- the subspace $y_{1}=\cdots=y_{n}=0$, we get the braid arrangement
- the subspace $y_{1}=\cdots=y_{n}=1$, we get the Linial arrangement

Theorem (Hetyei (2017))

\# regions of $\mathcal{H}_{2 n-1}$ is equal to the median Genocchi number h_{n}.

The Genocchi numbers

n	1	2	3	4	5	6
g_{n}	1	1	3	17	155	2073
h_{n}	2	8	56	608	9440	198272
$\sum_{n \geq 1} g_{n} \frac{x^{2 n}}{(2 n)!}=x \tan \frac{x}{2}$						

Seidel triangle (1877) relates Genocchi numbers g_{n} to median Genocchi numbers h_{n}.

The Genocchi numbers

n	1	2	3	4	5	6
g_{n}	1	1	3	17	155	2073
h_{n}	2	8	56	608	9440	198272
$\sum_{n \geq 1} g_{n} \frac{x^{2 n}}{(2 n)!}=x \tan \frac{x}{2}$						

Seidel triangle (1877) relates Genocchi numbers g_{n} to median Genocchi numbers h_{n}.

Barsky-Dumont (1979):

$$
\begin{aligned}
& \sum_{n \geq 1} g_{n} x^{n}=\sum_{n \geq 1} \frac{(n-1)!n!x^{n}}{\prod_{k=1}^{n}\left(1+k^{2} x\right)} \\
& \sum_{n \geq 1} h_{n} x^{n}=\sum_{n \geq 1} \frac{n!(n+1)!x^{n}}{\prod_{k=1}^{n}(1+k(k+1) x)}
\end{aligned}
$$

Combinatorial definition - Dumont 1974

n	1	2	3	4	5	6
g_{n}	1	1	3	17	155	2073
h_{n}	2	8	56	608	9440	198272

Genocchi numbers:

$$
g_{n}=\mid\left\{\sigma \in \mathfrak{S}_{2 n-2}: i \leq \sigma(i) \text { if } i \text { is odd; } i>\sigma(i) \text { if } i \text { is even }\right\} \mid .
$$

These are called Dumont permutations.

$$
g_{3}=|\{(1,2)(3,4),(1,3,4,2),(1,4,2)(3)\}|=3
$$

median Genocchi numbers:

$$
h_{n}=\mid\left\{\sigma \in \mathfrak{S}_{2 n+2}: i<\sigma(i) \text { if } i \text { is odd; } i>\sigma(i) \text { if } i \text { is even }\right\} \mid .
$$

These are called Dumont derangements.

$$
h_{1}=|\{(1,2)(3,4),(1,3,4,2)\}|=2
$$

Zaslavsky's formula for the number of regions

Let $L(\mathcal{A})$ be the lattice of intersections of the hyperplane arrangement \mathcal{A} ordered by reverse inclusion.

For the braid arrangement

$$
\mathcal{A}_{n-1}=\left\{x_{i}-x_{j}=0: 1 \leq i<j \leq n\right\} \subseteq \mathbb{R}^{n}
$$

$L\left(\mathcal{A}_{n-1}\right)$ is the partition lattice Π_{n}

Zaslavsky's formula for the number of regions

Let P be a finite ranked poset of length r with a minimum element $\hat{0}$. Define the characteristic polynomial of P to be

$$
\chi_{P}(t):=\sum_{x \in P} \mu_{P}(\hat{0}, x) t^{r-\mathrm{rk}(x)}
$$

where $\mu_{P}(x, y)$ is the Möbius function and $\operatorname{rk}(x)$ is the rank of x.

Theorem (Zaslavsky (1975))

Let \mathcal{A} be a hyperplane arrangement. The number of regions of \mathcal{A} is equal to $\left|\chi_{L(\mathcal{A})}(-1)\right|$.

Zaslavsky's formula for the number of regions

Let P be a finite ranked poset of length r with a minimum element $\hat{0}$. Define the characteristic polynomial of P to be

$$
\chi_{P}(t):=\sum_{x \in P} \mu_{P}(\hat{0}, x) t^{r-\mathrm{rk}(x)}
$$

where $\mu_{P}(x, y)$ is the Möbius function and $\operatorname{rk}(x)$ is the rank of x.

Theorem (Zaslavsky (1975))

Let \mathcal{A} be a hyperplane arrangement. The number of regions of \mathcal{A} is equal to $\left|\chi_{L(\mathcal{A})}(-1)\right|$.

For the braid arrangement \mathcal{A}_{n-1},

$$
\chi_{L\left(\mathcal{A}_{n-1}\right)}(t)=\chi_{\Pi_{n}}(t)=\sum_{k=1}^{n} s(n, k) t^{k-1}
$$

where $s(n, k)$ is the Stirling number of the first kind, which is equal to $(-1)^{n-k}$ times the number of permutations in \mathfrak{S}_{n} with exactly k cycles.

