Chordal graphs with bounded tree-width

joint work with Jordi Castellví, Michael Drmota and Marc Noy

Clément Requilé

Algorithmic and Enumerative Combinatorics conference

TU Wien - 07/07/2022

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},

Example $(k=3)$:

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},

Example $(k=3)$:

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},

Example $(k=3)$:

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

Remarks:

- 1-trees are trees (\equiv maximal K_{3}-minor-free graphs),

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

Remarks:

- 1-trees are trees (\equiv maximal K_{3}-minor-free graphs),
- 2-trees are maximal series-parallel graphs (三 maximal K_{4}-minor-free graphs),

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example ($k=3$):

Remarks:

- 1-trees are trees (\equiv maximal K_{3}-minor-free graphs),
- 2-trees are maximal series-parallel graphs (三 maximal K_{4}-minor-free graphs),
- k-trees are maximal K_{k+1}-minor-free graphs

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

Remarks:

- 1-trees are trees (\equiv maximal K_{3}-minor-free graphs),
- 2-trees are maximal series-parallel graphs (三 maximal K_{4}-minor-free graphs),
- k-trees are maximal K_{k+1}-minor-free graphs
[Beineke \& Pippert (1969)]: \# of k-trees with n vertices $=\binom{n}{k}\left(k n-k^{2}+1\right)^{n-k-2}$

Rooted k-trees

A (labelled) k-tree is rooted when one k-clique is distinguished:

- fix a k-clique and fix an ordering of its vertices then remove their labels

Rooted k-trees

A (labelled) k-tree is rooted when one k-clique is distinguished:

- fix a k-clique and fix an ordering of its vertices then remove their labels

Recursive (implicit) definition of the exponential generating function of rooted k-trees:

$$
T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)
$$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Branch-point singularity:

 a common root of$$
T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right), \quad 1=x k T_{k}(x)^{k} .
$$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Branch-point singularity:

 a common root of$$
T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right), \quad 1=x k T_{k}(x)^{k}
$$

Solution:

$$
\begin{aligned}
& x=\frac{1}{k T_{k}(x)^{k}} \Longrightarrow T_{k}(x)=\exp (1 / k) \\
& \exp (1 / k)=\exp (x e) \Longrightarrow x=\frac{1}{k e}
\end{aligned}
$$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Branch-point singularity:

 a common root of$$
T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right), \quad 1=x k T_{k}(x)^{k}
$$

Solution:

$$
\begin{aligned}
& x=\frac{1}{k T_{k}(x)^{k}} \Longrightarrow T_{k}(x)=\exp (1 / k) \\
& \exp (1 / k)=\exp (x e) \Longrightarrow x=\frac{1}{k e}
\end{aligned}
$$

Radius of convergence of $T_{k}(z)$ is at $x=(k e)^{-1} \quad \rightarrow \quad\left((3 e)^{-1} \approx 0.1226\right)$.

Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Transfer theorem [Flajolet \& Odlyzko (1982)]: as $n \rightarrow \infty$

$$
\left[x^{n}\right] T_{k}(x) \sim \frac{T_{1}(k)}{-\Gamma(-1 / 2)} n^{-3 / 2}(k e)^{n} \quad \text { where }-\Gamma(-1 / 2)=\sqrt{2 \pi}
$$

Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Transfer theorem [Flajolet \& Odlyzko (1982)]: as $n \rightarrow \infty$

$$
\left[x^{n}\right] T_{k}(x) \sim \frac{T_{1}(k)}{-\Gamma(-1 / 2)} n^{-3 / 2}(k e)^{n} \quad \text { where }-\Gamma(-1 / 2)=\sqrt{2 \pi}
$$

- asymptotic for unrooted k-trees \rightarrow subexp. term in $n^{-5 / 2}$

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees - thus called partial k-trees

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees
- $\operatorname{tw}(A)=$ smallest k s.t. that graph A is a partial k-tree,

