The X-Descent Set of a Permutation

Richard P. Stanley
M.I.T. and U. Miami

July 4, 2022

The Descent Set of a Permutation

$$
\begin{gathered}
w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n} \\
\text { descent set of } w: \operatorname{Des}(w)=\left\{1 \leq i \leq n-1: a_{i}>a_{i+1}\right\}
\end{gathered}
$$

The Descent Set of a Permutation

$$
w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}
$$

descent set of $w: \operatorname{Des}(w)=\left\{1 \leq i \leq n-1: a_{i}>a_{i+1}\right\}$
Fix n. For $S \subseteq[n-1]$, define

$$
F_{S}=\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n} \\ i_{j}<i_{j+1} \text { if } j \in S}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}},
$$

known as (Gessel's) fundamental quasisymmetric function.

The Descent Set of a Permutation

$$
w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}
$$

descent set of $w: \operatorname{Des}(w)=\left\{1 \leq i \leq n-1: a_{i}>a_{i+1}\right\}$
Fix n. For $S \subseteq[n-1]$, define

$$
F_{S}=\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n} \\ i_{j}<i_{j}+1 \\ \text { if } j \in S}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}},
$$

known as (Gessel's) fundamental quasisymmetric function.
Theorem. $\sum_{w \in \mathfrak{S}_{n}} F_{\operatorname{Des}(w)}=\left(x_{1}+x_{2}+\cdots\right)^{n}$

The case $n=3$

w	$F_{\operatorname{Des}(w)}$
123	$\sum_{1 \leq a \leq b \leq c} x_{a} x_{b} x_{c}$
213	$\sum_{1 \leq a \leq b<c} x_{a} x_{b} x_{c}$
231	$\sum_{1 \leq a<b \leq c} x_{a} x_{b} x_{c}$
312	$\sum_{a} x_{b} x_{c}$
321	$\sum_{1 \leq a \leq b \leq b \leq c} x_{a} x_{b} x_{c}$
	$x_{a} x_{b} x_{c}$
	$\left(x_{1}+x_{2}+\cdots\right)^{3}$

X-descent sets

$$
X \subseteq \mathcal{E}_{n}:=\{(i, j): 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}
$$

X-descent sets

$X \subseteq \mathcal{E}_{\boldsymbol{n}}:=\{(i, j): 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}$
\boldsymbol{X}-descent of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$: an index $1 \leq i \leq n-1$ for which $\left(a_{i}, a_{i+1}\right) \in X$

X-descent sets

$X \subseteq \mathcal{E}_{\boldsymbol{n}}:=\{(i, j): 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}$
\boldsymbol{X}-descent of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$: an index $1 \leq i \leq n-1$ for which $\left(a_{i}, a_{i+1}\right) \in X$
\boldsymbol{X}-descent set $\operatorname{XDes}(\boldsymbol{w})$: set of X-descents

X-descent sets

$X \subseteq \mathcal{E}_{\boldsymbol{n}}:=\{(i, j): 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}$
\boldsymbol{X}-descent of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$: an index $1 \leq i \leq n-1$ for which $\left(a_{i}, a_{i+1}\right) \in X$
\boldsymbol{X}-descent set $\operatorname{XDes}(\boldsymbol{w})$: set of X-descents
Example. (a) $X=\{(i, j): n-1 \geq i>j \geq 1\}:$ XDes $=$ Des (the ordinary descent set)
(b) $X=\{(i, j) \in[n] \times[n]: i \neq j\}: \operatorname{XDes}(w)=[n-1]$, where $[n-1]=\{1,2, \ldots, n-1\}$

Symmetric functions

Symmetric function: $f=f\left(x_{1}, x_{2}, \ldots\right)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_{i} 's.
partition of $n: \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \sum \lambda_{i}=n$, denoted $\lambda \vdash n$

Symmetric functions

Symmetric function: $f=f\left(x_{1}, x_{2}, \ldots\right)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_{i} 's.
partition of $n: \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \sum \lambda_{i}=n$, denoted $\lambda \vdash n$

Example. Power sums: $\boldsymbol{p}_{k}=\sum_{i} x_{i}^{k}$ (with $p_{0}=1$),

$$
p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots,
$$

a \mathbb{Q}-basis for the space of symmetric functions

Symmetric functions

Symmetric function: $f=f\left(x_{1}, x_{2}, \ldots\right)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_{i} 's.
partition of $n: \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \sum \lambda_{i}=n$, denoted $\lambda \vdash n$

Example. Power sums: $\boldsymbol{p}_{k}=\sum_{i} x_{i}^{k}$ (with $p_{0}=1$),

$$
p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots,
$$

a \mathbb{Q}-basis for the space of symmetric functions
Schur functions s_{λ} : another \mathbb{Q}-basis, not defined here

A generating function for the XDescent set

Define $U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}$.