Zaslavsky's formula: \#regions of $\mathcal{A}=\left|\chi_{L(\mathcal{A})}(-1)\right|$

Hetyei's approach to proving that the number of regions of $\mathcal{H}_{2 n-1}$ equals h_{n} :

- He uses the finite field method of Athanasiadis to obtain a recurrence for $\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t)$.
- When $t=-1$, the recurrence reduces to a known recurrence for the median Genocchi numbers.

Zaslavsky's formula: \#regions of $\mathcal{A}=\left|\chi_{L(\mathcal{A})}(-1)\right|$

Hetyei's approach to proving that the number of regions of $\mathcal{H}_{2 n-1}$ equals h_{n} :

- He uses the finite field method of Athanasiadis to obtain a recurrence for $\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t)$.
- When $t=-1$, the recurrence reduces to a known recurrence for the median Genocchi numbers.
Our approach:
- We show that $\chi_{\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t) \text { equals the chromatic polynomial }}$ $\operatorname{ch}_{\Gamma_{n}}(t)$ of a certain graph Γ_{n}.
- We show that the coefficients of $\operatorname{ch}_{\Gamma_{n}}(t)$ can be described in terms of a class of alternating forests.
- We construct a bijection from this class of alternating forests to a class of Dumont-like permutations.
- We construct a bijection from the Dumont-like permutations to a class of surjective staircases that is known to be enumerated by the median Genocchi number h_{n}.

Our approach also yields

Theorem (Lazar-W.)

$$
\sum_{n \geq 1} \chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t) x^{n}=\sum_{n \geq 1} \frac{(t-1)_{n-1}(t-1)_{n} x^{n}}{\prod_{k=1}^{n}(1-k(t-k) x)},
$$

where $(a)_{n}$ denotes the falling factorial $a(a-1) \cdots(a-n+1)$.

Our approach also yields

Theorem (Lazar-W.)

$$
\sum_{n \geq 1} \chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t) x^{n}=\sum_{n \geq 1} \frac{(t-1)_{n-1}(t-1)_{n} x^{n}}{\prod_{k=1}^{n}(1-k(t-k) x)}
$$

where $(a)_{n}$ denotes the falling factorial $a(a-1) \cdots(a-n+1)$.
Set $t=-1$. We get Barsky-Dumont generating function for h_{n} :

$$
\sum_{n \geq 1}\left(-\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(-1)\right) x^{n}=\sum_{n \geq 1} \frac{n!(n+1)!x^{n}}{\prod_{k=1}^{n}(1+k(k+1) x)}
$$

Our approach also yields

Theorem (Lazar-W.)

$$
\sum_{n \geq 1} \chi_{\left\llcorner\left(\mathcal{H}_{2 n-1}\right)\right.}(t) x^{n}=\sum_{n \geq 1} \frac{(t-1)_{n-1}(t-1)_{n} x^{n}}{\prod_{k=1}^{n}(1-k(t-k) x)},
$$

where $(a)_{n}$ denotes the falling factorial $a(a-1) \cdots(a-n+1)$.
Set $t=-1$. We get Barsky-Dumont generating function for h_{n} :

$$
\sum_{n \geq 1}\left(-\chi_{\llcorner(\mathcal{H} 2 n-1)}(-1)\right) x^{n}=\sum_{n \geq 1} \frac{n!(n+1)!x^{n}}{\prod_{k=1}^{n}(1+k(k+1) x)} .
$$

Set $t=0$. We get Barsky-Dumont generating function for g_{n} :

$$
\sum_{n \geq 1}\left(-\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(0)\right) x^{n}=\sum_{n \geq 1} \frac{(n-1)!n!x^{n}}{\prod_{k=1}^{n}\left(1+k^{2} x\right)} .
$$

Thus $\mu\left(L\left(\mathcal{H}_{2 n-1}\right)\right)=-g_{n}$

Our approach also yields

Theorem (Lazar-W.)

$$
\sum_{n \geq 1} \chi_{\left\llcorner\left(\mathcal{H}_{2 n-1}\right)\right.}(t) x^{n}=\sum_{n \geq 1} \frac{(t-1)_{n-1}(t-1)_{n} x^{n}}{\prod_{k=1}^{n}(1-k(t-k) x)},
$$

where $(a)_{n}$ denotes the falling factorial $a(a-1) \cdots(a-n+1)$.
Set $t=-1$. We get Barsky-Dumont generating function for h_{n} :

$$
\sum_{n \geq 1}\left(-\chi_{\left\llcorner\left(\mathcal{H}_{2 n-1}\right)\right.}(-1)\right) x^{n}=\sum_{n \geq 1} \frac{n!(n+1)!x^{n}}{\prod_{k=1}^{n}(1+k(k+1) x)} .
$$

