Chordal graphs with bounded tree-width

joint work with Jordi Castellví, Michael Drmota and Marc Noy

Clément Requilé

Algorithmic and Enumerative Combinatorics conference TU Wien - 07/07/2022

The family of labelled *k*-trees can be obtained via an iterative process: • start with K_{k+1} ,

The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*_{*k*+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,

The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*_{*k*+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,

The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*_{*k*+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*_{*k*+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*_{*k*+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

Example (k = 3):

Remarks:

▶ 1-trees are trees (\equiv maximal K_3 -minor-free graphs),

The family of labelled *k*-trees can be obtained via an iterative process:

- ▶ start with *K*_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

Example (k = 3):

Remarks:

- ▶ 1-trees are trees (\equiv maximal K_3 -minor-free graphs),
- > 2-trees are maximal series-parallel graphs (\equiv maximal K_4 -minor-free graphs),

The family of labelled *k*-trees can be obtained via an iterative process:

- ▶ start with *K*_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

Example (k = 3):

Remarks:

- ▶ 1-trees are trees (= maximal K_3 -minor-free graphs),
- > 2-trees are maximal series-parallel graphs (\equiv maximal K_4 -minor-free graphs),
- k-trees are maximal K_{k+1} -minor-free graphs

The family of labelled *k*-trees can be obtained via an iterative process:

- ▶ start with *K*_{*k*+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1} ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

Example (k = 3):

Remarks:

- ▶ 1-trees are trees (\equiv maximal K_3 -minor-free graphs),
- > 2-trees are maximal series-parallel graphs (\equiv maximal K_4 -minor-free graphs),
- k-trees are maximal K_{k+1} -minor-free graphs

[Beineke & Pippert (1969)]: # of k-trees with n vertices = $\binom{n}{k}(kn-k^2+1)^{n-k-2}$

Rooted *k*-trees

- A (labelled) *k*-tree is rooted when one *k*-clique is distinguished:
 - \blacktriangleright fix a k-clique and fix an ordering of its vertices then remove their labels

Rooted *k*-trees

- A (labelled) k-tree is rooted when one k-clique is distinguished:
 - fix a k-clique and fix an ordering of its vertices then remove their labels

Recursive (implicit) definition of the exponential generating function of rooted k-trees:

$$T_k(x) = \exp\left(xT_k(x)^k\right)$$

Exponential growth of the coefficients is determined by the radius of convergence.

 $[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$

Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

Proposition: the radius of convergence of $T_k(x)$ is a positive branch-point singularity of its implicit equation $T_k(x) = \exp(xT_k(x)^k)$

Radius of convergence of $T_k(z)$ is at $x = (ke)^{-1} \rightarrow ((3e)^{-1} \approx 0.1226)$.

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Transfer theorem [Flajolet & Odlyzko (1982)]: as $n \to \infty$

$$[x^{n}]T_{k}(x) \sim \frac{T_{1}(k)}{-\Gamma(-1/2)} n^{-3/2} (ke)^{n}$$
 where $-\Gamma(-1/2) = \sqrt{2\pi}$

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Transfer theorem [Flajolet & Odlyzko (1982)]: as $n \to \infty$

$$[x^{n}]T_{k}(x) \sim \frac{T_{1}(k)}{-\Gamma(-1/2)} n^{-3/2} (ke)^{n}$$
 where $-\Gamma(-1/2) = \sqrt{2\pi}$

▶ asymptotic for unrooted k-trees → subexp. term in $n^{-5/2}$

Graphs with tree-width at most \boldsymbol{k} are exactly the subgraphs of $\boldsymbol{k}\text{-trees}$

thus called partial k-trees

- thus called partial k-trees
- tw(A) = smallest k s.t. that graph A is a partial k-tree,

- thus called partial k-trees
- tw(A) = smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

- thus called partial k-trees
- tw(A) = smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

- thus called partial k-trees
- tw(A) = smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

- thus called partial k-trees
- tw(A) = smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees
- tw(A) = smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

Enumeration: Let g_n be the # of graphs of tree-width at most k with n vertices [Baste, Noy & Sau (2018)]: for fixed k and as $n \to \infty$

$$\left(\frac{k}{\log k}\right)^n 2^{nk} n^n \le g_n \le (ek)^n 2^{nk} n!$$

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

Alternative definitions:

▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

Alternative definitions:

▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

Alternative definitions:

▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

Alternative definitions:

- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Remarks:

▶ *k*-trees are chordal \rightarrow *k*-connected chordal graphs of tree-width \leq *k*,

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4 .

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Remarks:

- ▶ *k*-trees are chordal \rightarrow *k*-connected chordal graphs of tree-width \leq *k*,
- when taking the clique-sum of two chordal graphs \rightarrow no edge removal!

Chordal graphs with bounded tree-width

Fix $n, k \ge 1$ and $0 \le q \le k$.

Let $\mathcal{G}_{k,q,n}$ be the family of *q*-connected chordal graphs with *n* labelled vertices and tree-width at most *k*.