A generating function for the XDescent set

Define $U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}$.
Example. $n=3, X=\{(1,3),(2,1),(3,1),(3,2)\}$

w	XDes (w)
123	\emptyset
132	$\{1,2\}$
213	$\{1,2\}$
231	$\{2\}$
312	$\{1\}$
321	$\{1,2\}$

$$
U_{X}=F_{\emptyset}+F_{1}+F_{2}+3 F_{1,2}=p_{1}^{3}-p_{2} p_{1}+p_{3}=s_{3}+s_{21}+2 s_{111}
$$

First easy theorem

Theorem. (a) U_{X} is a p-integral symmetric function, i.e., $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

First easy theorem

Theorem. (a) U_{X} is a p-integral symmetric function, i.e., $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

Proof. Consider the coefficient of a monomial, say $\mathfrak{m}=x_{1}^{2} x_{2}^{3} x_{4}^{2}$ (where $n=7$). Recall

$$
\begin{gathered}
U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)} \\
F_{S}=\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\
i_{j}<i_{j+1} \text { if } \\
j \in S}} x_{i_{1} x_{i_{2}} \cdots x_{i_{n}} .}
\end{gathered}
$$

First easy theorem

Theorem. (a) U_{X} is a p-integral symmetric function, i.e., $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

Proof. Consider the coefficient of a monomial, say $\mathfrak{m}=x_{1}^{2} x_{2}^{3} x_{4}^{2}$ (where $n=7$). Recall

$$
\begin{gathered}
U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)} \\
F_{S}=\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots<i_{n} \\
i_{j}<i_{j+1} \text { if } \\
j \in S}} x_{i_{1} x_{i_{2}} \cdots x_{i_{n}} .}
\end{gathered}
$$

Let $w=a_{1} a_{2} \cdots a_{7}$. Thus \mathfrak{m} appears in $F_{\mathrm{XDes}(w)}$ if and only if $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(a_{4}, a_{5}\right),\left(a_{6}, a_{7}\right) \notin X$.

Proof continued

Let $w=a_{1} a_{2} \cdots a_{7}$. Thus \mathfrak{m} appears in $F_{\mathrm{XDes}(w)}$ if and only if $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(a_{4}, a_{5}\right),\left(a_{6}, a_{7}\right) \notin X$.

Proof continued

Let $w=a_{1} a_{2} \cdots a_{7}$. Thus \mathfrak{m} appears in $F_{\mathrm{XDes}(w)}$ if and only if $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(a_{4}, a_{5}\right),\left(a_{6}, a_{7}\right) \notin X$.

Write $w=a_{1} a_{2} \cdot a_{3} a_{4} a_{5} \cdot a_{6} a_{7}=u_{1} u_{2} u_{3}$ (juxtaposition of words).
Then $x_{1}^{3} x_{2}^{2} x_{4}^{2}$ appears in $F_{\mathrm{XDes}\left(w^{\prime}\right)}$, where $w^{\prime}=u_{2} u_{1} u_{3}$.
Generalizing shows that U_{X} is a symmetric function.

Proof continued

Let $w=a_{1} a_{2} \cdots a_{7}$. Thus \mathfrak{m} appears in $F_{\mathrm{XDes}(w)}$ if and only if $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(a_{4}, a_{5}\right),\left(a_{6}, a_{7}\right) \notin X$.

Write $w=a_{1} a_{2} \cdot a_{3} a_{4} a_{5} \cdot a_{6} a_{7}=u_{1} u_{2} u_{3}$ (juxtaposition of words).
Then $x_{1}^{3} x_{2}^{2} x_{4}^{2}$ appears in $F_{\mathrm{XDes}\left(w^{\prime}\right)}$, where $w^{\prime}=u_{2} u_{1} u_{3}$.
Generalizing shows that U_{X} is a symmetric function.
Also $x_{1}^{2} x_{2}^{3} x_{4}^{2}=\mathfrak{m}$ appears in $F_{\mathrm{XDes}\left(w^{\prime \prime}\right)}$, where $w^{\prime \prime}=u_{3} u_{2} u_{1}$. Generalizing shows that the coefficient of $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots$ in U_{X} is an integer multiple of $\alpha_{1}!\alpha_{2}!\cdots$.

