A lower bound on reduction length for random closed linear λ-terms

Algorithmic and Enumerative Combinatorics, 7 July 2022
Olivier Bodini (LIPN, Paris 13)
Michael Wallner (TU Wien)
Bernhard Gittenberger (TU WIen) Noam Zeilberger (LIX, Polytechnique) Alexandros Singh (LIPN, Paris 13)

The linear λ-calculus

- A PTIME-complete system of computation [M04]

The linear λ-calculus

- A PTIME-complete system of computation [M04]
- Its terms are formed inductively

The linear λ-calculus

- A PTIME-complete system of computation [M04]
- Its terms are formed inductively

abstractions
represent functions " $x \mapsto t$ " x appears exactly once inside t

The linear λ-calculus

- A PTIME-complete system of computation [M04]
- Its terms are formed inductively

- Terms considered up to (careful) renaming of variables:

$$
(\lambda x \cdot \lambda y \cdot(x \text { y }))=(\lambda x \cdot \lambda z \cdot(x z)) \neq(\lambda x \cdot \lambda y \cdot(x a))
$$

Examples of linear λ-terms

($\lambda x .(x y))$
($\lambda x . x$)

open term

closed term
(y $(\lambda z . z))$
open term with closed subterm

Examples of linear λ-terms

($\lambda x .(x y))$
($\lambda x . x$)
(y $(\lambda z . z)) \quad$ open term with closed subterm
Dynamics of the λ-calculus: β-reductions

$$
\left(\left(\lambda x \cdot t_{1}\right) \mathrm{t}_{2}\right) \xrightarrow{\beta} \mathrm{t}_{1}\left[x:=\mathrm{t}_{2}\right]
$$

represents:

$$
\mathrm{f}=\chi \mapsto \mathrm{t}_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}

Examples of linear λ-terms

$(\lambda x .(x y))$
($\lambda x . x$)
(y $(\lambda z . z)) \quad$ open term with closed subterm
Dynamics of the λ-calculus: β-reductions

$$
\text { redex }\left(\left(\lambda x . t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]
$$

represents:

$$
\mathrm{f}=\chi \mapsto \mathrm{t}_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}

More on β-reductions

Examples of reductions

$$
((\lambda x . x) y) \xrightarrow{\beta} x[x:=y]=y
$$

More on β-reductions

Examples of reductions

$$
\begin{aligned}
& ((\lambda x \cdot x) y) \xrightarrow{\beta} x[x:=y]=y \\
& \left(\left(\lambda x \cdot((\lambda y \cdot(y x)) z)^{\prime}\right)(a b)\right) \xrightarrow{\beta}(\lambda x \cdot(z x))(a b) \xrightarrow{\beta}(z(a b))
\end{aligned}
$$

More on β-reductions

Examples of reductions
$((\lambda x . x) y) \xrightarrow{\beta} x[x:=y]=y$
$\left(\left(\lambda x .\left(\lambda y \cdot\left(\begin{array}{ll}(y)\end{array}\right) z\right)(a b)\right) \xrightarrow{\beta}(\lambda x .(z x))(a b) \xrightarrow{\beta}(z(a b))\right.$
A term with no redices is called a normal form

More on β-reductions
Examples of reductions

$$
\begin{aligned}
& ((\lambda x \cdot x) y) \xrightarrow{\beta} x[x:=y]=y \\
& ((\lambda x \cdot(i(\lambda y \cdot(y x)) z):(a b)) \xrightarrow{\beta}(\lambda x \cdot(z x))(a b) \xrightarrow{\beta}(z(a b))
\end{aligned}
$$

A term with no redices is called a normal form

- Repeated β-reduction terminates with a unique normal form
- Starting from a random term, how many steps to reach the normal form?
A lower bound is given by the number of β-redices!
This motivates our first problem-to-solve:
What is the number of β-redices in a random linear λ-term?

What are maps?

What are maps?

What are maps?

We're interested in unrestricted genus cubic maps

Why should logicians be interested in maps?

Why should logicians be interested in maps?
$\bullet=x$

$(\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . a u)$

Why should logicians be interested in maps?

