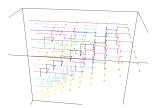
Plethysm and the algebra of uniform block permutations

Anne Schilling

Department of Mathematics, UC Davis

based on joint work with Rosa Orellana (Dartmouth), Franco Saliola (UQAM), Mike Zabrocki (York), Algebraic Combinatorics (2022), to appear OSZ, Laura Colmenarejo (NCSU) in progress



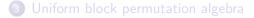
Algorithmic and Enumerative Combinatorics Vienna July 5, 2022 The plethysm problem

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

FPSAC 2023 at UC Davis: July 17-21, 2023

fpsac23.math.ucdavis.edu

2 Diagram algebras



Representations

G group, V vector space

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Representations

G group, V vector space

• Representation $\rho: G \to \operatorname{End}(V)$ homomorphism

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Representations

G group, V vector space

- Representation $\rho: G \to \operatorname{End}(V)$ homomorphism
- Character char(g) = traceρ(g)

Representations

G group, V vector space

- Representation $\rho: G \to \operatorname{End}(V)$ homomorphism
- Character char(g) = trace $\rho(g)$

Remark

Characters are class functions, that is, they are constant on conjugacy classes $char(hgh^{-1}) = char(g)$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Plethysm via representations of GL_n

Definition

 $GL_n(\mathbb{C}) =$ invertible $n \times n$ matrices

Plethysm via representations of GL_n

Definition

 $GL_n(\mathbb{C}) =$ invertible $n \times n$ matrices

- GL_n -representation $\rho: GL_n \rightarrow GL_m$
- GL_m -representation $\tau: GL_m \rightarrow GL_r$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Plethysm via representations of GL_n

Definition

 $GL_n(\mathbb{C}) =$ invertible $n \times n$ matrices

- GL_n -representation $\rho: GL_n \to GL_m$
- GL_m -representation $\tau: GL_m \rightarrow GL_r$
- Composition is *GL_n*-representation

$$\tau \circ \rho \colon \operatorname{GL}_n \to \operatorname{GL}_r$$

(日)、

-

Plethysm via representations of GL_n

Definition

 $GL_n(\mathbb{C}) =$ invertible $n \times n$ matrices

- GL_n -representation $\rho: GL_n \to GL_m$
- GL_m -representation $\tau: GL_m \rightarrow GL_r$
- Composition is *GL_n*-representation

$$\tau \circ \rho \colon \mathit{GL}_n \to \mathit{GL}_r$$

Definition

Character of composition is plethysm:

$$\operatorname{char}(\tau \circ \rho) = \operatorname{char}(\tau)[\operatorname{char}(\rho)]$$

Frobenius map

 R^n space of class functions of GL_n Λ^n ring of symmetric functions of degree n

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Frobenius map

 R^n space of class functions of GL_n Λ^n ring of symmetric functions of degree n

Power sum symmetric function p_{λ}

$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_\ell}$$

 $p_r = x_1^r + x_2^r + \cdots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Frobenius map

 R^n space of class functions of GL_n Λ^n ring of symmetric functions of degree n

Power sum symmetric function p_{λ}

$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_{\ell}}$$
$$p_r = x_1^r + x_2^r + \cdots$$

Schur function s_{λ}

$$s_{\lambda} = \sum_{T \in \mathsf{SSYT}(\lambda)} x^{\mathsf{wt}(T)}$$

Frobenius map

 R^n space of class functions of GL_n Λ^n ring of symmetric functions of degree n

Power sum symmetric function p_{λ}

$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_{\ell}}$$
$$p_r = x_1^r + x_2^r + \cdots$$

Schur function s_{λ}

$$s_{\lambda} = \sum_{T \in \text{SSYT}(\lambda)} x^{\text{wt}(T)}$$

Hall inner product

$$\langle s_{\lambda}, s_{\mu} \rangle = \begin{cases} 1 & \text{if } \lambda = \mu \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Frobenius map – continued

Definition

The Frobenius characteristic map is $ch^n \colon R^n \to \Lambda^n$

$$\mathsf{ch}^n(\chi) = \sum_{\mu \vdash n} \frac{1}{\mathsf{z}_\mu} \chi_\mu \mathsf{p}_\mu$$

where $z_{\mu} = 1^{a_1}a_1!2^{a_2}a_2!\cdots$ for $\mu = 1^{a_1}2^{a_2}\cdots$

Frobenius map – continued

Definition

The Frobenius characteristic map is $ch^n \colon R^n \to \Lambda^n$

$$\mathsf{ch}^n(\chi) = \sum_{\mu \vdash n} rac{1}{\mathsf{z}_\mu} \chi_\mu \mathsf{p}_\mu$$

where
$$z_{\mu} = 1^{a_1} a_1 ! 2^{a_2} a_2 ! \cdots$$
 for $\mu = 1^{a_1} 2^{a_2} \cdots$

Remark

The irreducible character χ^{λ} indexed by λ under the Frobenius map is

$$\mathsf{ch}^n(\chi^\lambda) = s_\lambda$$

by the identity

$$s_{\lambda} = \sum_{\mu} rac{1}{z_{\mu}} \chi^{\lambda}_{\mu} p_{\mu}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Plethysm for symmetric functions

Definition

 $f,g \in \Lambda$ symmetric functions Monomial expansion $f = \sum_{i \geqslant 1} x^{a^i}$

Plethysm for symmetric functions

Definition

 $f, g \in \Lambda$ symmetric functions Monomial expansion $f = \sum_{i \ge 1} x^{a^i}$ The plethysm g[f] is defined by

$$g[f] = g(x^{a^1}, x^{a^2}, \ldots)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Plethysm for symmetric functions