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees
- $t w(A)=$ smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees
- $t w(A)=$ smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees
- $t w(A)=$ smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees
- $t w(A)=$ smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees
- $t w(A)=$ smallest k s.t. that graph A is a partial k-tree,
- class is stable by the clique-sum operation

Enumeration: Let g_{n} be the \# of graphs of tree-width at most k with n vertices
[Baste, Noy \& Sau (2018)]: for fixed k and as $n \rightarrow \infty$

$$
\left(\frac{k}{\log k}\right)^{n} 2^{n k} n^{n} \leq g_{n} \leq(e k)^{n} 2^{n k} n!
$$

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Remarks:

- k-trees are chordal $\rightarrow k$-connected chordal graphs of tree-width $\leq k$,

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Remarks:

- k-trees are chordal $\rightarrow k$-connected chordal graphs of tree-width $\leq k$,
- when taking the clique-sum of two chordal graphs \rightarrow no edge removal!

Chordal graphs with bounded tree-width

Fix $n, k \geq 1$ and $0 \leq q \leq k$.
Let $\mathcal{G}_{k, q, n}$ be the family of q-connected chordal graphs with n labelled vertices and tree-width at most k.
[Castellví, Drmota, Noy \& R. $(2022+)$]: $\exists c_{k, q}>0$ and $\gamma_{k, q} \in(0,1)$ s.t.

$$
\left|\mathcal{G}_{k, q, n}\right| \sim c_{k, q} \cdot n^{-5 / 2} \cdot \gamma_{k, q}^{n} \cdot n!\quad \text { as } n \rightarrow \infty
$$

Chordal graphs with bounded tree-width

Fix $n, k \geq 1$ and $0 \leq q \leq k$.
Let $\mathcal{G}_{k, q, n}$ be the family of q-connected chordal graphs with n labelled vertices and tree-width at most k.
[Castellví, Drmota, Noy \& R. $(2022+)$]: $\exists c_{k, q}>0$ and $\gamma_{k, q} \in(0,1)$ s.t.

$$
\left|\mathcal{G}_{k, q, n}\right| \sim c_{k, q} \cdot n^{-5 / 2} \cdot \gamma_{k, q}^{n} \cdot n!\quad \text { as } n \rightarrow \infty .
$$

For $i \in[k]$, let $X_{i}=\#$ of i-cliques in a uniform random graph in $\mathcal{G}_{t, k, n}$.
[Castellví, Drmota, Noy \& R. $(2022+)]: \exists \alpha, \sigma \in(0,1)$ s.t. as $n \rightarrow \infty$

$$
\frac{\left|X_{i}-\mathbb{E} X_{i}\right|}{\sqrt{\mathbb{V} X_{i}}} \xrightarrow{d} N(0,1), \quad \text { with } \quad \mathbb{E} X_{i} \sim \alpha n \quad \text { and } \quad \mathbb{V} X_{i} \sim \beta n .
$$

The ($k-1$)-connected graphs

$$
G_{k-1}\left(x_{1}, x_{k-1}\right)=\sum_{A \in \mathcal{\mathcal { G } _ { k , k - 1 }}} \frac{x_{1}^{n_{1}(A)}}{n_{1}(A)!} x_{k-1}^{n_{k-1}(A)}, \quad n_{j}(A)=\# \text { of } j \text {-cliques of } A, \forall j \in[k]
$$

$$
G_{k-1}^{(k-1)}\left(x_{1}, x_{k-1}\right)=\exp \left(G_{k}^{(k-1)}\left(x_{1}, x_{k-1} G_{k-1}^{(k-1)}\left(x_{1}, x_{k-1}\right)\right)\right)
$$

The ($k-1$)-connected graphs

$$
G_{k-1}\left(x_{1}, x_{k-1}\right)=\sum_{A \in \mathcal{\mathcal { G } _ { k , k - 1 }}} \frac{x_{1}^{n_{1}(A)}}{n_{1}(A)!} x_{k-1}^{n_{k-1}(A)}, \quad n_{j}(A)=\# \text { of } j \text {-cliques of } A, \forall j \in[k]
$$

$$
G_{k-1}^{(k-1)}\left(x_{1}, x_{k-1}\right)=\exp \left(G_{k}^{(k-1)}\left(x_{1}, x_{k-1} G_{k-1}^{(k-1)}\left(x_{1}, x_{k-1}\right)\right)\right)
$$