- $=\chi$

Dictionary

- Free var \leftrightarrow unary vertex
$(\lambda y . \lambda z \cdot(y \lambda w . w) z))(\lambda u . a \mathfrak{u})$

Why should logicians be interested in maps?
$\bullet=\chi$

Dictionary

- Free var \leftrightarrow unary vertex
- Identity-subterm \leftrightarrow loop
$(\lambda y \cdot \lambda z \cdot(y \lambda w . w) z))(\lambda u . a \mathfrak{u})$

Why should logicians be interested in maps?
$\bullet=\chi$

Dictionary

- Free var \leftrightarrow unary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge
$(\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . a u)$

Why should logicians be interested in maps?

- $=\chi$

Dictionary

- Free var \leftrightarrow unary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge
- \# subterms $\leftrightarrow \#$ edges

Why should logicians be interested in maps?

- $=\chi$
$(\lambda y . \lambda z \cdot(y \lambda w . w) z))(\lambda u . a \mathfrak{u})$
$=\lambda x . t$

Dictionary

- Free var \leftrightarrow unary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge
- \# subterms $\leftrightarrow \#$ edges

Closed linear terms \leftrightarrow trivalent maps
Closed affine terms $\leftrightarrow(2,3)$-valent maps Established in [BGJ13, BGGJ13, Z16]

Why should combinatorialists be interested in λ-terms?
Decomposing rooted cubic maps

Why should combinatorialists be interested in λ-terms?

Decomposing rooted cubic maps

Why should combinatorialists be interested in λ-terms?

Decomposing rooted cubic maps

Why should combinatorialists be interested in λ-terms?
Decomposing rooted cubic maps and closed linear terms!

subterms

| lin.term $=\lambda x . x$ | $\left.\left(\begin{array}{ll}s & t\end{array}\right) \begin{array}{l}\lambda x . t\left[\begin{array}{ll}u & \left.:=\left(\begin{array}{ll}x & u\end{array}\right)\right] \text { or } \\ \lambda x . t[u:=(u r) \\ u & x\end{array}\right)\end{array}\right]$ |
| :--- | :--- | :--- |

Some of our previous results: limit distributions
$\#$ loops $=\#$ " $\lambda x . x$ "

$\lambda x . \lambda y .(y \lambda w . w) x$

$$
X_{n}^{i d} \xrightarrow{\mathrm{D}} \text { Poisson(1) }
$$

Some of our previous results: limit distributions
\# bridges $=\#$ closed subterms

$\lambda x . \lambda y .(y \lambda z . \lambda w . z w) x \quad X_{n}^{\text {sub }} \xrightarrow{D}$ Poisson (1)

Some of our previous results: limit distributions
\# bridges $=\#$ closed subterms

$\lambda x . \lambda y .(y \lambda z . \lambda w . z w) x \quad X_{n}^{\text {sub }} \xrightarrow{\text { D }}$ Poisson(1)

Our strategy:

1) Track evolution of parameter in decompositions of cubic maps $/ \lambda$-terms

Our strategy:

1) Track evolution of parameter in decompositions of cubic maps $/ \lambda$-terms
different decompositions \rightsquigarrow differential equations, Hadamard products, ...

Our strategy:

1) Track evolution of parameter in decompositions of cubic maps/ λ-terms
different decompositions \rightsquigarrow differential equations, Hadamard products, ...

Our strategy:

1) Track evolution of parameter in decompositions of cubic maps $/ \lambda$-terms
different decompositions \rightsquigarrow differential equations, Hadamard products, ...

2) Extend tools for rapidly growing coefficients:

Our strategy:

1) Track evolution of parameter in decompositions of cubic maps $/ \lambda$-terms
different decompositions \rightsquigarrow differential equations, Hadamard products, ...

2) Extend tools for rapidly growing coefficients:

- Bender's theorem for compositions $\mathrm{F}(z, \mathrm{G}(z))$
- Coefficient asymptotics of Cauchy products

$$
\left[z^{n}\right](A(z) \cdot B(z)) \sim a_{n} b_{0}+a_{0} b_{n}+O\left(a_{n-1}+b_{n-1}\right)
$$

Our strategy:

1) Track evolution of parameter in decompositions of cubic maps $/ \lambda$-terms
different decompositions \rightsquigarrow differential equations, Hadamard products, ...