Definition

 $f, g \in \Lambda$ symmetric functions Monomial expansion $f = \sum_{i \ge 1} x^{a^i}$ The plethysm g[f] is defined by

$$g[f] = g(x^{a^1}, x^{a^2}, \ldots)$$

Remark

Plethysm: Greek for multiplication

Plethysm for symmetric functions

Definition

 $f, g \in \Lambda$ symmetric functions Monomial expansion $f = \sum_{i \ge 1} x^{a^i}$ The plethysm g[f] is defined by

$$g[f] = g(x^{a^1}, x^{a^2}, \ldots)$$

Remark

Plethysm: Greek for multiplication

Example

$$s_1 = x_1 + x_2 + \cdots$$
 \Rightarrow $g[s_1] = g(x_1, x_2, \ldots) = g$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Plethysm for symmetric functions

Definition

 $f, g \in \Lambda$ symmetric functions Monomial expansion $f = \sum_{i \ge 1} x^{a^i}$ The plethysm g[f] is defined by

$$g[f] = g(x^{a^1}, x^{a^2}, \ldots)$$

Remark

Plethysm: Greek for multiplication

Example

$$\begin{array}{ll} s_1 = x_1 + x_2 + \cdots & \Rightarrow & g[s_1] = g(x_1, x_2, \ldots) = g\\ p_n = x_1^n + x_2^n + \cdots & \Rightarrow & f[p_n] = f(x_1^n, x_2^n, \ldots) = \sum_{i \ge 1} x^{a^i n} = p_n[f] \end{array}$$

▲□> ▲圖> ▲目> ▲目> 二目 - のへで

Plethysm for symmetric functions – example

Example

$$s_2[x_1, x_2] = x_1^2 + x_1 x_2 + x_2^2$$

111 12 22

▲ロ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Plethysm for symmetric functions – example

Example

$$s_2[x_1, x_2] = x_1^2 + x_1 x_2 + x_2^2$$

111 12 22

Plethysm

$$\begin{split} s_2[s_2[x_1, x_2]] = & s_2[x_1^2, x_1 x_2, x_2^2] \\ = & x_1^4 + x_1^3 x_2 + x_1^2 x_2^2 + x_1^2 x_2^2 + x_1 x_2^3 + x_2^4 \\ \hline 1 1 1 1 2 1 3 2 2 2 3 3 3 \\ \hline 1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 \\ = & s_4[x_1, x_2] + s_{2,2}[x_1, x_2] \end{split}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Plethysm problem

Problem

Find a combinatorial interpretation for the coefficients $a_{\lambda\mu}^\nu \in \mathbb{N}$ in the expansion

$$m{s}_\lambda[m{s}_\mu] = \sum_
u m{a}^
u_{\lambda\mu}m{s}_
u$$

Plethysm problem

Problem

Find a combinatorial interpretation for the coefficients $a_{\lambda\mu}^\nu \in \mathbb{N}$ in the expansion

$$s_\lambda[s_\mu] = \sum_
u a^
u_{\lambda\mu} s_
u$$

Problem

Find a crystal on tableaux of tableaux which explains $a_{\lambda\mu}^{\nu}$.

Plethysm problem – special cases

Partition λ is even if all columns have even length

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Plethysm problem – special cases

Partition λ is even if all columns have even length

Partition λ is threshold if $\lambda'_i = \lambda_i + 1$ for all $1 \leq i \leq d(\lambda)$

Plethysm problem – special cases

Partition λ is even if all columns have even length

Partition
$$\lambda$$
 is threshold if $\lambda_i' = \lambda_i + 1$ for all $1 \leqslant i \leqslant d(\lambda)$ —

Theorem

We have

$$s_{h}[s_{2}] = \sum_{\substack{\lambda \vdash 2h \\ \lambda \text{ even}}} s_{\lambda'} \qquad s_{h}[s_{1^{2}}] = \sum_{\substack{\lambda \vdash 2h \\ \lambda \text{ even}}} s_{\lambda}
s_{1^{h}}[s_{2}] = \sum_{\substack{\lambda \vdash 2h \\ \lambda \text{ threshold}}} s_{\lambda'} \qquad s_{1^{h}}[s_{1^{2}}] = \sum_{\substack{\lambda \vdash 2h \\ \lambda \text{ threshold}}} s_{\lambda}$$

э

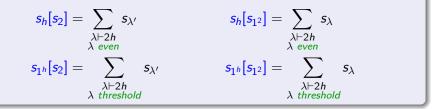
Plethysm problem – special cases

Partition λ is even if all columns have even length

Partition
$$\lambda$$
 is threshold if $\lambda_i' = \lambda_i + 1$ for all $1 \leqslant i \leqslant d(\lambda)$

Theorem

We have



Appeared in Littlewood 1950, Macdonald 1998 (pg 138)

Littlewood and Macdonald

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Easy proof – *s*-perp trick

Action of s_{λ}^{\perp} on $f \in \Lambda$

$$egin{aligned} & egin{aligned} s_\lambda^\perp f = \sum_\mu ig\langle f, eta_\lambda eta_\mu ig
angle \, egin{aligned} s_\mu & eta_\mu \ \end{pmatrix} eta_\mu \end{aligned}$$

Easy proof – *s*-perp trick

Action of s_{λ}^{\perp} on $f \in \Lambda$

$$s_\lambda^\perp f = \sum_\mu ig\langle f, s_\lambda s_\mu
angle \, s_\mu$$

Proposition (The *s*-perp trick)

Let f and g be two symmetric functions of homogeneous degree d. If

$$s_r^\perp f = s_r^\perp g$$
 for all $1 \leqslant r \leqslant d$,

then f = g. Same statement is true if s_r^{\perp} is replaced by s_{1r}^{\perp} .

・ロト・西ト・山田・山田・山市・山口・

Easy proof – *s*-perp trick

Action of s_{λ}^{\perp} on $f \in \Lambda$

$$s_{\lambda}^{\perp}f=\sum_{\mu}\left\langle f,s_{\lambda}s_{\mu}
ight
angle s_{\mu}$$

Proposition (The *s*-perp trick)

Let f and g be two symmetric functions of homogeneous degree d. If

$$s_r^\perp f = s_r^\perp g$$
 for all $1 \leqslant r \leqslant d$,

then f = g. Same statement is true if s_r^{\perp} is replaced by s_{1r}^{\perp} .