Set $t=0$. We get Barsky-Dumont generating function for g_{n} :

$$
\sum_{n \geq 1}\left(-\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(0)\right) x^{n}=\sum_{n \geq 1} \frac{(n-1)!n!x^{n}}{\prod_{k=1}^{n}\left(1+k^{2} x\right)} .
$$

Thus $\mu\left(L\left(\mathcal{H}_{2 n-1}\right)\right)=-g_{n}$
We also obtain type B analogs and Dowling arrangement generalizations of these type A results.

Chromatic polynomial $\mathrm{ch}_{\Gamma_{n}}(t)$

Let Γ_{n} be the bipartite graph on vertex set $\{1,3, \ldots, 2 n-1\} \sqcup$ $\{2,4, \ldots, 2 n\}$ with an edge between $2 i-1$ and $2 j$ for all $i \leq j$.

Whitney (1932): For any graph G on vertex set [n],

$$
\operatorname{ch}_{G}(t)=t \chi_{L_{G}}(t)
$$

where L_{G} is the bond lattice of G, that is, the induced subposet of the partition lattice Π_{n} consisting of partitions whose blocks induce connected subgraphs of G.

Chromatic polynomial $\mathrm{ch}_{\Gamma_{n}}(t)$

Let Γ_{n} be the bipartite graph on vertex set $\{1,3, \ldots, 2 n-1\} \sqcup$ $\{2,4, \ldots, 2 n\}$ with an edge between $2 i-1$ and $2 j$ for all $i \leq j$.

Whitney (1932): For any graph G on vertex set [n],

$$
\operatorname{ch}_{G}(t)=t \chi_{L_{G}}(t)
$$

where L_{G} is the bond lattice of G, that is, the induced subposet of the partition lattice Π_{n} consisting of partitions whose blocks induce connected subgraphs of G.

Theorem (Lazar-W.)

$L\left(\mathcal{H}_{2 n-1}\right)$ is isomorphic to the bond lattice $L_{\Gamma_{n}}$ of Γ_{n}. Consequently

$$
\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t)=\chi_{L_{\Gamma_{n}}}(t)=t^{-1} \operatorname{ch}_{\Gamma_{n}}(t)
$$

Increasing-decreasing forests

The Rota-Whitney NBC theorem is used compute $\operatorname{ch}_{\Gamma_{n}}(t)$.
A rooted forest on finite node set $A \subset \mathbb{Z}^{+}$is increasing-decreasing (ID) if the trees are rooted at their largest node and for each $a \in A$,

- if a is odd then a is less than all its descendants and all its children are even.
- if a is even then a is greater than all its descendants and all its children are odd.

Increasing-decreasing forests

With an appropriate ordering of the edges of Γ_{n}, the NBC sets are the ID-forests.

Theorem (Lazar-W)

Let $\mathcal{F}_{2 n, k}$ be the set of ID forests on [2n] with k trees. Then

$$
\chi_{\mathcal{H}_{2 n-1}}(t)=t^{-1} \operatorname{ch}_{\Gamma_{n}}(t)=\sum_{k=1}^{2 n}(-1)^{k}\left|\mathcal{F}_{2 n, k}\right| t^{k-1}
$$

Consequently,

$$
-\chi_{\mathcal{H}_{2 n-1}}(0)=\# \text { ID trees on }[2 n]
$$

$\#$ regions of $\mathcal{H}_{2 n-1}=-\chi_{\mathcal{H}_{2 n-1}}(-1)=\#$ ID forests on $[2 n]$

A map from the ID forests on $[2 n]$ to $\mathfrak{S}_{2 n}$

Let T be an ID tree on node set A. Order the children of each even node of T in increasing order and the children of each odd node in decreasing order.

This turns T into a rooted planar tree, which can be traversed in postorder.

A map from the ID forests on $[2 n]$ to $\mathfrak{S}_{2 n}$

Let T be an ID tree on node set A. Order the children of each even node of T in increasing order and the children of each odd node in decreasing order.

This turns T into a rooted planar tree, which can be traversed in postorder.
Let $\alpha:=\alpha_{1}, \cdots, \alpha_{|A|}$ be the word obtained by traversing T in postorder.
Now let $\psi(T)$ be the permutation whose cycle form is (α).