2) Extend tools for rapidly growing coefficients:

- Bender's theorem for compositions $\mathrm{F}(z, \mathrm{G}(z))$
- Coefficient asymptotics of Cauchy products

$$
\left[z^{n}\right](A(z) \cdot B(z)) \sim a_{n} b_{0}+a_{0} b_{n}+O\left(a_{n-1}+b_{n-1}\right)
$$

Mean number of β-redices in closed terms

- Tracking redices during the decomposition

Mean number of β-redices in closed terms

- Tracking redices during the decomposition
loops
!

Mean number of β-redices in closed terms

- Tracking redices during the decomposition

Mean number of β-redices in closed terms
-Tracking redices during the decomposition
Abstractions, subcase 1.1

Mean number of β-redices in closed terms

- Tracking redices during the decomposition

Abstractions, subcase 1.2

Mean number of β-redices in closed terms

- Tracking redices during the decomposition

Abstractions, subcase 1.3

\#ways to do this

number of subterms in $t=$ size of t

Mean number of β-redices in closed terms

- Building the specification of the OGF
- $|t|_{\lambda}=\frac{|t|+1}{3},|t|-|t|_{\lambda}=\frac{2|t|-1}{3}$
- $r \partial_{r} T_{0}=\sum_{t \in T_{0}}|t|_{\beta} z^{|t|} r^{|t|_{\beta}}$
- $\frac{z \partial_{z} \mathrm{~T}_{0}+\mathrm{T}_{0}}{3}=\sum_{\mathrm{t} \in \mathrm{T}_{0}} \frac{|\mathrm{t}|+1}{3} z^{|t|} v^{|t|_{\beta}}$
$\bullet \frac{2 z \partial_{z} \mathrm{~T}_{0}-\mathrm{T}_{0}}{3}=\sum_{t \in \mathrm{~T}_{0}} \frac{2|\mathrm{t}|-1}{3} z^{|t|} v^{|t|_{\beta}}$

Mean number of β-redices in closed terms
-Translating to a differential equation and pumping

$$
\begin{aligned}
\mathrm{T} & =-z\left(z^{2}(\mathrm{r}+1)(1+(\mathrm{r}-1) z \mathrm{~T})(\mathrm{r}-1) \partial_{\mathrm{r}} \mathrm{~T}\right. \\
& \left.-\frac{(1+z(\mathrm{r}-1) \mathrm{T}) z^{3}(\mathrm{r}+5) \mathrm{z}_{z} \mathrm{~T}}{3}-\frac{z^{3}(\mathrm{r}-1)^{2} \mathrm{~T}^{2}}{3}-\frac{4 z^{2}(\mathrm{r}-1) \mathrm{T}}{3}-z-\mathrm{T}^{2}\right)
\end{aligned}
$$

Mean number of β-redices in closed terms
-Translating to a differential equation and pumping

$$
\begin{aligned}
\mathrm{T} & =-z\left(z^{2}(\mathrm{r}+1)(1+(\mathrm{r}-1) z \mathrm{~T})(\mathrm{r}-1) \partial_{\mathrm{r}} \mathrm{~T}\right. \\
& \left.-\frac{(1+z(\mathrm{r}-1) \mathrm{T}) z^{3}(\mathrm{r}+5) \partial_{z} \mathrm{~T}}{3}-\frac{z^{3}(\mathrm{r}-1)^{2} \mathrm{~T}^{2}}{3}-\frac{4 z^{2}(\mathrm{r}-1) \mathrm{T}}{3}-z-\mathrm{T}^{2}\right)
\end{aligned}
$$

A plot of the dist. of redices for terms/maps of size $n=119$

A better lower bound

A better lower bound

- Consider the following three patterns of redices

$$
\begin{gathered}
\left(\lambda x \cdot C\left[\left(\begin{array}{ll}
x & u
\end{array}\right]\right)\left(\lambda y \cdot t_{2}\right)\left(p_{1}\right) \quad\left(\left(\lambda x \cdot \lambda y \cdot t_{1}\right) t_{2}\right) t_{3} \quad\left(p_{2}\right)\right. \\
(\lambda x \cdot x)\left(\lambda y \cdot t_{1}\right) t_{2}
\end{gathered}
$$