The following hold:

$$s_r^{\perp} s_{1^h}[s_{1^w}] = s_{1^{h-r}}[s_{1^w}] s_{1^r}[s_{1^{w-1}}]$$
$$s_r^{\perp} s_h[s_{1^w}] = s_{h-r}[s_{1^w}] s_r[s_{1^{w-1}}]$$

$$s_{1^{r}}^{\perp} s_{h}[s_{w}] = s_{h-r}[s_{w}] s_{1^{r}}[s_{w-1}]$$
$$s_{1^{r}}^{\perp} s_{1^{h}}[s_{w}] = s_{1^{h-r}}[s_{w}] s_{r}[s_{w-1}]$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

イロト イポト イヨト イヨト

Easy proof – *s*-perp trick

Action of s_{λ}^{\perp} on $f \in \Lambda$

$$egin{aligned} egin{aligned} egi$$

Proposition (The *s*-perp trick)

Let f and g be two symmetric functions of homogeneous degree d. If

$$s_r^{\perp} f = s_r^{\perp} g$$
 for all $1 \leq r \leq d$,

then f = g. Same statement is true if s_r^{\perp} is replaced by s_{1r}^{\perp} .

Remark

Benefit: Fast computational algorithm to compute plethysm of Schur functions!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relationship between restriction problem and plethysm

Restriction: λ partition with at most *n* parts

$$\mathsf{Res}^{GL_n}_{S_n} V^{\lambda}_{GL_n} = igoplus \left(V^{\mu}_{S_n}
ight)^{r_{\lambda\mu}}$$

Relationship between restriction problem and plethysm

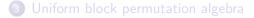
Restriction: λ partition with at most *n* parts

$$\mathsf{Res}_{\mathcal{S}_n}^{\mathcal{GL}_n} V_{\mathcal{GL}_n}^{\lambda} = \bigoplus \left(V_{\mathcal{S}_n}^{\mu} \right)^{r_{\lambda\mu}}$$

 $r_{\lambda\mu} = ext{coefficient of } s_\mu$ in the plethysm $s_{(n-|\lambda|,\lambda)}[s_{(1)}+s_{(2)}+\cdots]$

The plethysm problem

2 Diagram algebras



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Diagram algebras

• Restrict diagonal action of GL_n on $V^{\otimes k}$ to $S_n \subseteq GL_n$: for $\sigma \in S_n$

$$\sigma(\mathbf{v}_{i_1}\otimes\mathbf{v}_{i_2}\otimes\cdots\otimes\mathbf{v}_{i_k})=\sigma\mathbf{v}_{i_1}\otimes\cdots\otimes\sigma\mathbf{v}_{i_k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Diagram algebras

• Restrict diagonal action of GL_n on $V^{\otimes k}$ to $S_n \subseteq GL_n$: for $\sigma \in S_n$

$$\sigma(\mathbf{v}_{i_1}\otimes\mathbf{v}_{i_2}\otimes\cdots\otimes\mathbf{v}_{i_k})=\sigma\mathbf{v}_{i_1}\otimes\cdots\otimes\sigma\mathbf{v}_{i_k}$$

• What commutes with this action?

Diagram algebras

• Restrict diagonal action of GL_n on $V^{\otimes k}$ to $S_n \subseteq GL_n$: for $\sigma \in S_n$

$$\sigma(\mathbf{v}_{i_1}\otimes\mathbf{v}_{i_2}\otimes\cdots\otimes\mathbf{v}_{i_k})=\sigma\mathbf{v}_{i_1}\otimes\cdots\otimes\sigma\mathbf{v}_{i_k}$$

What commutes with this action?
 Answer: Partition algebra P_k(n)

Martin, Jones 1990s

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Diagram algebras

• Restrict diagonal action of GL_n on $V^{\otimes k}$ to $S_n \subseteq GL_n$: for $\sigma \in S_n$

$$\sigma(\mathsf{v}_{i_1}\otimes\mathsf{v}_{i_2}\otimes\cdots\otimes\mathsf{v}_{i_k})=\sigma\mathsf{v}_{i_1}\otimes\cdots\otimes\sigma\mathsf{v}_{i_k}$$

- What commutes with this action? **Answer:** Partition algebra $P_k(n)$ Martin, Jones 1990s
- Basis: set partitions of $\{1, 2, \dots, k\} \cup \{\overline{1}, \overline{2}, \dots, \overline{k}\}$

Diagram algebras

• Restrict diagonal action of GL_n on $V^{\otimes k}$ to $S_n \subseteq GL_n$: for $\sigma \in S_n$

$$\sigma(\mathbf{v}_{i_1}\otimes\mathbf{v}_{i_2}\otimes\cdots\otimes\mathbf{v}_{i_k})=\sigma\mathbf{v}_{i_1}\otimes\cdots\otimes\sigma\mathbf{v}_{i_k}$$

- What commutes with this action? **Answer:** Partition algebra $P_k(n)$ Martin, Jones 1990s
- Basis: set partitions of $\{1, 2, \dots, k\} \cup \{\overline{1}, \overline{2}, \dots, \overline{k}\}$

Example

The set partition $\pi = \{\{1, 2, 4, \overline{2}, \overline{5}\}, \{3\}, \{5, 6, 7, \overline{3}, \overline{4}, \overline{6}, \overline{7}\}, \{8, \overline{8}\}, \{\overline{1}\}\}$ is represented by the following diagram:

$$\pi = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$$

Martin and Jones

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Centralizer pair

 $V_{P_k(n)}^{(n-|\lambda|,\lambda)} =$ simple module indexed by partitions λ such that $\lambda_1 + \lambda_2 + \dots \leqslant k$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Centralizer pair

$$V_{P_k(n)}^{(n-|\lambda|,\lambda)} =$$
simple module indexed by partitions λ such that $\lambda_1 + \lambda_2 + \dots \leqslant k$