Proof continued

Let $w=a_{1} a_{2} \cdots a_{7}$. Thus \mathfrak{m} appears in $F_{\mathrm{XDes}(w)}$ if and only if $\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right),\left(a_{4}, a_{5}\right),\left(a_{6}, a_{7}\right) \notin X$.

Write $w=a_{1} a_{2} \cdot a_{3} a_{4} a_{5} \cdot a_{6} a_{7}=u_{1} u_{2} u_{3}$ (juxtaposition of words).
Then $x_{1}^{3} x_{2}^{2} x_{4}^{2}$ appears in $F_{\mathrm{XDes}\left(w^{\prime}\right)}$, where $w^{\prime}=u_{2} u_{1} u_{3}$.
Generalizing shows that U_{X} is a symmetric function.
Also $x_{1}^{2} x_{2}^{3} x_{4}^{2}=\mathfrak{m}$ appears in $F_{\mathrm{XDes}\left(w^{\prime \prime}\right)}$, where $w^{\prime \prime}=u_{3} u_{2} u_{1}$. Generalizing shows that the coefficient of $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots$ in U_{X} is an integer multiple of $\alpha_{1}!\alpha_{2}!\cdots$.

Well-known and easy that this implies U_{X} is p-integral (given that U_{X} is a symmetric function).

Second easy theorem

ω : linear transformation on symmetric functions given by $\omega\left(p_{\lambda}\right)=(-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda)=\#\left\{i: \lambda_{i}>0\right\}$.

Second easy theorem

ω : linear transformation on symmetric functions given by $\omega\left(p_{\lambda}\right)=(-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda)=\#\left\{i: \lambda_{i}>0\right\}$.

Note. $\omega^{2}=1$

Second easy theorem

ω : linear transformation on symmetric functions given by $\omega\left(p_{\lambda}\right)=(-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda)=\#\left\{i: \lambda_{i}>0\right\}$.

Note. $\omega^{2}=1$
Theorem. Let $\bar{X}=\mathcal{E}_{n}-X$. Then $\omega U_{X}=U_{\bar{X}}$.

Second easy theorem

ω : linear transformation on symmetric functions given by $\omega\left(p_{\lambda}\right)=(-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda)=\#\left\{i: \lambda_{i}>0\right\}$.

Note. $\omega^{2}=1$
Theorem. Let $\bar{X}=\mathcal{E}_{n}-X$. Then $\omega U_{X}=U_{\bar{X}}$.
Proof.

Second easy theorem

ω : linear transformation on symmetric functions given by $\omega\left(p_{\lambda}\right)=(-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda)=\#\left\{i: \lambda_{i}>0\right\}$.

Note. $\omega^{2}=1$
Theorem. Let $\bar{X}=\mathcal{E}_{n}-X$. Then $\omega U_{X}=U_{\bar{X}}$.
Proof. Exercise.

Special case

record set $\operatorname{rec}(w)$ for $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$:
$\operatorname{rec}(w)=\left\{0 \leq i \leq n-1: a_{i}>a_{j}\right.$ for all $\left.j<i\right\}$. Thus always $0 \in \operatorname{rec}(w)$.
record partition $\operatorname{rp}(w)$: if $\operatorname{rec}(w)=\left\{r_{0}, \ldots, r_{j}\right\}_{<}$, then $\operatorname{rp}(w)$ is the numbers $r_{1}-r_{0}, r_{2}-r_{1}, \ldots, n-r_{j}$ arranged in decreasing order.

Special case

record set $\operatorname{rec}(w)$ for $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$:
$\operatorname{rec}(w)=\left\{0 \leq i \leq n-1: a_{i}>a_{j}\right.$ for all $\left.j<i\right\}$. Thus always $0 \in \operatorname{rec}(w)$.
record partition $\operatorname{rp}(w)$: if $\operatorname{rec}(w)=\left\{r_{0}, \ldots, r_{j}\right\}_{<}$, then $\operatorname{rp}(w)$ is the numbers $r_{1}-r_{0}, r_{2}-r_{1}, \ldots, n-r_{j}$ arranged in decreasing order.