A better lower bound

- Consider the following three patterns of redices

$$
\begin{gathered}
(\lambda x \cdot C[(x u)])\left(\lambda y \cdot t_{2}\right)\left(p_{1}\right) \quad\left(\left(\lambda x \cdot \lambda y \cdot t_{1}\right) t_{2}\right) t_{3} \\
(\lambda x \cdot x)\left(\lambda y \cdot t_{1}\right) t_{2}
\end{gathered}
$$

- These are the only patterns whose reduction leaves the number of redices invariant.

A better lower bound

- Consider the following three patterns of redices

$$
\begin{gathered}
(\lambda x \cdot C[(x u)])\left(\lambda y \cdot t_{2}\right)\left(p_{1}\right) \quad\left(\left(\lambda x . \lambda y \cdot t_{1}\right) t_{2}\right) t_{3} \\
(\lambda x \cdot x)\left(\lambda y \cdot t_{1}\right) t_{2}
\end{gathered}
$$

- These are the only patterns whose reduction leaves the number of redices invariant.
- Gives a lower bound on the number of steps to reach normal form:

$$
\# \text { steps } \geqslant|t|_{\beta}+|t|_{\mathfrak{p} 1}+|t|_{\mathfrak{p}_{2}}+|t|_{\mathfrak{p}_{3}}
$$

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:
Cuts destroying a p_{1}-pattern:

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:
Cuts creating a p_{1}-pattern:

Thus we also need to keep track of:

$$
\left.C_{1}\left[\lambda x . C_{2}\left[\left(t_{1} x\right)\right]\right)\left(\lambda y . t_{2}\right)\right] \quad C_{1}\left[(\lambda x . x)\left(\lambda y . t_{2}\right)\right]
$$

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:
Applications creating p_{1} and auxilliary patterns:

Thus, for an app. of the form ($\left.l_{1} \lambda y . t_{1}\right)$ we need to consider how l_{1} was formed.

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
A=z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda
$$

$$
+(v-1) z\left(z^{2}+z^{4} S_{z}+(u-v+2(1-v)) z^{3} \mathrm{~S}_{\mathfrak{u}}+2(1-u) z^{3} \mathrm{~S}_{\mathfrak{u}}\right) \cdot \Lambda
$$

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
A=z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda
$$

$$
+(v-1) z\left(z^{2}+z^{4} \mathrm{~S}_{z}+(\mathfrak{u}-v+2(1-v)) z^{3} \mathrm{~S}_{\mathfrak{u}}+2(1-u) z^{3} \mathrm{~S}_{\mathfrak{u}}\right) \cdot \Lambda
$$

- Extracting the mean:
$\left.\partial_{\mathcal{u}} S\right|_{\mathcal{u}=1, v=1}$
$=\left.\left(2 z S \partial_{\mathfrak{u}} S+2 z^{4} \partial_{z, \mathfrak{u}} S+z^{7} \partial_{z} S+2 z^{9}\left(\partial_{z} S\right)^{2}-5 z^{3} \partial_{\mathfrak{u}} S+z^{3} \partial_{v} S\right)\right|_{\mathfrak{u}=1, v=1}$

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
A=z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda
$$

$$
+(v-1) z\left(z^{2}+z^{4} S_{z}+(u-v+2(1-v)) z^{3} \mathrm{~S}_{\mathfrak{u}}+2(1-u) z^{3} \mathrm{~S}_{\mathfrak{u}}\right) \cdot \Lambda
$$

- Extracting the mean:

$$
\begin{aligned}
& \left.\partial_{\mathcal{u}} S\right|_{\mathcal{U}=1, v=1} \quad \text { bijection: } \partial_{v} \leftrightarrow \partial_{\mathcal{U}} \\
& =\left.\left(2 z S \partial_{\mathfrak{u}} S+2 z^{4} \partial_{z, \mathfrak{u}} S+z^{7} \partial_{z} S+2 z^{9}\left(\partial_{z} S\right)^{2}-5 z^{3} \partial_{\mathfrak{u}} S+z^{3} \partial_{v} S\right)\right|_{\mathcal{u}=1, v=1}
\end{aligned}
$$