Dimension is number of set valued tableaux

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Centralizer pair

$$V_{P_k(n)}^{(n-|\lambda|,\lambda)} = ext{simple module indexed by partitions } \lambda ext{ such that} \ \lambda_1 + \lambda_2 + \dots \leqslant k$$

Dimension is number of set valued tableaux

Theorem (Jones 1994)

$$V^{\otimes k} \cong igoplus_{\lambda,\lambda_1+\lambda_2+\cdots\leqslant k} V^{(n-|\lambda|,\lambda)}_{P_k(n)} \otimes V^{(n-|\lambda|,\lambda)}_{S_n}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Centralizer pair

$$V_{P_k(n)}^{(n-|\lambda|,\lambda)} = ext{simple module indexed by partitions } \lambda ext{ such that} \ \lambda_1 + \lambda_2 + \dots \leqslant k$$

Dimension is number of set valued tableaux

Theorem (Jones 1994)

$$V^{\otimes k} \cong igoplus_{\lambda,\lambda_1+\lambda_2+\cdots\leqslant k} V^{(n-|\lambda|,\lambda)}_{P_k(n)} \otimes V^{(n-|\lambda|,\lambda)}_{S_n}$$

Remark

- S_k and GL_n form a centralizer pair
- $P_k(n)$ and S_n form a centralizer pair

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

See-Saw pairs

Graduate Texts in Mathematics

Roe Goodman - Nolan R. Wallach

Symmetry, Representations, and Invariants

(See book by Goodman, Wallach)

2 Springer

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

See-Saw pairs

 $A \hookrightarrow B$ algebra embedding

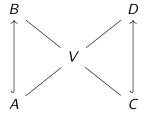
See-Saw pairs

 $A \hookrightarrow B$ algebra embedding

$$\mathsf{Res}^B_A \ V^\lambda_B = \bigoplus_\mu \left(V^\mu_A \right)^{\oplus c_{\lambda\mu}}$$

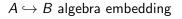
・ロト ・聞ト ・ヨト ・ヨト

æ



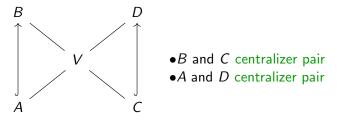
•*B* and *C* centralizer pair •*A* and *D* centralizer pair

See-Saw pairs



イロト 不得 トイヨト イヨト

э

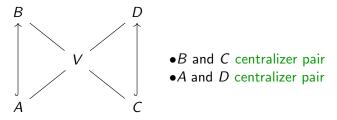


Indices for the simple modules for B and C are the same.
Indices for the simple modules for A and D are the same.

See-Saw pairs

 $A \hookrightarrow B$ algebra embedding

イロト イポト イヨト イヨト

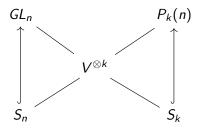


Indices for the simple modules for B and C are the same.
 Indices for the simple modules for A and D are the same.
 Res^D_C V^μ_D = ⊕ (V^λ_C)^{⊕c_{λμ}}

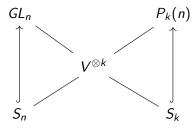
・ロト ・四ト ・ヨト ・ヨト

æ

Our See-Saw pair



Our See-Saw pair



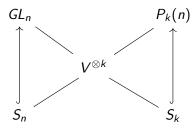
$$\operatorname{\mathsf{Res}}_{S_n}^{GL_n} V_{GL_n}^{\lambda} = \bigoplus_{\mu} \left(V_{S_n}^{\mu} \right)^{\oplus r_{\lambda\mu}}$$
$$\operatorname{\mathsf{Res}}_{S_k}^{P_k(n)} V_{P_k(n)}^{\mu} = \bigoplus_{\lambda} \left(V_{S_k}^{\lambda} \right)^{\oplus r_{\lambda\mu}}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Our See-Saw pair



$$\operatorname{\mathsf{Res}}_{S_n}^{GL_n} V_{GL_n}^{\lambda} = \bigoplus_{\mu} \left(V_{S_n}^{\mu} \right)^{\oplus r_{\lambda\mu}}$$
$$\operatorname{\mathsf{Res}}_{S_k}^{P_k(n)} V_{P_k(n)}^{\mu} = \bigoplus_{\lambda} \left(V_{S_k}^{\lambda} \right)^{\oplus r_{\lambda\mu}}$$

Idea: Restrict representations of $P_k(n)$ to S_k

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The approach

\mathcal{U}_k uniform block permutation algebra

 $\underbrace{S_k} \hookrightarrow \mathcal{U}_k \hookrightarrow P_k(n)$ special cases of plethysm generalized LR coefficients

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The approach

\mathcal{U}_k uniform block permutation algebra

Goal: Combinatorial model for the representation theory of \mathcal{U}_k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The plethysm problem

2 Diagram algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Uniform block permutations

Tanabe, Kosuda

Party algebra, centralizer algebra for complex reflection groups

Uniform block permutations

Tanabe, Kosuda Party algebra, centralizer algebra for complex reflection groups

Definition

The set partition $d = \{d_1, d_2, \dots, d_\ell\}$ of $[k] \cup [\bar{k}]$ is uniform if $|d_i \cap [k]| = |d_i \cap [\bar{k}]|$ for all $1 \leq i \leq \ell$. Let

 $\mathcal{U}_k = \{ d \vdash [k] \cup [\bar{k}] : d \text{ uniform} \}.$

Uniform block permutations

Tanabe, Kosuda Party algebra, centralizer algebra for complex reflection groups

Definition

The set partition $d = \{d_1, d_2, \dots, d_\ell\}$ of $[k] \cup [\bar{k}]$ is uniform if $|d_i \cap [k]| = |d_i \cap [\bar{k}]|$ for all $1 \leq i \leq \ell$. Let

 $\mathcal{U}_k = \{ d \vdash [k] \cup [\bar{k}] : d \text{ uniform} \}.$

Example

$$d = \{\{2, \bar{4}\}, \{5, \bar{7}\}, \{1, 3, \bar{1}, \bar{2}\}, \{4, 6, \bar{3}, \bar{6}\}, \{7, 8, 9, \bar{5}, \bar{8}, \bar{9}\}\}$$