Theorem (conjectured by RS, proved by I. Gessel). Let X have the property that if $(i, j) \in X$ then $i>j$. Then

$$
U_{X}=\sum_{\substack{w \in \mathfrak{G}_{n} \\ \operatorname{XDes}(w)=\emptyset}} p_{\operatorname{rp}(w)}
$$

In particular, U_{X} is p-positive.

An example

$$
\begin{array}{l|c}
n=4, X=\{(2,1),(3,2),(4,3)\} \\
& w \\
w & \operatorname{rec}(w) \\
\hline 1234 & 1111 \\
1342 & 211 \\
1423 & 31 \\
2314 & 211 \\
2341 & 211 \\
2413 & 31 \\
3124 & 31 \\
3142 & 22 \\
3412 & 31 \\
4123 & 4 \\
\mathbf{4 2 3 1} & 4
\end{array}
$$

An example

$n=4, X=\{(2,1),(3,2),(4,3)\}$	
	w
	$\operatorname{rec}(w)$
1234	1111
1342	211
1423	31
2314	211
2341	211
2413	31
3124	31
3142	22
3412	31
4123	4
4231	4

$$
\Rightarrow U_{X}=p_{1}^{4}+3 p_{2} p_{1}^{2}+4 p_{3} p_{1}+p_{2}^{2}+2 p_{4}
$$

A generalization

Theorem (D. Grinberg) Suppose that $(i, j) \in X \Rightarrow(j, i) \notin X$.
Then U_{X} is p-positive.

A generalization

Theorem (D. Grinberg) Suppose that $(i, j) \in X \Rightarrow(j, i) \notin X$.
Then U_{X} is p-positive.
In fact, Grinberg has a combinatorial interpretation of the coefficients (not given here).

Connection with chromatic symmetric functions

P : partial ordering of $[n]$
$Y_{P}=\left\{(i, j): i>_{P} j\right\}$
$\operatorname{inc}(P)$: incomparability graph of P, i.e., vertex set [n], edges ij if $i \| j$ in P
X_{G} : chromatic symmetric function of the graph G (generalizes the chromatic polynomial)

Connection with chromatic symmetric functions

P : partial ordering of $[n]$
$Y_{P}=\left\{(i, j): i>_{P} j\right\}$
$\operatorname{inc}(P)$: incomparability graph of P, i.e., vertex set [n], edges ij if $i \| j$ in P
X_{G} : chromatic symmetric function of the graph G (generalizes the chromatic polynomial)

Theorem. $U_{Y_{P}}=X_{\text {inc }(P)}$

Reverse succession-free permutations

$$
\begin{aligned}
& \text { Let } X=\{(2,1),(3,2), \ldots,(n, n-1)\} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\} \text { (rs-free permutations) }
\end{aligned}
$$

Reverse succession-free permutations

Let $X=\{(2,1),(3,2), \ldots,(n, n-1)\}$.
$\boldsymbol{f}_{\boldsymbol{n}}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\}$ (rs-free permutations)
Known result. $\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}=\frac{e^{-x}}{(1-x)^{2}}$

Reverse succession-free permutations

Let $X=\{(2,1),(3,2), \ldots,(n, n-1)\}$.
$\boldsymbol{f}_{\boldsymbol{n}}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\}$ (rs-free permutations)
Known result. $\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}=\frac{e^{-x}}{(1-x)^{2}}$
Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
(generating function for $w \in \mathfrak{S}_{n}$ by positions of reverse successions)

Reverse succession-free permutations

Let $X=\{(2,1),(3,2), \ldots,(n, n-1)\}$.
$\boldsymbol{f}_{\boldsymbol{n}}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\}$ (rs-free permutations)
Known result. $\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}=\frac{e^{-x}}{(1-x)^{2}}$
Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
(generating function for $w \in \mathfrak{S}_{n}$ by positions of reverse successions)

Example. $n=4: U_{X}=11 s_{4}+3 s_{31}+s_{211}+s_{1111}$

Sketch of proof

Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$

Sketch of proof

Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
Proof. For $S \subseteq[n-1]$, take coefficient of F_{S} on both sides.