Enumerating p_{1}-patterns

- Finally we obtain a mean number of occurences:

$$
\mathbb{E}\left[\# \mathrm{p}_{1} \text { patterns }\right] \sim \frac{1}{6}
$$

Enumerating p_{1}-patterns, p_{2}-patterns, and p_{3}-patterns

- Finally we obtain a mean number of occurences:

$$
\mathbb{E}\left[\# \mathrm{p}_{1} \text { patterns }\right] \sim \frac{1}{6}
$$

- Analogously, we have a mean number of occurences for p_{2} :

$$
\mathbb{E}\left[\# \mathrm{p}_{2} \text { patterns }\right] \sim \frac{1}{48}
$$

Both are asymptotically constant in expectation!

- Via different methods, we obtain:

$$
\begin{aligned}
& \mathbb{E}\left[\# \mathrm{p}_{3} \text { patterns }\right] \geqslant \frac{n}{240} \\
& \text { Asymptotically linear in } n!
\end{aligned}
$$

Conclusion

- Expected \#steps required to reduce a random term to its normal form?

Conclusion

- Expected \#steps required to reduce a random term to its normal form?
- Combined techniques from combinatorics and logic to count patterns in decorated cubic maps and linear λ-terms

Conclusion

- Expected \#steps required to reduce a random term to its normal form?
- Combined techniques from combinatorics and logic to count patterns in decorated cubic maps and linear λ-terms
- Lower bound obtained, for terms of size \mathfrak{n} :

$$
\mathbb{E}[\# \text { steps to reach normal form }] \geqslant \frac{11 n}{240}
$$

which is quite close to Noam Zeilberger's conjecture of

$$
\mathbb{E}[\# \text { steps }]=\frac{\mathfrak{n}}{21}!
$$

Conclusion

- Expected \#steps required to reduce a random term to its normal form?
- Combined techniques from combinatorics and logic to count patterns in decorated cubic maps and linear λ-terms
- Lower bound obtained, for terms of size \mathfrak{n} :

$$
\mathbb{E}[\# \text { steps to reach normal form }] \geqslant \frac{11 n}{240}
$$

which is quite close to Noam Zeilberger's conjecture of

$$
\mathbb{E}[\# \text { steps }]=\frac{\mathfrak{n}}{21}!
$$

Thank you!

Bonus slides!

The λ-calculus

- A universal system of computation

The λ-calculus

- A universal system of computation
- Its terms are formed inductively
$\overline{x \vdash x}$ var

The λ-calculus

- A universal system of computation
- Its terms are formed inductively

The λ-calculus

- A universal system of computation
- Its terms are formed inductively

The λ-calculus

- A universal system of computation
- Its terms are formed inductively

The λ-calculus

- A universal system of computation
- Its terms are formed inductively

The λ-calculus

- A universal system of computation
- Its terms are formed inductively

abstractions represent functions " $x \mapsto t$ "
applications represent " $\mathrm{f}(\mathrm{t})$ "

The λ-calculus

- A universal system of computation
- Its terms are formed inductively

$$
\frac{\Gamma, x, y, \Delta \vdash \mathrm{t}}{\Gamma, y, x, \Delta \vdash \mathrm{t}} \text { exc } \frac{\Gamma \vdash \mathrm{t}}{\Gamma, x \vdash \mathrm{t}} \text { wea } \frac{\Gamma, x, y \vdash \mathrm{t}}{\Gamma, x \vdash \mathrm{t}[\mathrm{y}:=\mathrm{x}]} \text { con }
$$

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{t}_{1}\left[v:=\mathrm{t}_{2}\right]
$$

"replace free occurences of v in t_{1} with t_{2} "
(renaming variables in t_{1} if necessary, to avoid capturing variables of t_{2})

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{t}_{1}\left[v:=\mathrm{t}_{2}\right]
$$

"replace free occurences of v in t_{1} with t_{2} "
(renaming variables in t_{1} if necessary, to avoid capturing variables of t_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{t}_{1}\left[v:=\mathrm{t}_{2}\right]
$$

"replace free occurences of v in t_{1} with t_{2} "
(renaming variables in t_{1} if necessary, to avoid capturing variables of t_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$
- Dynamics of the λ-calculus: β-reductions
(λ-terms together with β-reduction are enough to encode any computation!)