The ($k-1$)-connected graphs

$$
G_{k-1}\left(x_{1}, x_{k-1}\right)=\sum_{A \in \mathcal{\mathcal { G } _ { k , k - 1 }}} \frac{x_{1}^{n_{1}(A)}}{n_{1}(A)!} x_{k-1}^{n_{k-1}(A)}, \quad n_{j}(A)=\# \text { of } j \text {-cliques of } A, \forall j \in[k]
$$

$$
G_{k-1}^{(k-1)}\left(x_{1}, x_{k-1}\right)=\exp \left(G_{k}^{(k-1)}\left(x_{1}, x_{k-1} G_{k-1}^{(k-1)}\left(x_{1}, x_{k-1}\right)\right)\right)
$$

The ($k-1$)-connected graphs

$$
G_{k-1}\left(x_{1}, x_{k-1}\right)=\sum_{A \in \mathcal{\mathcal { G } _ { k , k - 1 }}} \frac{x_{1}^{n_{1}(A)}}{n_{1}(A)!} x_{k-1}^{n_{k-1}(A)}, \quad n_{j}(A)=\# \text { of } j \text {-cliques of } A, \forall j \in[k]
$$

Down the stairs

Multivariate GF of q-connected graphs: for any $q \in[k]$

$$
G_{q}\left(x_{1}, \ldots, x_{k}\right)=\sum_{A \in \mathcal{G},} \frac{1}{n_{1}(A)!} \prod_{j \in[k]} x_{j}^{n_{j}(A)}
$$

Down the stairs

Multivariate GF of q-connected graphs: for any $q \in[k]$

$$
G_{q}\left(x_{1}, \ldots, x_{k}\right)=\sum_{A \in \mathcal{G},} \frac{1}{n_{1}(A)!} \prod_{j \in[k]} x_{j}^{n_{j}(A)}
$$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$
G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right)=\exp \left(G_{q+1}^{(q)}\left(x_{1}, \ldots, x_{q-1}, x_{q} G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right), x_{q+1}, \ldots, x_{k}\right)\right)
$$

Down the stairs

Multivariate GF of q-connected graphs: for any $q \in[k]$

$$
G_{q}\left(x_{1}, \ldots, x_{k}\right)=\sum_{A \in \mathcal{G},} \frac{1}{n_{1}(A)!} \prod_{j \in[k]} x_{j}^{n_{j}(A)}
$$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$
\begin{gathered}
G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right)=\exp \left(G_{q+1}^{(q)}\left(x_{1}, \ldots, x_{q-1}, x_{q} G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right), x_{q+1}, \ldots, x_{k}\right)\right) \\
G_{k}^{(k)} \rightarrow G_{k} \rightarrow G_{k}^{(k-1)} \\
\downarrow \\
G_{k-1}^{(k-1)} \rightarrow G_{k-1} \rightarrow G_{k-1}^{(k-2)} \\
\downarrow \\
\vdots \\
\downarrow \\
G_{2}^{(2)} \rightarrow G_{2} \rightarrow G_{2}^{(1)} \\
\downarrow \\
\\
\end{gathered}
$$

Down the stairs

Multivariate GF of q-connected graphs: for any $q \in[k]$

$$
G_{q}\left(x_{1}, \ldots, x_{k}\right)=\sum_{A \in \mathcal{G},} \frac{1}{n_{1}(A)!} \prod_{j \in[k]} x_{j}^{n_{j}(A)}
$$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$
\begin{gathered}
G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right)=\exp \left(G_{q+1}^{(q)}\left(x_{1}, \ldots, x_{q-1}, x_{q} G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right), x_{q+1}, \ldots, x_{k}\right)\right) \\
G_{k}^{(k)} \rightarrow G_{k} \rightarrow G_{k}^{(k-1)} \\
\downarrow \\
G_{k-1}^{(k-1)} \rightarrow G_{k-1} \rightarrow G_{k-1}^{(k-2)} \\
\downarrow \\
\vdots \\
\downarrow \\
\\
\\
G_{2}^{(2)} \rightarrow G_{2} \rightarrow G_{2}^{(1)} \\
\downarrow \\
G(x)=G_{0}(x)=\exp \left(G_{1}\left(x_{1}, 1, \ldots, 1\right)\right) .
\end{gathered}
$$