A map from the ID forests on $[2 n]$ to $\mathfrak{S}_{2 n}$

Let T be an ID tree on node set A. Order the children of each even node of T in increasing order and the children of each odd node in decreasing order.

$$
\psi(T)=(4,2,1,5,6,3,7,8)
$$

This turns T into a rooted planar tree, which can be traversed in postorder.
Let $\alpha:=\alpha_{1}, \cdots, \alpha_{|A|}$ be the word obtained by traversing T in postorder.
Now let $\psi(T)$ be the permutation whose cycle form is (α).

A map from the ID forests on $[2 n]$ to $\mathfrak{S}_{2 n}$

Let T be an ID tree on node set A. Order the children of each even node of T in increasing order and the children of each odd node in decreasing order.

$$
\psi(T)=(4,2,1,5,6,3,7,8)
$$

This turns T into a rooted planar tree, which can be traversed in postorder.
Let $\alpha:=\alpha_{1}, \cdots, \alpha_{|A|}$ be the word obtained by traversing T in postorder.
Now let $\psi(T)$ be the permutation whose cycle form is (α).
Extend ψ to the set $\mathcal{F}_{2 n}$ of ID forests on [2n]. We can show that $\psi: \mathcal{F}_{2 n} \rightarrow \mathfrak{S}_{2 n}$ is injective.

A map from the ID forests on $[2 n]$ to $\mathfrak{S}_{2 n}$

Let T be an ID tree on node set A. Order the children of each even node of T in increasing order and the children of each odd node in decreasing order.

$$
\psi(T)=(4,2,1,5,6,3,7,8)
$$

This turns T into a rooted planar tree, which can be traversed in postorder.
Let $\alpha:=\alpha_{1}, \cdots, \alpha_{|A|}$ be the word obtained by traversing T in postorder.
Now let $\psi(T)$ be the permutation whose cycle form is (α).
Extend ψ to the set $\mathcal{F}_{2 n}$ of ID forests on [2n]. We can show that $\psi: \mathcal{F}_{2 n} \rightarrow \mathfrak{S}_{2 n}$ is injective. What is the range?

The range of $\psi: \mathcal{F}_{2 n} \rightarrow \mathfrak{S}_{2 n}$: Dumont-like permutations

We say $\sigma \in \mathfrak{S}_{2 n}$ is a D-permutation if $i \leq \sigma(i)$ whenever i is odd and $i \geq \sigma(i)$ whenever i is even.

Example: $\psi(T)=(4,2,1,5,6,3,7,8)$ is a D-cycle.
$\mathcal{D}_{2 n}=\{D$-permutations on [2n] $\}, \quad \mathcal{D C}_{2 n}=\{D$-cycles on $[2 n]\}$.
Note
$\mathcal{D} \mathcal{C}_{2 n} \subseteq\{$ Dumont derange. on $[2 n]\} \subseteq\{$ Dumont perm. on $[2 n]\} \subseteq \mathcal{D}_{2 n}$.

The range of $\psi: \mathcal{F}_{2 n} \rightarrow \mathfrak{S}_{2 n}$: Dumont-like permutations

We say $\sigma \in \mathfrak{S}_{2 n}$ is a D-permutation if $i \leq \sigma(i)$ whenever i is odd and $i \geq \sigma(i)$ whenever i is even.

Example: $\psi(T)=(4,2,1,5,6,3,7,8)$ is a D-cycle.
$\mathcal{D}_{2 n}=\left\{D\right.$-permutations on [2n]\}, $\quad \mathcal{D C} \mathcal{C}_{2 n}=\{D$-cycles on $[2 n]\}$.
Note
$\mathcal{D} \mathcal{C}_{2 n} \subseteq\{$ Dumont derange. on $[2 n]\} \subseteq\{$ Dumont perm. on $[2 n]\} \subseteq \mathcal{D}_{2 n}$.

We show that the range of ψ is $\mathcal{D}_{2 n}$. Hence

$$
\psi: \mathcal{F}_{2 n} \rightarrow \mathcal{D}_{2 n}
$$

is a bijection that takes a forest $\left\{T_{1}, \ldots, T_{k}\right\}$ in $\mathcal{F}_{2 n}$ to a permutation in $\mathcal{D}_{2 n}$ whose cycles are $\psi\left(T_{1}\right), \ldots, \psi\left(T_{k}\right)$.

The characteristic polynomial

Theorem (Lazar-W)

$$
\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t)=\sum_{\sigma \in \mathcal{D}_{2 n}}(-1)^{\operatorname{cyc}(\sigma)} t^{c y c(\sigma)-1}
$$

where $\operatorname{cyc}(\sigma)$ is the number of cycles in σ.