Sketch of proof

Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
Proof. For $S \subseteq[n-1]$, take coefficient of F_{S} on both sides.
Left-hand side: $\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$

Sketch of proof

Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
Proof. For $S \subseteq[n-1]$, take coefficient of F_{S} on both sides.
Left-hand side: $\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$
Right-hand side: Use

$$
s_{i, 1^{n-i}}=\sum_{\substack{ \\
\sum_{\left(\begin{array}{c}
n-1] \\
n-i
\end{array}\right)}}} F_{S} .
$$

To show: $f_{i}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$ if $\# S=n-i$.

Conclusion of proof

To show: $f_{i}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$ if $\# S=n-i$.

Conclusion of proof

To show: $f_{i}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$ if $\# S=n-i$.
Will define a bijection

$$
\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\} \rightarrow\left\{u \in \mathfrak{S}_{i}: \operatorname{XDes}(u)=\emptyset\right\}
$$

Conclusion of proof

To show: $f_{i}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$ if $\# S=n-i$.
Will define a bijection

$$
\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\} \rightarrow\left\{u \in \mathfrak{S}_{i}: \operatorname{XDes}(u)=\emptyset\right\}
$$

Example. $w=3247651$, so $S=\{1,4,5\}, n=7, i=4$. Factor w :

$$
w=32 \cdot 4 \cdot 765 \cdot 1
$$

Let $1 \rightarrow 1,32 \rightarrow 2,4 \rightarrow 3,765 \rightarrow 4$. get

$$
w \rightarrow 2341=u
$$

A \boldsymbol{q}-analogue for $\boldsymbol{X}=\{(2,1),(3,2), \ldots,(\boldsymbol{n}, \boldsymbol{n}-1)\}$

Let $U_{\boldsymbol{X}}(\boldsymbol{q})=\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{des}\left(w^{-1}\right)} F_{\mathrm{XDes}(w)}$, where des denotes the number of (ordinary) descents.
$U_{X}(q)$ is the generating function for $w \in \mathfrak{S}_{n}$ by positions of reverse successions and by $\operatorname{des}\left(w^{-1}\right)$.

$$
\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{q})=\sum_{\substack{w \in \mathfrak{G}_{n} \\ \text { xDocs }(w)-\curvearrowleft}} q^{\operatorname{des}\left(w^{-1}\right)}
$$

A \boldsymbol{q}-analogue for $\boldsymbol{X}=\{(2,1),(3,2), \ldots,(\boldsymbol{n}, \boldsymbol{n}-1)\}$

Let $U_{\boldsymbol{X}}(\boldsymbol{q})=\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{des}\left(w^{-1}\right)} F_{\mathrm{XDes}(w)}$, where des denotes the number of (ordinary) descents.
$U_{X}(q)$ is the generating function for $w \in \mathfrak{S}_{n}$ by positions of reverse successions and by $\operatorname{des}\left(w^{-1}\right)$.

$$
\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{q})=\sum_{\substack{w \in \mathfrak{S}_{n}\\}} q^{\operatorname{des}\left(w^{-1}\right)}
$$

Theorem. $U_{X}(q)=\sum_{i=1}^{n} q^{n-i} f_{i}(q) s_{i, 1^{n-i}}$

Digraph interpretation

We can also regard X as a digraph, with edges $i \rightarrow j$ if $(i, j) \in X$.
A Hamiltonian path in X is a permutation $a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ such that $\left(a_{i}, a_{i+1}\right) \in X$ for $1 \leq i \leq n-1$. Define

$$
\operatorname{ham}(\boldsymbol{X})=\# \text { Hamiltonian paths in } X
$$

Digraph interpretation

We can also regard X as a digraph, with edges $i \rightarrow j$ if $(i, j) \in X$.
A Hamiltonian path in X is a permutation $a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ such that $\left(a_{i}, a_{i+1}\right) \in X$ for $1 \leq i \leq n-1$. Define

$$
\operatorname{ham}(\boldsymbol{X})=\# \text { Hamiltonian paths in } X
$$

Note.

- $w \in \mathfrak{S}_{n}$ is a Hamiltonian path in X if and only $\operatorname{XDes}(w)=[n-1]$.

Digraph interpretation

We can also regard X as a digraph, with edges $i \rightarrow j$ if $(i, j) \in X$.
A Hamiltonian path in X is a permutation $a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ such that $\left(a_{i}, a_{i+1}\right) \in X$ for $1 \leq i \leq n-1$. Define

$$
\operatorname{ham}(\boldsymbol{X})=\# \text { Hamiltonian paths in } X
$$

Note.