Uniform block permutations

Tanabe, Kosuda Party algebra, centralizer algebra for complex reflection groups

Definition

The set partition $d = \{d_1, d_2, \dots, d_\ell\}$ of $[k] \cup [\bar{k}]$ is uniform if $|d_i \cap [k]| = |d_i \cap [\bar{k}]|$ for all $1 \leq i \leq \ell$. Let

 $\mathcal{U}_k = \{ d \vdash [k] \cup [\bar{k}] : d \text{ uniform} \}.$

Example

$$d = \{\{2, \bar{4}\}, \{5, \bar{7}\}, \{1, 3, \bar{1}, \bar{2}\}, \{4, 6, \bar{3}, \bar{6}\}, \{7, 8, 9, \bar{5}, \bar{8}, \bar{9}\}\}$$

Think of d as a size-preserving bijection

Uniform block permutations

Tanabe, Kosuda Party algebra, centralizer algebra for complex reflection groups

Definition

The set partition $d = \{d_1, d_2, \dots, d_\ell\}$ of $[k] \cup [\bar{k}]$ is uniform if $|d_i \cap [k]| = |d_i \cap [\bar{k}]|$ for all $1 \leq i \leq \ell$. Let

 $\mathcal{U}_k = \{d \vdash [k] \cup [\bar{k}] : d \text{ uniform}\}.$

Example

$$d = \{\{2, \bar{4}\}, \{5, \bar{7}\}, \{1, 3, \bar{1}, \bar{2}\}, \{4, 6, \bar{3}, \bar{6}\}, \{7, 8, 9, \bar{5}, \bar{8}, \bar{9}\}\}$$

Think of d as a size-preserving bijection

$$\begin{pmatrix} \{2\} & \{5\} & \{1,3\} & \{4,6\} & \{7,8,9\} \\ \{4\} & \{7\} & \{1,2\} & \{3,6\} & \{5,8,9\} \end{pmatrix}$$

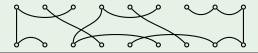
 \Rightarrow Elements of \mathcal{U}_k are called uniform block permutations $a_k = a_k = a_k$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Uniform block permutations - continued

Example

 $\text{Diagram for } \{\{1,3,\bar{1},\bar{2}\},\{2,\bar{4}\},\{4,6,\bar{3},\bar{6}\},\{5,\bar{7}\},\{7,8,9,\bar{5},\bar{8},\bar{9}\}\} \\$



Uniform block permutations - continued

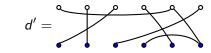
Example

 $\mathsf{Diagram} \text{ for } \{\{1,3,\bar{1},\bar{2}\},\{2,\bar{4}\},\{4,6,\bar{3},\bar{6}\},\{5,\bar{7}\},\{7,8,9,\bar{5},\bar{8},\bar{9}\}\} \\$

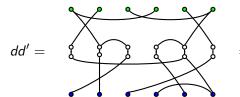
and

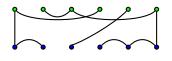
The product of





is obtained by stacking the diagrams of d and d':





▲口 > ▲圖 > ▲目 > ▲目 > → 目 → のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idempotents

For every set partition π of [k] we define:

$$e_{\pi} = \{A \cup \bar{A} : A \in \pi\} \in \mathcal{U}_k$$

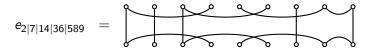
where $\bar{A} = \{\bar{i} : i \in A\}$.

Idempotents

For every set partition π of [k] we define:

$$e_{\pi} = \{A \cup \bar{A} : A \in \pi\} \in \mathcal{U}_k$$

where $\bar{A} = \{\bar{i} : i \in A\}$. For example,



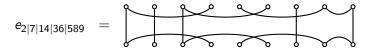
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idempotents

For every set partition π of [k] we define:

$$e_{\pi} = \{A \cup \bar{A} : A \in \pi\} \in \mathcal{U}_k$$

where $\bar{A} = \{\bar{i} : i \in A\}$. For example,

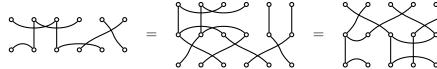


Lemma

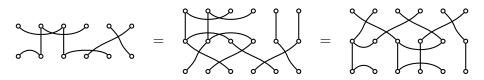
The set $E(\mathcal{U}_k) = \{e_{\pi} : \pi \vdash [k]\}$ is a complete set of idempotents in \mathcal{U}_k .

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Factorizable monoid



Factorizable monoid



Proposition

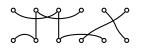
For every $d \in U_k$ and every $\sigma \in S_k$ satisfying $\sigma(B \cap [k]) = \overline{B} \cap [k]$, we have

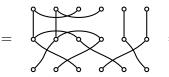
$$d = e_{\operatorname{top}(d)} \, \sigma = \sigma e_{\operatorname{bot}(d)}.$$

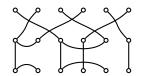
Consequently, U_k is a factorizable monoid

 $\mathcal{U}_k = E(\mathcal{U}_k) S_k = S_k E(\mathcal{U}_k).$

Factorizable monoid







▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

(See book by Steinberg 2016)

D Springer

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Maximal subgroups

Definition

M finite monoid, *e* idempotent Maximal subgroup: G_e = unique largest subgroup of *M* containing *e*

Maximal subgroups

Definition

M finite monoid, *e* idempotent Maximal subgroup: G_e = unique largest subgroup of *M* containing *e*

Lemma

The maximal subgroup of \mathcal{U}_k at the idempotent e_{π} is

 $G_{e_{\pi}} = \{d \in \mathcal{U}_k : \operatorname{top}(d) = \operatorname{bot}(d) = \pi\}$

Maximal subgroups

Definition

M finite monoid, *e* idempotent Maximal subgroup: G_e = unique largest subgroup of *M* containing *e*