Corollary

$$
\begin{gathered}
\mu\left(L\left(\mathcal{H}_{2 n-1}\right)\right)=\left|\mathcal{D C}_{2 n}\right| . \\
\# \text { regions } \mathcal{H}_{2 n-1}=\left|\mathcal{D}_{2 n}\right| .
\end{gathered}
$$

D-permutations and Genocchi numbers

From the last slide

Corollary

$$
\mu\left(L\left(\mathcal{H}_{2 n-1}\right)\right)=\left|\mathcal{D C} \mathcal{C}_{2 n}\right|
$$

$$
\# \text { regions } \mathcal{H}_{2 n-1}=\left|\mathcal{D}_{2 n}\right|
$$

Recall
$\mathcal{D} \mathcal{C}_{2 n} \subseteq\{$ Dumont derange. on $[2 n]\} \subseteq\{$ Dumont perm. on $[2 n]\} \subseteq \mathcal{D}_{2 n}$.

D-permutations and Genocchi numbers

From the last slide
Corollary

$$
\mu\left(L\left(\mathcal{H}_{2 n-1}\right)\right)=\left|\mathcal{D C}_{2 n}\right|
$$

\# regions $\mathcal{H}_{2 n-1}=\left|\mathcal{D}_{2 n}\right|$
Recall
$\mathcal{D C}{ }_{2 n} \subseteq\{$ Dumont derange. on $[2 n]\} \subseteq\{$ Dumont perm. on $[2 n]\} \subseteq \mathcal{D}_{2 n}$.

$$
h_{n-1}
$$

$$
g_{n+1}
$$

D-permutations and Genocchi numbers

From the last slide
Corollary

$$
\mu\left(L\left(\mathcal{H}_{2 n-1}\right)\right)=\left|\mathcal{D C _ { 2 n }}\right|=g_{n}
$$

\# regions $\mathcal{H}_{2 n-1}=\left|\mathcal{D}_{2 n}\right|$
Recall
$\mathcal{D C}_{2 n} \subseteq\{$ Dumont derange. on $[2 n]\} \subseteq\{$ Dumont perm. on $[2 n]\} \subseteq \mathcal{D}_{2 n}$. g_{n}
h_{n-1} g_{n+1}
h_{n}

Theorem (Lazar-W)
$\left|\mathcal{D}_{2 n}\right|=h_{n}$

We use the theory of surjective staircases to prove this.

Surjective staircases - Dumont (1992)

1								2	3	4

one X in each column
at least one X in each row.

Some statistics:

- even maxima $e m=1$
- odd maxima

$$
o m=3
$$

- double fixed points dfix $=3$
- single fixed points sfix $=1$

Generalized Dumont-Foata polynomial:

$$
P_{2 n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{F \in \mathcal{X}_{2 n}} x_{1}^{o m(F)+1} x_{2}^{s f i x(F)+1} x_{3}^{e m(F)} x_{4}^{d f i x(F)}
$$

Surjective staircase: $P_{2 n}(\mathbf{x})=\sum_{F \in \mathcal{X}_{2 n}} x_{1}^{o m(F)+1} x_{2}^{s f i x(F)+1} x_{3}^{e m(F)} x_{4}^{d f i x(F)}$
Theorem (Randrianarivony-Zeng (1996))

$$
\sum_{n \geq 1} P_{2 n}(\mathbf{x}) z^{n}=\sum_{n \geq 1} \frac{\left(x_{1}\right)^{(n)}\left(x_{3}+x_{4}\right)^{(n)} z^{n}}{\prod_{k=1}^{n}\left(1+\left(x_{1}+k\right)\left(x_{3}+x_{4}-x_{2}+k\right) z\right)},
$$

where $(x)^{(n)}=x(x+1) \ldots(x+n-1)$.

Surjective staircase: $P_{2 n}(\mathbf{x})=\sum_{F \in \mathcal{X}_{2 n}} x_{1}^{o m(F)+1} x_{2}^{s f i x(F)+1} x_{3}^{e m(F)} x_{4}^{d f i x(F)}$

Theorem (Randrianarivony-Zeng (1996))

$$
\sum_{n \geq 1} P_{2 n}(\mathbf{x}) z^{n}=\sum_{n \geq 1} \frac{\left(x_{1}\right)^{(n)}\left(x_{3}+x_{4}\right)^{(n)} z^{n}}{\prod_{k=1}^{n}\left(1+\left(x_{1}+k\right)\left(x_{3}+x_{4}-x_{2}+k\right) z\right)}
$$

where $(x)^{(n)}=x(x+1) \ldots(x+n-1)$.
Using various bijections we obtain,

$$
\sum_{\sigma \in \mathcal{D}_{2 n}} t^{c y c(\sigma)}=P_{2 n}(t, t+1, t+1,0)
$$