- $w \in \mathfrak{S}_{n}$ is a Hamiltonian path in X if and only $\operatorname{XDes}(w)=[n-1]$.
- w is a Hamiltonian path in \bar{X} if and only if $\operatorname{XDes}(w)=\emptyset$.

Connection with U_{X}

Theorem. Let $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $\operatorname{ham}(\bar{X})=\sum_{\lambda} c_{\lambda}$.

Connection with U_{X}

Theorem. Let $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $\operatorname{ham}(\bar{X})=\sum_{\lambda} c_{\lambda}$.
Proof. Recall $U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}$. Since $w \in \mathfrak{S}_{n}$ is a
Hamiltonian path in \bar{X} if and only if $\operatorname{XDes}(w)=\emptyset$,

$$
\operatorname{ham}(\bar{X})=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\}
$$

Note

$$
\left[x_{1}^{n}\right] F_{S}= \begin{cases}1, & S=\emptyset \\ 0, & \text { otherwise }\end{cases}
$$

Also for $\lambda \vdash n,\left[x_{1}^{n}\right] p_{\lambda}=1$.

Connection with U_{X}

Theorem. Let $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $\operatorname{ham}(\bar{X})=\sum_{\lambda} c_{\lambda}$.
Proof. Recall $U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}$. Since $w \in \mathfrak{S}_{n}$ is a Hamiltonian path in $\frac{w \in \mathfrak{S}_{n}}{X}$ if and only if $\operatorname{XDes}(w)=\emptyset$,

$$
\operatorname{ham}(\bar{X})=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\}
$$

Note

$$
\left[x_{1}^{n}\right] F_{S}= \begin{cases}1, & S=\emptyset \\ 0, & \text { otherwise }\end{cases}
$$

Also for $\lambda \vdash n,\left[x_{1}^{n}\right] p_{\lambda}=1$.
Take coefficient of x_{1}^{n} on both sides of

$$
U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}=\sum_{\lambda} c_{\lambda} p_{\lambda} .
$$

Simple corollary

Corollary. Let $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$ as before. Then

$$
\operatorname{ham}(X)=\sum_{\lambda}(-1)^{n-\ell(\lambda)} c_{\lambda} .
$$

Simple corollary

Corollary. Let $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$ as before. Then

$$
\operatorname{ham}(X)=\sum_{\lambda}(-1)^{n-\ell(\lambda)} c_{\lambda} .
$$

Recall $\omega p_{\lambda}=(-1)^{n-\ell(\lambda)} p_{\lambda}$ and $\omega U_{X}=U_{\bar{x}}$. Now apply ω to $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$ and use previous theorem:

$$
\operatorname{ham}(\bar{X})=\sum_{\lambda} c_{\lambda} .
$$

Berge's theorem

Theorem (C. Berge). $\operatorname{ham}(X) \equiv \operatorname{ham}(\bar{X})(\bmod 2)$
Proof (D. Grinberg). Let $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$. To prove:

$$
\sum(-1)^{n-\ell(\lambda)} c_{\lambda} \equiv \sum c_{\lambda}(\bmod 2)
$$

Berge's theorem

Theorem (C. Berge). $\operatorname{ham}(X) \equiv \operatorname{ham}(\bar{X})(\bmod 2)$
Proof (D. Grinberg). Let $U_{X}=\sum_{\lambda} c_{\lambda} p_{\lambda}$. To prove:

$$
\sum(-1)^{n-\ell(\lambda)} c_{\lambda} \equiv \sum c_{\lambda}(\bmod 2)
$$

Obvious since $(-1)^{n-\ell(\lambda)}= \pm 1$. \square

Tournaments

tournament: a digraph X with vertex set $[n]$ (say), such that for all $1 \leq i<j \leq n$, exactly one of $(i, j) \in X$ or $(j, i) \in X$.

Tournaments

tournament: a digraph X with vertex set $[n]$ (say), such that for all $1 \leq i<j \leq n$, exactly one of $(i, j) \in X$ or $(j, i) \in X$.

Theorem (D. Grinberg). Let X be a tournament. Then

$$
U_{X}=\sum_{w} 2^{\operatorname{nsc}(w)} p_{\rho(w)}
$$

where w ranges over all permutations in \mathfrak{S}_{n} of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Tournaments

tournament: a digraph X with vertex set $[n]$ (say), such that for all $1 \leq i<j \leq n$, exactly one of $(i, j) \in X$ or $(j, i) \in X$.