[Castellví, Drmota, Noy & R. (2022+)]: $\exists c_{k,q} > 0$ and $\gamma_{k,q} \in (0,1)$ s.t.

 $|\mathcal{G}_{k,q,n}| \sim c_{k,q} \cdot n^{-5/2} \cdot \gamma_{k,q}^n \cdot n! \qquad \text{as } n \to \infty.$

Chordal graphs with bounded tree-width

Fix $n, k \ge 1$ and $0 \le q \le k$.

Let $\mathcal{G}_{k,q,n}$ be the family of *q*-connected chordal graphs with *n* labelled vertices and tree-width at most *k*.

[Castellví, Drmota, Noy & R. (2022+)]: $\exists c_{k,q} > 0 \text{ and } \gamma_{k,q} \in (0,1) \text{ s.t.}$

 $|\mathcal{G}_{k,q,n}| \sim c_{k,q} \cdot n^{-5/2} \cdot \gamma_{k,q}^n \cdot n!$ as $n \to \infty$.

For $i \in [k]$, let $X_i = \#$ of *i*-cliques in a uniform random graph in $\mathcal{G}_{t,k,n}$.

 $[\text{Castellv}'_i, \text{ Drmota, Noy \& R. (2022+)}]: \exists \alpha, \sigma \in (0,1) \text{ s.t. as } n \to \infty$ $\frac{|X_i - \mathbb{E}X_i|}{\sqrt{\mathbb{V}X_i}} \xrightarrow{d} N(0,1), \quad \text{with} \quad \mathbb{E}X_i \sim \alpha n \quad \text{and} \quad \mathbb{V}X_i \sim \beta n.$

$$G_{k-1}(x_1, x_{k-1}) = \sum_{A \in \mathcal{G}_{k,k-1}} \frac{x_1^{n_1(A)}}{n_1(A)!} x_{k-1}^{n_{k-1}(A)}, \quad n_j(A) = \# \text{ of } j\text{-cliques of } A, \forall j \in [k]$$

$$G_{k-1}^{(k-1)}(x_1, x_{k-1}) = \exp\left(G_k^{(k-1)}\left(x_1, x_{k-1}G_{k-1}^{(k-1)}(x_1, x_{k-1})\right)\right)$$

$$G_{k-1}(x_1, x_{k-1}) = \sum_{A \in \mathcal{G}_{k,k-1}} \frac{x_1^{n_1(A)}}{n_1(A)!} x_{k-1}^{n_{k-1}(A)}, \quad n_j(A) = \text{ } \# \text{ of } j\text{-cliques of } A, \forall j \in [k]$$

$$G_{k-1}^{(k-1)}(x_1, x_{k-1}) = \exp\left(G_k^{(k-1)}\left(x_1, x_{k-1}G_{k-1}^{(k-1)}(x_1, x_{k-1})\right)\right)$$

$$G_{k-1}(x_1, x_{k-1}) = \sum_{A \in \mathcal{G}_{k,k-1}} \frac{x_1^{n_1(A)}}{n_1(A)!} x_{k-1}^{n_{k-1}(A)}, \quad n_j(A) = \# \text{ of } j \text{-cliques of } A, \forall j \in [k]$$

$$G_{k-1}^{(k-1)}(x_1, x_{k-1}) = \exp\left(G_k^{(k-1)}\left(x_1, x_{k-1}G_{k-1}^{(k-1)}(x_1, x_{k-1})\right)\right)$$

$$G_{k-1}(x_1, x_{k-1}) = \sum_{A \in \mathcal{G}_{k,k-1}} \frac{x_1^{n_1(A)}}{n_1(A)!} x_{k-1}^{n_{k-1}(A)}, \quad n_j(A) = \# \text{ of } j\text{-cliques of } A, \forall j \in [k]$$

$$G_{k-1}^{(k-1)}(x_1, x_{k-1}) = \exp\left(G_k^{(k-1)}\left(x_1, x_{k-1}G_{k-1}^{(k-1)}(x_1, x_{k-1})\right)\right)$$

Multivariate GF of *q***-connected graphs**: for any $q \in [k]$

$$G_q(x_1,...,x_k) = \sum_{A \in \mathcal{G}_j} \frac{1}{n_1(A)!} \prod_{j \in [k]} x_j^{n_j(A)}$$

Multivariate GF of *q*-connected graphs: for any $q \in [k]$

$$G_q(x_1,...,x_k) = \sum_{A \in \mathcal{G}_j} \frac{1}{n_1(A)!} \prod_{j \in [k]} x_j^{n_j(A)}$$

$$G_q^{(q)}(x_1,\ldots,x_k) = \exp\left(G_{q+1}^{(q)}(x_1,\ldots,x_{q-1},x_q G_q^{(q)}(x_1,\ldots,x_k),x_{q+1},\ldots,x_k)\right)$$

