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Some parameter
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Yh(z) g.f. with
“some parameter” ≤ h
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The protection number of a vertex

Definition
The protection number of a vertex v is the length of the shortest
path from v to any leaf contained in the maximal subtree where v
is a root.
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Maximum protection number: Some examples

A maximum protection number of 0 means the tree is a single
vertex.

Paths (vertices are a leaf or have exactly one child) have a
very high ratio of protection number to number of vertices.
Trees where vertices generally have more than one child have a
low ratio of protection number to number of vertices.
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Timeline of work on protection number of trees

Number of vertices with protection number at least 2:
in ordered trees. Cheon and Shapiro (2008).
in k-ary trees, digital search trees, binary search trees,
tries and suffix trees, random recursive trees.
Devroye, Du, Gaither, Holmgren, Homma, Janson, Mahmoud,
Mansour, Prodinger, Sellke, Ward (2010–2015).

Number of vertices with protection number at least k , again in
various types of trees.
Bóna, Copenhaver, Devroye, Heuberger, Janson, Prodinger, Pittel
(2014–2017).

Protection number of the root. Plane trees, simply generated
trees, Pólya trees.
Gittenberger, Gołębiewski, Heuberger, Klimczak, Larcher,
Prodinger, Sulkowska (2017–2021).

Sarah J. Selkirk University of Klagenfurt 8



Simply generated trees

Definition
A simply generated tree has a generating function Y which satisfies
the functional equation Y (x) = xΦ(Y (x)) where Φ is a weight
generating function Φ(x) =

∑
n≥0 wnx

n, wn ≥ 0.

Complete binary trees: B(x) = x + xB(x)2 = x(1+B(x)2).
Plane trees: P(x) = x + xP(x) + xP(x)2 + · · · = x 1

1−P(x) .
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Simply generated trees

Definition
A simply generated tree has a generating function Y which satisfies
the functional equation Y (x) = xΦ(Y (x)) where Φ is a weight
generating function Φ(x) =

∑
n≥0 wnx

n, wn ≥ 0.

Some standard facts/assumptions when working with simply
generated trees:

wn > 0 means the tree can have vertices with exactly n
children.
w0 = 1 (Φ(0) = 1) and for some n ≥ 2, wn > 0.
ρ is the (finite) radius of convergence or dominant singularity
of Y (x).
τ = Y (ρ), so that Φ(τ) = τΦ′(τ) and ρ = τ/Φ(τ) = 1/Φ′(τ).
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Protection number of simply generated trees

Let Yh,k be the generating function for simply generated trees with:

the maximum protection number of any vertex is ≤ h,
the protection number of the root is ≥ k .

Yh,0(x) = Yh,1(x) + x ,

Yh,k(x) = xΦ(Yh,k−1(x))− xΦ(Yh,h(x)), 1 ≤ k ≤ h.
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Protection number of simply generated trees
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x
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· · ·
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Protection number of simply generated trees

The system of functional equations:

Yh,0(x) = Yh,1(x) + x ,

Yh,k(x) = xΦ(Yh,k−1(x))− xΦ(Yh,h(x)), 1 ≤ k ≤ h.

We set x := ρh (common radius of convergence of system for fixed
h) and ηh,k := Yh,k(ρh), so the system becomes

ηh,0 = ηh,1 + ρh,

ηh,k = ρhΦ(ηh,k−1)− ρhΦ(ηh,h), 1 ≤ k ≤ h,

Determinant of Jacobian:

0 =
h∏

j=1

(
ρhΦ′(ηh,j)

)
+
(
1− ρhΦ′(ηh,0)

)(
1 +

h∑
k=2

h∏
j=k

(
ρhΦ′(ηh,j)

))
.
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Theorem of Prodinger and Wagner

For details: Helmut Prodinger and Stephan Wagner. Bootstrapping and
double-exponential limit laws. DMTCS, 2015.
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Goal: Apply the Theorem of Prodinger and Wagner

Problem 1
Show that the dominant singularity for Yh,0 is ρh ∈ R, where

ρh = ρ+ cζh + o(ζh)

as h→∞ for some constants ρ > 0, c > 0 and 0 < ζ < 1.

The system that we must use to obtain this result is the following:

ηh,0 = ηh,1 + ρh,

ηh,k = ρhΦ(ηh,k−1)− ρhΦ(ηh,h)

0 =
h∏

j=1

(
ρhΦ′(ηh,j)

)
+
(
1− ρhΦ′(ηh,0)

)(
1 +

h∑
k=2

h∏
j=k

(
ρhΦ′(ηh,j)

))
.
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Aim: ρh = ρ+ cζh + o(ζh)

Show:
1 ρh → ρ.

2 ηh,k → ηk and ηh,k ≤ AB1
k for some constant B1 < 1.

3

h∏
j=1

(
ρhΦ′(ηh,j)

)
= O((ρΦ′(0))h) and

1 +
h∑

k=2

h∏
j=k

(
ρhΦ′(ηh,j)

)
→ 1

1− ρΦ′(0)
.

4 ηh,0 = τ + O(B2
h) and ρh = ρ+ O(B2

h).

5

h∏
j=1

(
ρhΦ′(ηh,j)

)
= (ρΦ′(0))hλ2(1 + O(B3

h)) and

1 +
h∑

k=2

h∏
j=k

(
ρhΦ′(ηh,j)

)
=

1
1− ρΦ′(0)(1 + O(B4

h))
.
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Asymptotic behaviour of the singularity

Lemma (Heuberger, SJS, Wagner, 2022+)
As h→∞, we have that

ρh = ρ+
1

Φ(τ)
(ρΦ′(0))h+1λ1(1− ρΦ′(0)) + o((ρΦ′(0))h),

where
λ1 = η0

∏
i≥1

ηi
ρΦ′(0)ηi−1

.

With some additional analysis. . .
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Result

Theorem (Heuberger, SJS, Wagner, 2022+)
The probability that a random tree of size n has maximum
protection number ≤ h is

yh,n
yn

= exp
(
− 1
τ

Φ′(0)λ1(1− ρΦ′(0))n(ρΦ′(0))h
)

(1 + o(1))

as n→∞ and h = log(ρΦ′(0))−1 n + O(1).
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Binary trees, Φ(x) = (1 + x)2: Actual data (marks) plotted with the distribution (line)
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There’s more!

Proofs and results depend on Φ′(0) 6= 0. So we must consider the
case where Φ′(0) = w1 = 0 separately.
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0
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Set r = min{s ∈ N : Φ(s)(0) 6= 0}, r ≥ 2.

ρh = ρ+ cζr
h

+ o(ζr
h
).

Sarah J. Selkirk University of Klagenfurt 17



Thank you!
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