Lemma

The maximal subgroup of U_k at the idempotent e_{π} is

 $G_{e_{\pi}} = \{d \in \mathcal{U}_k : \operatorname{top}(d) = \operatorname{bot}(d) = \pi\}$

Example

For $\pi = \{\{1\}, \{2\}, \{3, 4\}, \{5, 6\}\}$

$$G_{e_{\pi}} = \left\{ \left| \begin{array}{ccc} & & \\ & & \\ & & \\ \end{array} \right| \right\}, \left| \begin{array}{ccc} & & \\ & & \\ \end{array} \right\rangle, \left| \begin{array}{ccc} & & \\ & & \\ \end{array} \right\rangle, \left| \begin{array}{ccc} & & \\ & & \\ \end{array} \right\rangle, \left| \begin{array}{ccc} & & \\ & & \\ \end{array} \right\rangle, \left| \begin{array}{ccc} & & \\ & & \\ \end{array} \right\rangle, \left| \begin{array}{ccc} & & \\ & & \\ \end{array} \right\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Maximal subgroups – continued

Example

For
$$\pi = \{\{1\}, \{2\}, \{3, 4\}, \{5, 6\}\}$$
 with type $(\pi) = (1^2 2^2)$

$$G_{e_{\pi}} = \left\{ \bigcup_{\alpha} \bigcup$$

Theorem

For
$$\pi \vdash [k]$$
 with type $(\pi) = (1^{a_1}2^{a_2} \dots k^{a_k})$

 $G_{e_{\pi}} \simeq S_{a_1} imes S_{a_2} imes \cdots imes S_{a_k}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Representation theory of \mathcal{U}_k

Indexing set of simple modules

$$I_k = \left\{ \left(\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(k)} \right) : \lambda^{(i)} \text{ are partitions such that } \sum_{i=1}^k i |\lambda^{(i)}| = k \right\}$$

Representation theory of \mathcal{U}_k

Indexing set of simple modules

$$I_k = \left\{ \left(\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(k)} \right) : \lambda^{(i)} \text{ are partitions such that } \sum_{i=1}^k i |\lambda^{(i)}| = k \right\}$$

Example

 $I_{3} = \{((3), \emptyset, \emptyset), ((2, 1), \emptyset, \emptyset), ((1, 1, 1), \emptyset, \emptyset), ((1), (1), \emptyset), (\emptyset, \emptyset, (1))\}$

・ロト・日本・日本・日本・日本・日本

Representation theory of U_k – continued

Definition

- A uniform tableau $\mathbf{S} = (S^{(1)}, \dots, S^{(k)})$ of shape $\vec{\lambda} \in I_k$ satisfies:
 - $S^{(i)}$ is a tableau of shape $\lambda^{(i)}$ filled with subsets of [k] of size *i*;
 - 2 $S^{(i)}$ is standard;
 - **③** the subsets appearing in **S** form a set partition of [k].
- We define $\mathcal{T}_{\vec{\lambda}}$ to be the set of uniform tableaux of shape $\vec{\lambda}$.

Representation theory of U_k – continued

Definition

- A uniform tableau $\mathbf{S} = (S^{(1)}, \dots, S^{(k)})$ of shape $\vec{\lambda} \in I_k$ satisfies:
 - $S^{(i)}$ is a tableau of shape $\lambda^{(i)}$ filled with subsets of [k] of size i;
 - 2 $S^{(i)}$ is standard;
 - **③** the subsets appearing in **S** form a set partition of [k].
- We define $\mathcal{T}_{\vec{\lambda}}$ to be the set of uniform tableaux of shape $\vec{\lambda}$.

Irreducible representations: $V_{\mathcal{U}_{\mu}}^{\lambda} = space{-1}$

$$\mathscr{V}_{\mathcal{U}_k}^{ec{\lambda}} = \mathsf{span} \left\{ \mathbf{S} \in \mathcal{T}_{ec{\lambda}}
ight\}$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Representation theory of U_k – continued

Definition

A uniform tableau
$$\mathbf{S} = (S^{(1)}, \dots, S^{(k)})$$
 of shape $\vec{\lambda} \in I_k$ satisfies:

- $S^{(i)}$ is a tableau of shape $\lambda^{(i)}$ filled with subsets of [k] of size *i*;
- 2 $S^{(i)}$ is standard;
- **③** the subsets appearing in **S** form a set partition of [k].

We define $\mathcal{T}_{\vec{\lambda}}$ to be the set of uniform tableaux of shape $\vec{\lambda}$.

Irreducible representations: $V_{\mathcal{U}_k}^{\vec{\lambda}} = \operatorname{span}\left\{\mathbf{S} \in \mathcal{T}_{\vec{\lambda}}\right\}$

Example
$$V_{\mathcal{U}_3}^{((1),(1),\emptyset)} = \operatorname{span}\left\{\left(\boxed{1}, \boxed{23}\right), \left(\boxed{2}, \boxed{13}\right), \left(\boxed{3}, \boxed{12}\right)\right\}$$

Characters of \mathcal{U}_k

Definition

M be a finite monoid.

- Subsemigroup of M generated by $m \in M$ contains a unique idempotent m^{ω}
- $m, n \in M$ are conjugate if there exist $x, x' \in M$ such that xx'x = x, x'xx' = x', $x'x = m^{\omega}$, $xx' = n^{\omega}$ and $xm^{\omega+1}x' = n^{\omega+1}$

Characters of \mathcal{U}_k

Definition

M be a finite monoid.

- Subsemigroup of M generated by $m \in M$ contains a unique idempotent m^{ω}
- $m, n \in M$ are conjugate if there exist $x, x' \in M$ such that xx'x = x, x'xx' = x', $x'x = m^{\omega}$, $xx' = n^{\omega}$ and $xm^{\omega+1}x' = n^{\omega+1}$

Definition

- $d \in G_{e_{\pi}}$: cycletype $(d) = (\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(k)})$ where $\mu^{(i)}$ is the cycle type of the permutation $d^{(i)}$
- $x \in \mathcal{U}_k$: cycletype(x) = cycletype $(x^{\omega+1})$

Characters of \mathcal{U}_k

Definition

M be a finite monoid.