Surjective staircase: $P_{2 n}(\mathbf{x})=\sum_{F \in \mathcal{X}_{2 n}} x_{1}^{o m(F)+1} x_{2}^{s f i x(F)+1} x_{3}^{e m(F)} x_{4}^{d f i x(F)}$
Theorem (Randrianarivony-Zeng (1996))

$$
\sum_{n \geq 1} P_{2 n}(\mathbf{x}) z^{n}=\sum_{n \geq 1} \frac{\left(x_{1}\right)^{(n)}\left(x_{3}+x_{4}\right)^{(n)} z^{n}}{\prod_{k=1}^{n}\left(1+\left(x_{1}+k\right)\left(x_{3}+x_{4}-x_{2}+k\right) z\right)},
$$

where $(x)^{(n)}=x(x+1) \ldots(x+n-1)$.
Using various bijections we obtain,

$$
\sum_{\sigma \in \mathcal{D}_{2 n}} t^{c y c(\sigma)}=P_{2 n}(t, t+1, t+1,0)
$$

Recall $\chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t)=\sum_{\sigma \in \mathcal{D}_{2 n}}(-1)^{c y c(\sigma)} t^{c y c(\sigma)-1}$.

Theorem (Lazar-W)

$$
\sum_{n \geq 1} \chi_{\left\llcorner\left(\mathcal{H}_{2 n-1}\right)\right.}(t) z^{n}=\sum_{n \geq 1} \frac{(t-1)_{n-1}(t-1)_{n} z^{n}}{\prod_{k=1}^{n}(1-k(t-k) z)} .
$$

Another model for the (median) Genocchi numbers

Recall

$\sigma \in \mathfrak{S}_{2 n}$ is a D-permutation if $i \leq \sigma(i)$ whenever i is odd and $i \geq \sigma(i)$ whenever i is even.
$\sigma \in \mathfrak{S}_{2 n}$ is a a E-permutation if $i>\sigma(i)$ implies i is even and $\sigma(i)$ is odd.
$\{(1,2)(3,4),(1,2,4)(3),(1,3,4)(2),(1,2)(3)(4)$,
$(1,4)(2)(3),(3,4)(1)(2),(1,2,3,4),(1)(2)(3)(4)\}$
$\mathcal{E C}_{2 n}=\{E$-cycles on $[2 n]\}, \quad \mathcal{E}_{2 n}=\{E$-permutations on $[2 n]\}$.

Another model for the (median) Genocchi numbers

Recall

$\sigma \in \mathfrak{S}_{2 n}$ is a D-permutation if $i \leq \sigma(i)$ whenever i is odd and $i \geq \sigma(i)$ whenever i is even.
$\sigma \in \mathfrak{S}_{2 n}$ is a a E-permutation if $i>\sigma(i)$ implies i is even and $\sigma(i)$ is odd.
$\{(1,2)(3,4),(1,2,4)(3),(1,3,4)(2),(1,2)(3)(4)$,
$(1,4)(2)(3),(3,4)(1)(2),(1,2,3,4),(1)(2)(3)(4)\}$
$\mathcal{E C}_{2 n}=\{E$-cycles on $[2 n]\}, \quad \mathcal{E}_{2 n}=\{E$-permutations on $[2 n]\}$.

Theorem (Lazar-W.)

Conjecture (Lazar-W.)

$$
\begin{aligned}
& h_{n}=\left|\mathcal{D}_{2 n}\right|=\left|\mathcal{E}_{2 n}\right| \\
& g_{n}=\left|\mathcal{D C}_{2 n}\right|
\end{aligned}
$$

$$
g_{n}=\left|\mathcal{E C}_{2 n}\right|
$$

Conjecture proved by Lin-Yan (2021) and Pan-Zeng (2021).

Another model for the (median) Genocchi numbers

Recall Γ_{n} is the bipartite graph on vertex set $\{1,3, \ldots, 2 n-1\} \sqcup\{2,4, \ldots, 2 n\}$ with an edge between $2 i-1$ and $2 j$ for all $i \leq j$.

Observation: Γ_{n} is the incomparability graph of the poset P_{n} on [2n] with order relation given by $x<p_{n} y$ if:

- $x<y$ and $x \equiv y \bmod 2$
- $x<y, x$ is even, and y is odd.

P_{3}

$\Gamma_{3}=\operatorname{inc}\left(P_{3}\right)$

Another model for the (median) Genocchi numbers

A permutation σ of the vertices of a poset P has a P-drop at x if $x>_{P} \sigma(x)$.

Chung-Graham (1995): For any finite poset P,

$$
\operatorname{ch}_{\mathrm{inc}(P)}(t)=\sum_{k=0}^{|P|-1} d(P, k)\binom{k+t}{|P|}
$$

where $d(P, k)$ is the number of permutations of P with exactly k P-drops.

Another model for the (median) Genocchi numbers

A permutation σ of the vertices of a poset P has a P-drop at x if $x>_{P} \sigma(x)$.