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]
$$

Represents:

$$
\mathrm{f}=\chi \mapsto \mathrm{t}_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{t}_{1}\left[v:=\mathrm{t}_{2}\right]
$$

"replace free occurences of v in t_{1} with t_{2} "
(renaming variables in t_{1} if necessary, to avoid capturing variables of t_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$
- Dynamics of the λ-calculus: β-reductions
(λ-terms together with β-reduction are enough to encode any computation!)
redex $\left(\left(\lambda x . t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]$
Represents:

$$
\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}

β-reducing general terms

- β-reduction is quite complicated:
- Reducing a redex can create new redices!
$((\lambda x .(x z))(\lambda y . y)) \xrightarrow{\beta}((\lambda y . y) z)$
- Terms may never reach a normal form, their size might even increase! $((\lambda x .(x x))(\lambda x .(x \times x))) \xrightarrow{\beta}(\lambda x .(x \times x))(\lambda x .(x \times x))(\lambda x .(x \times x))$
- Order in which redices are reduced matters!
$(\lambda x . z)((\lambda x .(x x))(\lambda x .(x x))) \longrightarrow(\lambda x . z)\left(\left(\begin{array}{ll}x & x)[x:=(\lambda x .(x \quad x))])=\ldots \\ \longrightarrow z[x:=(\lambda x . x \quad x)(\lambda x . x \quad x)]=z\end{array}\right.\right.$

Previous work on the reduction of λ-terms

Previous work on the reduction of λ-terms

- Asymptotically almost all λ-terms are strongly normalizing. [DGKRTZ13]

Previous work on the reduction of λ-terms

- Asymptotically almost all λ-terms are strongly normalizing. [DGKRTZ13]
- Asymptotically almost no λ-term is strongly normalizing. [DGKRTZ13,BGLZ16]

Previous work on the reduction of λ-terms

- Asymptotically almost all λ-terms are strongly normalizing. [DGKRTZ13]
- Asymptotically almost no λ-term is strongly normalizing. [DGKRTZ13,BGLZ16]

Previous work on the reduction of λ-terms

- Asymptotically almost all λ-terms are strongly normalizing. [DGKRTZ13]
Model based on previously-presented syntax and size defined recursively as:

$$
|x|=0,|(a b)|=1+|a|+|b|,|\lambda x . t|=1+|t|
$$

- Asymptotically almost no λ-term is strongly normalizing. [DGKRTZ13,BGLZ16] Model based on de Bruijn indices or combinators (together with appropriate size functions)

Parameter sensitive to the syntax and the size of terms!

- Almost every simply-typed λ-term has a long β-reduction sequence [SAKT17]

Subfamilies of λ-terms
General terms: no restrictions on variable use

$$
\lambda x . \lambda y . x\left(\begin{array}{ll}
y & a
\end{array}\right) \quad \lambda x . \lambda y . x \quad(\lambda x . x x)(\lambda y . y y)
$$

Subfamilies of λ-terms
General terms: no restrictions on variable use

Subfamilies of λ-terms

General terms: no restrictions on variable use

Subfamilies of λ-terms

General terms: no restrictions on variable use

affine $=$ no contraction linear $=$ no contraction, no weakening

Enumerating p_{3}-patterns

- As before, we'll also need to enumerate auxilliary patterns:

$$
\left(\lambda x \cdot \lambda y \cdot t_{1}\right) \quad\left(\lambda x \cdot \lambda y \cdot t_{1}\right) t_{2} t_{3}
$$

$$
\left(\lambda x . \lambda y \cdot t_{1}\right) t_{2}
$$

- However we run into a problem:

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(V_{n}\right)=\mathbb{E}\left(V_{n} \mid \Lambda_{n}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|L_{n}\right|}+\mathbb{E}\left(V_{n} \mid A_{n}\right) \cdot \frac{\left|A_{n}\right|}{\left|L_{n}\right|}
$$