- Subsemigroup of M generated by $m \in M$ contains a unique idempotent m^{ω}
- $m, n \in M$ are conjugate if there exist $x, x' \in M$ such that xx'x = x, x'xx' = x', $x'x = m^{\omega}$, $xx' = n^{\omega}$ and $xm^{\omega+1}x' = n^{\omega+1}$

Definition

- $d \in G_{e_{\pi}}$: cycletype $(d) = (\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(k)})$ where $\mu^{(i)}$ is the cycle type of the permutation $d^{(i)}$
- $x \in \mathcal{U}_k$: cycletype(x) = cycletype $(x^{\omega+1})$

 $d_{\vec{\mu}}$ representative for generalized conjugacy class of cycle type $\vec{\mu}$

Characters of \mathcal{U}_k – continued

Theorem (OSSZ 2022) $\vec{\lambda}, \vec{\mu} \in I_k, \ a_i = |\lambda^{(i)}|, \ \lambda = (1^{a_1} 2^{a_2} \cdots k^{a_k})$ $\chi^{\vec{\lambda}}_{\mathcal{U}_k}(d_{\vec{\mu}}) = \sum_{\substack{\vec{\nu} \in I_k \\ |\nu^{(i)}| = a_i}} b^{\vec{\nu}}_{\vec{\mu}} \chi^{\vec{\lambda}}_{G_{\lambda}}(d_{\vec{\nu}})$

Characters of \mathcal{U}_k – continued

Theorem (OSSZ 2022)

$$ec{\lambda},ec{\mu}\in I_k$$
, $a_i=|\lambda^{(i)}|$, $\lambda=(1^{a_1}2^{a_2}\cdots k^{a_k})$

$$\chi^{ec\lambda}_{\mathcal{U}_k}(extsf{d}_{ec\mu}) = \sum_{\substack{ec
u \in I_k \ |
u^{(i)}| = extsf{a}_i}} b^{ec
u}_{ec\mu} \, \chi^{ec\lambda}_{G_\lambda}(extsf{d}_{ec
u})$$

Example

Let
$$ec{\lambda}=(\emptyset,(1,1),\emptyset,\emptyset)$$
, so that $\lambda=(2,2)$:

$$\chi_{\mathcal{U}_4}^{\vec{\lambda}} \left(\begin{array}{c} \swarrow & \checkmark \\ \swarrow & \swarrow \end{array} \right) = \chi_{\mathcal{G}_{\lambda}}^{\vec{\lambda}} \left(\begin{array}{c} \smile & \smile \\ \smile & \smile \end{array} \right) + 2\chi_{\mathcal{G}_{\lambda}}^{\vec{\lambda}} \left(\begin{array}{c} \smile & \smile \\ \circ & \smile \end{array} \right) = -1$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Coefficients in characters

$$z_{\lambda} = 1^{a_1} a_1 ! 2^{a_2} a_2 ! \cdots k^{a_k} a_k ! \qquad \text{for } \lambda = (1^{a_1} 2^{a_2} \cdots k^{a_k})$$
$$\mathbf{z}_{\lambda} = z_{\lambda^{(1)}} z_{\lambda^{(2)}} \cdots z_{\lambda^{(k)}}$$

Coefficients in characters

$$z_{\lambda} = 1^{a_1} a_1 ! 2^{a_2} a_2 ! \cdots k^{a_k} a_k ! \qquad \text{for } \lambda = (1^{a_1} 2^{a_2} \cdots k^{a_k})$$
$$\mathbf{z}_{\lambda} = z_{\lambda(1)} z_{\lambda(2)} \cdots z_{\lambda(k)}$$

Theorem (OSSZ 2022) $\vec{\mu}, \vec{\nu} \in I_k$

$$b_{\vec{\mu}}^{\vec{\nu}} = rac{1}{\mathsf{z}_{\vec{
u}}} \sum_{\vec{ au}(ullet,ullet)} rac{\mathsf{z}_{\vec{\mu}}}{\prod_{i,j} \mathsf{z}_{\vec{ au}(i,j)}}$$

where sum is over all $\vec{\tau}(\bullet, \bullet)$ with $\vec{\tau}(i, j) \in I_j$ and $\vec{\mu} = \biguplus_{i,j} \nu_i^{(j)} \vec{\tau}(i, j)$.

Connections to symmetric functions

Symmetric functions on multiple variables: $\mathbf{X} = X_1, X_2, \dots$

Connections to symmetric functions

Symmetric functions on multiple variables: $\mathbf{X} = X_1, X_2, \dots$ We define the polynomial ring

 $\operatorname{Sym}_{\mathbf{X}}^* := \mathbb{C}[p_i[X_j] \mid i, j \ge 1]$

Connections to symmetric functions

Symmetric functions on multiple variables: $\mathbf{X} = X_1, X_2, \dots$ We define the polynomial ring

$$\mathsf{Sym}^*_{\mathbf{X}} := \mathbb{C}[p_i[X_j] \mid i, j \ge 1]$$

Power sum symmetric functions:

$$p_{\mu}[X_j] := p_1[X_j]^{a_1} p_2[X_j]^{a_2} \cdots p_r[X_j]^{a_r} \qquad \mu = (1^{a_1} 2^{a_2} \cdots k^{a_k})$$

$$p_{\vec{\mu}}[\mathbf{X}] := p_{\mu^{(1)}}[X_1] p_{\mu^{(2)}}[X_2] \cdots p_{\mu^{(k)}}[X_k] \qquad \vec{\mu} \in I_k$$