Multivariate GF of q-connected graphs: for any $q \in [k]$

$$G_q(x_1,...,x_k) = \sum_{A \in \mathcal{G}_j} \frac{1}{n_1(A)!} \prod_{j \in [k]} x_j^{n_j(A)}$$

$$G_q^{(q)}(x_1,\ldots,x_k) = \exp\left(G_{q+1}^{(q)}(x_1,\ldots,x_{q-1},x_q G_q^{(q)}(x_1,\ldots,x_k),x_{q+1},\ldots,x_k)\right)$$

Multivariate GF of q-connected graphs: for any $q \in [k]$

$$G_q(x_1,...,x_k) = \sum_{A \in \mathcal{G}_j} \frac{1}{n_1(A)!} \prod_{j \in [k]} x_j^{n_j(A)}$$

$$G_q^{(q)}(x_1,\ldots,x_k) = \exp\left(G_{q+1}^{(q)}(x_1,\ldots,x_{q-1},x_q G_q^{(q)}(x_1,\ldots,x_k),x_{q+1},\ldots,x_k)\right)$$

$$\begin{aligned} G_k^{(k)} &\to G_k \to G_k^{(k-1)} \\ &\downarrow \\ &G_{k-1}^{(k-1)} \to G_{k-1} \to G_{k-1}^{(k-2)} \\ &\downarrow \\ &\vdots \\ &\downarrow \\ &G_2^{(2)} \to G_2 \to G_2^{(1)} \\ &\downarrow \\ &G_1^{(1)} \to G_1 \end{aligned}$$

Multivariate GF of q-connected graphs: for any $q \in [k]$

$$G_q(x_1,...,x_k) = \sum_{A \in \mathcal{G}_j} \frac{1}{n_1(A)!} \prod_{j \in [k]} x_j^{n_j(A)}$$

$$G_q^{(q)}(x_1,\ldots,x_k) = \exp\left(G_{q+1}^{(q)}(x_1,\ldots,x_{q-1},x_q G_q^{(q)}(x_1,\ldots,x_k),x_{q+1},\ldots,x_k)\right)$$

$$\begin{array}{c} G_k^{(k)} \rightarrow G_k \rightarrow G_k^{(k-1)} \\ \downarrow \\ G_{k-1}^{(k-1)} \rightarrow G_{k-1} \rightarrow G_{k-1}^{(k-2)} \\ \downarrow \\ \vdots \\ \downarrow \\ G_2^{(2)} \rightarrow G_2 \rightarrow G_2^{(1)} \\ \downarrow \\ G_1^{(2)} \rightarrow G_2 \rightarrow G_2^{(1)} \\ \downarrow \\ G_1^{(1)} \rightarrow G_1 \\ \end{array}$$

$$[\text{Wormald (1985)]: algorithm to compute the GF of chordal graphs.}$$

Chordal graphs with small tree-width

k	q = 1	q = 2	q = 3	q = 4	q = 5	q = 6	q = 7
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

Chordal graphs with small tree-width

k	q = 1	q = 2	q = 3	q = 4	q = 5	q = 6	q = 7
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

Chordal graphs with small tree-width

k	<i>q</i> = 1	q = 2	q = 3	q = 4	q = 5	q = 6	q = 7
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

[Bender, Richmond & Wormald (1985)]: almost all chordal graphs are split.

• # of (labelled) chordal graphs with n vertices is

$$\sim \binom{n}{n/2} 2^{n^2/4}$$

Our results for chordal graphs with tree-width $\leq k$:

- enumerative formula of the form $c_k \cdot n^{-5/2} \rho_k^{-n} n!$
- CLT for the number of *i*-cliques, for $i \in [k]$
- ▶ same results holds when restricting to *q*-connected graphs,

Our results for chordal graphs with tree-width $\leq k$:

- enumerative formula of the form $c_k \cdot n^{-5/2} \rho_k^{-n} n!$
- CLT for the number of *i*-cliques, for $i \in [k]$
- ▶ same results holds when restricting to *q*-connected graphs,

Further research:

 \blacktriangleright control the rate of decay of the singularity as a function of the tree-width k, as $k \to \infty$

Our results for chordal graphs with tree-width $\leq k$:

- enumerative formula of the form $c_k \cdot n^{-5/2} \rho_k^{-n} n!$
- CLT for the number of *i*-cliques, for $i \in [k]$
- ▶ same results holds when restricting to *q*-connected graphs,

Further research:

- \blacktriangleright control the rate of decay of the singularity as a function of the tree-width k, as $k \to \infty$
- same enumerative result should hold when k = o(log n) (maybe k = O(log n)), but fails for k = ω(log n).

Our results for chordal graphs with tree-width $\leq k$:

- enumerative formula of the form $c_k \cdot n^{-5/2} \rho_k^{-n} n!$
- CLT for the number of *i*-cliques, for $i \in [k]$
- ▶ same results holds when restricting to *q*-connected graphs,

Further research:

- \blacktriangleright control the rate of decay of the singularity as a function of the tree-width k, as $k \to \infty$
- same enumerative result should hold when k = o(log n) (maybe k = O(log n)), but fails for k = ω(log n).

Danke!