Theorem (D. Grinberg). Let X be a tournament. Then

$$
U_{X}=\sum_{w} 2^{\operatorname{nsc}(w)} p_{\rho(w)}
$$

where w ranges over all permutations in \mathfrak{S}_{n} of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\mathrm{nsc}(\boldsymbol{w})$ denotes the number of nonsingleton cycles of w.

Special case of a result for any X.

A corollary

Theorem (repeated). Let X be a tournament. Then

$$
U_{X}=\sum_{w} 2^{\mathrm{nsc}(w)} p_{\rho(w)}
$$

where w ranges over all permutations in \mathfrak{S}_{n} of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\mathrm{nsc}(\boldsymbol{w})$ denotes the number of nonsingleton cycles of w.

Corollary. If X is a tournament, then

$$
U_{X} \in \mathbb{Z}\left[p_{1}, 2 p_{3}, 2 p_{5}, 2 p_{7}, \ldots\right]
$$

A corollary

Theorem (repeated). Let X be a tournament. Then

$$
U_{X}=\sum_{w} 2^{\operatorname{nsc}(w)} p_{\rho(w)}
$$

where w ranges over all permutations in \mathfrak{S}_{n} of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\mathrm{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Corollary. If X is a tournament, then

$$
U_{X} \in \mathbb{Z}\left[p_{1}, 2 p_{3}, 2 p_{5}, 2 p_{7}, \ldots\right]
$$

Note. Thus U_{X} can be written uniquely as a linear combination of Schur's "shifted Schur functions" P_{λ}, where λ has distinct parts. Can anything worthwhile be said about the coefficients?

An example

w	$2^{\mathrm{nsc}(w)} p_{\rho(w)}$
$(1)(2)(3)(4)$	p_{1}^{4}
$(1,2,4)(3)$	$2 p_{3} p_{1}$
$(1,3,4)(2)$	$2 p_{3} p_{1}$

An example

$(1,2)$
$(1,3)$
$(2,3)$
$(2,4)$
$(3,4)$
$(4,1)$
$(1,2,4)(3) \quad 2 p_{3} p_{1}$
$(1,3,4)(2) \quad 2 p_{3} p_{1}$
$\Rightarrow U_{X}=p_{1}^{4}+4 p_{3} p_{1}=5 P_{4}-2 P_{3,1}$

An application to Hamiltonian paths

Observation (repeated). Let $U_{x}=\sum_{\lambda} c_{\lambda} p_{\lambda}$. Then

$$
\operatorname{ham}(X)=\sum_{\lambda}(-1)^{n-\ell(\lambda)} c_{\lambda} .
$$

Theorem (repeated). Let X be a tournament. Then

$$
U_{X}=\sum_{w} 2^{\mathrm{nsc}(w)} p_{\rho(w)}
$$

where w ranges over all permutations in \mathfrak{S}_{n} of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\mathrm{nsc}(\boldsymbol{w})$ denotes the number of nonsingleton cycles of w.

An application to Hamiltonian paths

Observation (repeated). Let $U_{x}=\sum_{\lambda} c_{\lambda} p_{\lambda}$. Then

$$
\operatorname{ham}(X)=\sum_{\lambda}(-1)^{n-\ell(\lambda)} c_{\lambda} .
$$

Theorem (repeated). Let X be a tournament. Then

$$
U_{X}=\sum_{w} 2^{\mathrm{nsc}(w)} p_{\rho(w)}
$$

where w ranges over all permutations in \mathfrak{S}_{n} of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\mathrm{nsc}(\boldsymbol{w})$ denotes the number of nonsingleton cycles of w.

Corollary. Let X be a tournament. Then

$$
\operatorname{ham}(X)=\sum_{w} 2^{\mathrm{nsc}(w)}
$$

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$
\operatorname{ham}(X)=\sum_{w} 2^{\operatorname{nsc}(w)}
$$

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$
\operatorname{ham}(X)=\sum_{w} 2^{\operatorname{nsc}(w)}
$$

Since $c_{1^{n}}=1$ for all X (immediate from $\left.U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}\right)$, we conclude:

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$
\operatorname{ham}(X)=\sum_{w} 2^{\operatorname{nsc}(w)}
$$

Since $c_{1^{n}}=1$ for all X (immediate from $\left.U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}\right)$, we conclude:

Theorem (L. Rédei, 1934) Every tournament has an odd number of Hamiltionian paths.

The final slide