Connections to symmetric functions

Symmetric functions on multiple variables: $\mathbf{X} = X_1, X_2, \dots$ We define the polynomial ring

$$\mathsf{Sym}^*_{\mathbf{X}} := \mathbb{C}[p_i[X_j] \mid i, j \ge 1]$$

Power sum symmetric functions:

$$p_{\mu}[X_j] := p_1[X_j]^{a_1} p_2[X_j]^{a_2} \cdots p_r[X_j]^{a_r} \qquad \mu = (1^{a_1} 2^{a_2} \cdots k^{a_k})$$
$$p_{\vec{\mu}}[\mathbf{X}] := p_{\mu^{(1)}}[X_1] p_{\mu^{(2)}}[X_2] \cdots p_{\mu^{(k)}}[X_k] \qquad \vec{\mu} \in I_k$$

Schur functions

$$\mathbf{s}_{\vec{\mu}}[\mathbf{X}] := s_{\mu^{(1)}}[X_1]s_{\mu^{(2)}}[X_2]\cdots s_{\mu^{(k)}}[X_k] \qquad \vec{\mu} \in I_k$$

Connections to symmetric functions

Symmetric functions on multiple variables: $\mathbf{X} = X_1, X_2, \dots$ We define the polynomial ring

$$\operatorname{Sym}_{\mathbf{X}}^* := \mathbb{C}[p_i[X_j] \mid i, j \ge 1]$$

Power sum symmetric functions:

$$p_{\mu}[X_j] := p_1[X_j]^{a_1} p_2[X_j]^{a_2} \cdots p_r[X_j]^{a_r} \qquad \mu = (1^{a_1} 2^{a_2} \cdots k^{a_k})$$
$$p_{\vec{\mu}}[\mathbf{X}] := p_{\mu^{(1)}}[X_1] p_{\mu^{(2)}}[X_2] \cdots p_{\mu^{(k)}}[X_k] \qquad \vec{\mu} \in I_k$$

Schur functions

$$\mathbf{s}_{ec{\mu}}[\mathbf{X}] := s_{\mu^{(1)}}[X_1]s_{\mu^{(2)}}[X_2]\cdots s_{\mu^{(k)}}[X_k] \qquad ec{\mu} \in I_k$$

Scalar product

$$\left< \mathbf{p}_{\vec{\lambda}}[\mathbf{X}], \mathbf{p}_{\vec{\mu}}[\mathbf{X}] \right> = \begin{cases} \mathbf{z}_{\vec{\mu}} & \text{if } \vec{\lambda} = \vec{\mu} \\ 0 & \text{else} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Connections to symmetric functions - continued

Frobenius characteristic of trivial representation of \mathcal{U}_k

$$E_r := \sum_{\vec{\mu} \in I_r} \frac{\mathbf{p}_{\vec{\mu}}[\mathbf{X}]}{\mathbf{z}_{\vec{\mu}}}$$
$$= \sum_{(1^{a_1} 2^{a_2} \cdots r^{a_r}) \vdash r} s_{a_1}[X_1] s_{a_2}[X_2] \cdots s_{a_r}[X_r]$$

Connections to symmetric functions – continued

Frobenius characteristic of trivial representation of \mathcal{U}_k

$$E_r := \sum_{\vec{\mu} \in I_r} \frac{\mathbf{p}_{\vec{\mu}}[\mathbf{X}]}{\mathbf{z}_{\vec{\mu}}}$$
$$= \sum_{(1^{a_1} 2^{a_2} \cdots r^{a_r}) \vdash r} s_{a_1}[X_1] s_{a_2}[X_2] \cdots s_{a_r}[X_r]$$

Proposition (OSSZ 2022)

$$b^{ec{
u}}_{ec{\mu}}=rac{1}{\mathsf{z}_{ec{
u}}}\left\langle \mathsf{p}_{ec{
u}}[\mathsf{E}],\mathsf{p}_{ec{\mu}}[\mathsf{X}]
ight
angle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Characters, symmetric functions, and plethysm

Theorem (OSSZ 2022)

 $\chi^{ec\lambda}_{\mathcal{U}_k}(d_{ec\mu}) = \left< \mathbf{s}_{ec\lambda}[\mathbf{E}], \mathbf{p}_{ec\mu}[\mathbf{X}] \right>$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Characters, symmetric functions, and plethysm

Theorem (OSSZ 2022)

 $\chi^{\vec{\lambda}}_{\mathcal{U}_k}(d_{\vec{\mu}}) = \left< \mathbf{s}_{\vec{\lambda}}[\mathbf{E}], \mathbf{p}_{\vec{\mu}}[\mathbf{X}] \right>$

$$\chi^{ec{\lambda}}_{\mathcal{G}_{\lambda}}(\textit{d}_{ec{\mu}}) = \left\langle \mathsf{s}_{ec{\lambda}}[\mathsf{X}], \mathsf{p}_{ec{\mu}}[\mathsf{X}]
ight
angle$$

Characters, symmetric functions, and plethysm

Theorem (OSSZ 2022)

 $\chi^{\vec{\lambda}}_{\mathcal{U}_k}(d_{\vec{\mu}}) = \left\langle \mathbf{s}_{\vec{\lambda}}[\mathbf{E}], \mathbf{p}_{\vec{\mu}}[\mathbf{X}] \right
angle$

$$\chi^{ec{\lambda}}_{\mathcal{G}_{\lambda}}(\textit{d}_{ec{\mu}}) = \left\langle \mathsf{s}_{ec{\lambda}}[\mathsf{X}], \mathsf{p}_{ec{\mu}}[\mathsf{X}]
ight
angle$$

Corollary

Multiplicity of $V_{S_k}^{\mu}$ in $\operatorname{Res}_{S_k}^{\mathcal{U}_k} V_{\mathcal{U}_k}^{\vec{\lambda}}$ is $\langle s_{\lambda^{(1)}}[s_1]s_{\lambda^{(2)}}[s_2]\cdots s_{\lambda^{(k)}}[s_k], s_{\mu} \rangle$

Thank you !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you !

Remark (Take away)

Plethysm is hard!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Thank you !

Remark (Take away)

Plethysm is hard!

Remark (Take away)

The random walk exploring plethysm leads to interesting mathematics!

Thank you !

Remark (Take away)

Plethysm is hard!

Remark (Take away)

The random walk exploring plethysm leads to interesting mathematics!