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(\mathrm{V}_{n}\right)=\mathbb{E}\left(\mathrm{V}_{n} \mid \Lambda_{n}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}+\mathbb{E}\left(\mathrm{V}_{n} \mid A_{n}\right) \cdot \frac{\left|A_{n}\right|}{\left|\mathrm{L}_{n}\right|}
$$

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(\mathrm{V}_{n}\right)=\mathbb{E}\left(\mathrm{V}_{n} \mid \Lambda_{n}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}+\mathbb{E}\left(\mathrm{V}_{n} \mid A_{n}\right) \cdot \frac{\left|A_{n}\right|}{\left|\mathrm{L}_{n}\right|}
$$

Magic: linear over families of all possible abstractions created via cuts from a fixed term!

$$
\begin{aligned}
& \bar{X}_{n}=(2 n-12) \bar{X}_{n-3} 2 \bar{Y}_{n-3} \\
& \bar{Y}_{n}=(2 n-6) Y_{n-3}-6 Y_{n-3} \\
& \bar{Z}_{n}=2(n-4)\left(Z+\mathbf{1}_{\Lambda_{n}}\right)
\end{aligned}
$$

where: X_{n} counts $\#$ of p_{1} patt. over terms of size n
Y_{n} is the same for the pattern ($\lambda x . \lambda y . t_{1}$) t_{2}, and
Z is the same for the pattern ($\lambda x . \lambda y . \mathrm{t}_{1}$)
The $\overline{\mathrm{V}}$ for $\mathrm{V} \in\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}, \mathrm{Z}_{\mathrm{n}}\right\}$ are cummulatives over families of abstractions

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., \& Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms.
The Electronic Journal of Combinatorics, P30-P30.
[Z16] Zeilberger, N. (2016).
Linear lambda terms as invariants of rooted trivalent maps.
Journal of functional programming, 26.
[AB00] Arques, D., \& Béraud, J. F. (2000).
Rooted maps on orientable surfaces, Riccati's equation and continued fraction Discrete mathematics, 215(1-3), 1-12.
[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., \& Soria, M. (2001).
Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures \& Algorithms, 19(3-4), 194-246.

Bibliography

[BR86] Bender, E. A., \& Richmond, L. B. (1986).
A survey of the asymptotic behaviour of maps.
Journal of Combinatorial Theory, Series B, 40(3), 297-329.
[BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., \& Zaionc, M. (2016).
A natural counting of lambda terms.
In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
[BBD19] Bendkowski, M., Bodini, O., \& Dovgal, S. (2019).
Statistical Properties of Lambda Terms.
The Electronic Journal of Combinatorics, P4-1.
[BCDH18] Bodini, O., Courtiel, J., Dovgal, S., \& Hwang, H. K. (2018, June).
Asymptotic distribution of parameters in random maps.
In 29th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).
An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.
[FS93] Flajolet, P., \& Soria, M. (1993).
General combinatorial schemas: Gaussian limit distributions and exponential tails.
Discrete Mathematics, 114(1-3), 159-180.
[B18] Borinsky, M. (2018).
Generating Asymptotics for Factorially Divergent Sequences.
The Electronic Journal of Combinatorics, P4-1.
[BKW21] Banderier, C., Kuba, M., \& Wallner, M. (2021).
Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.
arXiv preprint arXiv:2103.03751.

Bibliography

[BGJ13] Bodini, O., Gardy, D., \& Jacquot, A. (2013).
Asymptotics and random sampling for BCI and BCK lambda terms
Theoretical Computer Science, 502, 227-238.
[M04] Mairson, H. G. (2004).
Linear lambda calculus and PTIME-completeness
Journal of Functional Programming, 14(6), 623-633.
[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J., J., Grygiel, K., \& David, R. (2013)

Asymptotically almost all λ-terms are strongly normalizing
Logical Methods in Computer Science, 9
[SAKT17] Sin'Ya, R., Asada, K., Kobayashi, N., \& Tsukada, T. (2017)
Almost Every Simply Typed λ-Term Has a Long β-Reduction Sequence In International Conference on Foundations of Software Science and and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg. 25