Chung-Graham (1995): For any finite poset P,

$$
\operatorname{ch}_{\mathrm{inc}(P)}(t)=\sum_{k=0}^{|P|-1} d(P, k)\binom{k+t}{|P|}
$$

where $d(P, k)$ is the number of permutations of P with exactly k P-drops.

Set $t=-1$,

$$
\operatorname{ch}_{\text {inc }(P)}(-1)=\sum_{k=0}^{|P|-1} d(P, k)\binom{k-1}{|P|}=(-1)^{|P|} d(P, 0)
$$

Another model for the (median) Genocchi numbers

Example: The cycle (532164) has P_{3}-drops at 5, 3, 6 only. Not 2

A permutation in $\sigma \in \mathfrak{S}_{2 n}$ has no P_{n}-drops if for all $i \in[2 n]$, $i>\sigma(i)$ implies i is even and $\sigma(i)$ is odd, i.e. $\sigma \in \mathcal{E}_{2 n}$

We have

$$
h_{n}=\operatorname{ch}_{\Gamma_{2 n}}(-1)=\operatorname{ch}_{i n c\left(P_{n}\right)}(-1)=d\left(P_{n}, 0\right)=\left|\mathcal{E}_{2 n}\right|
$$

Type B

The type B braid arrangement in \mathbb{R}^{n} :

$$
\mathcal{B}_{n}=\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\} .
$$

$\#$ regions $=\left|B_{n}\right|=2^{n} n!$

Type B

The type B braid arrangement in \mathbb{R}^{n} :

$$
\mathcal{B}_{n}=\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\} .
$$

$$
\# \text { regions }=\left|B_{n}\right|=2^{n} n!
$$

The type B homogenized Linial arrangement in $\mathbb{R}^{2 n}$:

$$
\mathcal{H}_{2 n-1}^{B}=\left\{x_{i} \pm x_{j}=y_{i}: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=y_{i}: i=1 \ldots, n\right\} .
$$

\# regions $=$?

Type B

The type B braid arrangement in \mathbb{R}^{n} :

$$
\mathcal{B}_{n}=\left\{x_{i} \pm x_{j}=0: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\} .
$$

$$
\# \text { regions }=\left|B_{n}\right|=2^{n} n!
$$

The type B homogenized Linial arrangement in $\mathbb{R}^{2 n}$:

$$
\mathcal{H}_{2 n-1}^{B}=\left\{x_{i} \pm x_{j}=y_{i}: 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=y_{i}: i=1 \ldots, n\right\} .
$$

\# regions = ? We can describe this with signed ID forests and signed D-permutations.

Type B

The type B analog of

$$
\sum_{n \geq 1} \chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t) z^{n}=\sum_{n \geq 1} \frac{(t-1)_{n-1}(t-1)_{n} z^{n}}{\prod_{k=1}^{n}(1-k(t-k) z)}
$$

is

Theorem (Lazar-W)

$$
\sum_{n \geq 1} \chi_{L\left(\mathcal{H}_{2 n-1}^{B}\right)}(t) z^{n}=\sum_{n \geq 1} \frac{(t-1)_{2 n-1} z^{n}}{\prod_{k=1}^{n}(1-2 k(t-2 k) z)}
$$

Type B

The type B analog of

$$
\sum_{n \geq 1} \chi_{L\left(\mathcal{H}_{2 n-1}\right)}(t) z^{n}=\sum_{n \geq 1} \frac{(t-1)_{n-1}(t-1)_{n} z^{n}}{\prod_{k=1}^{n}(1-k(t-k) z)}
$$

is

Theorem (Lazar-W)

$$
\sum_{n \geq 1} \chi_{L\left(\mathcal{H}_{2 n-1}^{B}\right)}(t) z^{n}=\sum_{n \geq 1} \frac{(t-1)_{2 n-1} z^{n}}{\prod_{k=1}^{n}(1-2 k(t-2 k) z)}
$$

By setting $t=-1$,

$$
\sum_{n \geq 1} r_{n}^{B} z^{n}=\sum_{n \geq 1} \frac{(2 n)!z^{n}}{\prod_{k=1}^{n}(1+2 k(2 k+1) z)}
$$

By setting $t=0$,

$$
\sum_{n \geq 1} \mu\left(L\left(\mathcal{H}_{2 n-1}^{B}\right)\right) z^{n}=\sum_{n \geq 1} \frac{(2 n-1)!z^{n}}{\prod_{k=1}^{n}\left(1+(2 k)^{2} z\right)}
$$

Dowling arrangement

Let $\omega=e^{\frac{2 \pi i}{m}}$. The Dowling arrangement \mathcal{A}_{n}^{m} in \mathbb{C}^{n} :

$$
\left\{x_{i}-\omega^{\prime} x_{j}=0: 1 \leq i<j \leq n, 0 \leq I<m\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

- \mathcal{A}_{n}^{1} is the complexified braid arrangement \mathcal{A}_{n}
- \mathcal{A}_{n}^{2} is the complexified type B braid arrangement \mathcal{B}_{n}.