Down the stairs

Multivariate GF of q-connected graphs: for any $q \in[k]$

$$
G_{q}\left(x_{1}, \ldots, x_{k}\right)=\sum_{A \in \mathcal{G},} \frac{1}{n_{1}(A)!} \prod_{j \in[k]} x_{j}^{n_{j}(A)}
$$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$
\begin{gathered}
G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right)=\exp \left(G_{q+1}^{(q)}\left(x_{1}, \ldots, x_{q-1}, x_{q} G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right), x_{q+1}, \ldots, x_{k}\right)\right) \\
G_{k}^{(k)} \rightarrow G_{k} \rightarrow G_{k}^{(k-1)} \\
\downarrow \\
G_{k-1}^{(k-1)} \rightarrow G_{k-1} \rightarrow G_{k-1}^{(k-2)} \\
\downarrow \\
\vdots \\
\downarrow \\
\\
\\
\\
G(x)=G_{0}^{(2)} \rightarrow G_{2} \rightarrow G_{2}^{(1)} \\
\downarrow)=\exp \left(G_{1}\left(x_{1}, 1, \ldots, 1\right)\right) .
\end{gathered}
$$

[Wormald (1985)]: algorithm to compute the GF of chordal graphs.

Chordal graphs with small tree-width

k	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$	$q=7$
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

Chordal graphs with small tree-width

k	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$	$q=7$
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

Chordal graphs with small tree-width

k	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$	$q=7$
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

[Bender, Richmond \& Wormald (1985)]: almost all chordal graphs are split.

- \# of (labelled) chordal graphs with n vertices is

$$
\sim\binom{n}{n / 2} 2^{n^{2} / 4}
$$

Conclusion

Our results for chordal graphs with tree-width $\leq k$:

- enumerative formula of the form $c_{k} \cdot n^{-5 / 2} \rho_{k}^{-n} n$!
- CLT for the number of i-cliques, for $i \in[k]$
- same results holds when restricting to q-connected graphs,

Conclusion

Our results for chordal graphs with tree-width $\leq k$:

- enumerative formula of the form $c_{k} \cdot n^{-5 / 2} \rho_{k}^{-n} n$!
- CLT for the number of i-cliques, for $i \in[k]$
- same results holds when restricting to q-connected graphs,

Further research:

- control the rate of decay of the singularity as a function of the tree-width k, as $k \rightarrow \infty$

Our results for chordal graphs with tree-width $\leq k$:

- enumerative formula of the form $c_{k} \cdot n^{-5 / 2} \rho_{k}^{-n} n$!
- CLT for the number of i-cliques, for $i \in[k]$
- same results holds when restricting to q-connected graphs,

Further research:

- control the rate of decay of the singularity as a function of the tree-width k, as $k \rightarrow \infty$
- same enumerative result should hold when $k=o(\log n)$ (maybe $k=O(\log n))$, but fails for $k=\omega(\log n)$.

Conclusion

Our results for chordal graphs with tree-width $\leq k$:

- enumerative formula of the form $c_{k} \cdot n^{-5 / 2} \rho_{k}^{-n} n$!
- CLT for the number of i-cliques, for $i \in[k]$
- same results holds when restricting to q-connected graphs,

Further research:

- control the rate of decay of the singularity as a function of the tree-width k, as $k \rightarrow \infty$
- same enumerative result should hold when $k=o(\log n)$ (maybe $k=O(\log n))$, but fails for $k=\omega(\log n)$.

Danke!