The intersection lattice $L\left(\mathcal{A}_{n}^{m}\right)$ is isomorphic to the classical Dowling lattice $Q_{n}\left(\mathbb{Z}_{m}\right)$.

Dowling arrangement

Let $\omega=e^{\frac{2 \pi i}{m}}$. The Dowling arrangement \mathcal{A}_{n}^{m} in \mathbb{C}^{n} :

$$
\left\{x_{i}-\omega^{\prime} x_{j}=0: 1 \leq i<j \leq n, 0 \leq I<m\right\} \cup\left\{x_{i}=0: 1 \leq i \leq n\right\}
$$

- \mathcal{A}_{n}^{1} is the complexified braid arrangement \mathcal{A}_{n}
- \mathcal{A}_{n}^{2} is the complexified type B braid arrangement \mathcal{B}_{n}.

The intersection lattice $L\left(\mathcal{A}_{n}^{m}\right)$ is isomorphic to the classical Dowling lattice $Q_{n}\left(\mathbb{Z}_{m}\right)$.

The homogenized Linial-Dowling arrangement $\mathcal{H}_{2 n-1}^{m}$ in $\mathbb{C}^{2 n}$:

$$
\left\{x_{i}-\omega^{\ell} x_{j}=y_{i}: 1 \leq i<j \leq n, 0 \leq \ell<m\right\} \cup\left\{x_{i}=y_{i}: 1 \leq i \leq n\right\} .
$$

$\mathcal{H}_{2 n-1}^{1}$ is a complexified version of $\mathcal{H}_{2 n-1}$.
$\mathcal{H}_{2 n-1}^{2}$ is a complexified version of $\mathcal{H}_{2 n-1}^{B}$.

The intersection lattice $L\left(\mathcal{H}_{2 n-1}^{m}\right)$

- We show that the intersection lattice is isomorphic to a subposet of the Dowling lattice $Q_{n}\left(\mathbb{Z}_{m}\right)$, analogous to the bond lattice of Γ_{n}.
- We describe the coefficients of the characteristic polynomial in terms of m-labeled ID-forests and m-labeled D-permutations.
- Then we use the correspondence between D-permutations and surjective staircases to obtain the following general formula.

Theorem (Lazar-W)

$$
\sum_{n \geq 1} \chi_{L\left(\mathcal{H}_{2 n-1}^{m}\right)}(t) z^{n}=\sum_{n \geq 1} \frac{(t-1)_{n, m}(t-m)_{n-1, m} z^{n}}{\prod_{k=1}^{n}(1-m k(t-m k) z)}
$$

where $(a)_{n, m}=a(a-m)(a-2 m) \cdots(a-(n-1) m)$.
This reduces to the type A and type B generating function formulas when $m=1,2$.

m-analog of Genocchi numbers

$$
g_{n}(m)=-\chi_{L\left(\mathcal{H}_{2 n-1}^{m}\right)}(0), \quad h_{n}(m)=-\chi_{L\left(\mathcal{H}_{2 n-1}^{m}\right)}(-1)
$$

n	$g_{n}(m)$	$h_{n}(m)$
0		1
1	1	2
2	m	$4(m+1)$
3	$m^{2}(m+2)$	$4(m+1)\left(m^{2}+4 m+2\right)$
4	$m^{3}\left(3 m^{2}+8 m+6\right)$	$4(m+1)\left(3 m^{4}+17 m^{3}+32 m^{2}+20 m+4\right)$

m-analog of Genocchi numbers

$$
g_{n}(m)=-\chi_{L\left(\mathcal{H}_{2 n-1}^{m}\right)}(0), \quad h_{n}(m)=-\chi_{L\left(\mathcal{H}_{2 n-1}^{m}\right)}(-1)
$$

n	$g_{n}(m)$	$h_{n}(m)$
0		1
1	1	2
2	m	$4(m+1)$
3	$m^{2}(m+2)$	$4(m+1)\left(m^{2}+4 m+2\right)$
4	$m^{3}\left(3 m^{2}+8 m+6\right)$	$4(m+1)\left(3 m^{4}+17 m^{3}+32 m^{2}+20 m+4\right)$

Theorem (Lazar-W)

$$
g_{n}(m)=m^{2 n-1} G_{n}\left(m^{-1}\right)
$$

where $G_{n}(x)$ is the nth Gandhi polynomial.

