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The family of labelled k-trees can be obtained via an iterative process:
» start with Kj,q,
» add a vertex incident to all vertices of a k-clique of Kj.1,
» repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:
» 1-trees are trees (= maximal K3-minor-free graphs),
» 2-trees are maximal series-parallel graphs (= maximal K4-minor-free graphs),
» k-trees are maximal Kjq1-minor-free graphs

[Beineke & Pippert (1969)]: # of k-trees with n vertices = (})(kn—-k?+1)"*2 , ,
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Rooted k-trees

A (labelled) k-tree is rooted when one k-clique is distinguished:

» fix a k-clique and fix an ordering of its vertices then remove their labels

ANy

Recursive (implicit) definition of the exponential generating function of rooted
k-trees:

Tr(x) = exp (ach(m)k)
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exp(1/k) = exp(ze) = x = ki
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Radius of convergence of Tj(z) is at = = (ke) ™! - ((3e)™! ~0.1226).
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Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally
around the singularity (the singular expansion).
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Transfer theorem [Flajolet & Odlyzko (1982)]: as n — oo
T (k n
[2"]Tk(z) ~ ﬁn%p (ke) where -T'(-1/2) =27
» asymptotic for unrooted k-trees — subexp. term in n~9/2
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Graphs with bounded tree-width

Graphs with tree-width at most k& are exactly the subgraphs of k-trees
» thus called partial k-trees
» tw(A) = smallest k s.t. that graph A is a partial k-tree,
» class is stable by the clique-sum operation

Enumeration: Let g, be the # of graphs of tree-width at most k& with n vertices

[Baste, Noy & Sau (2018)]: for fixed k and as n — oo

k " k k
2™ < g, < (ek)™2™n!
(logk) n" < gn < (ck)"2%n
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Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length > 4.

560———@ 4 4 2

Alternative definitions:
» [Dirac (1961)]: a graph is chordal iff every separator is a clique.

» [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Remarks:
» k-trees are chordal — k-connected chordal graphs of tree-width < k,
» when taking the clique-sum of two chordal graphs — no edge removal!
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Chordal graphs with bounded tree-width

Fix n,k>1and 0<g<k.

Let G, q,n be the family of g-connected chordal graphs with n labelled vertices
and tree-width at most k.

[Castellvi, Drmota, Noy & R. (2022+)]: 3 cg,q >0 and ;4 € (0,1) s.t.
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Let G, q,n be the family of g-connected chordal graphs with n labelled vertices
and tree-width at most k.

[Castellvi, Drmota, Noy & R. (2022+)]: 3 cg,q >0 and ;4 € (0,1) s.t.

-5/2
|Gk gl ~ g / -7,’;,,1 -n! as n — oo.

For i € [k], let X; = # of i-cliques in a uniform random graph in Gy i .

[Castellvi, Drmota, Noy & R. (2022+)]: 3 @,0 € (0,1) s.t. asn — oo

IX; -EX;| d
—_—

N(0,1), with EX; ~an and VX;~ fn.
VX;
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The (k - 1)-connected graphs

n1(A)
Gr-1(z1,0p-1) = ), | " 'meil(A), n;j(A) = # of j-cliques of A,V € k]
AeGk k-1 nl( )

G](cli_ll)(ml,mk—l) = exp (G;(ck_l) (9617mk—1G,(€Ii_11)($1,$k—1)))
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Down the stairs

Muiltivariate GF of ¢-connected graphs: for any ¢ € [k]

1 n;(A)
G (ml,...,mk) = x.?
e A;;’ ny(A)! jH J

e[k]
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Muiltivariate GF of ¢-connected graphs: for any ¢ € [k]

1 (4)
G (ml,...,mk)= '
q & 1

Implict equation for the GF of g-connected graphs rooted at a g-clique

G((lq)(acl, ey TE) = exp (Gfli)l (xl, e ,xq_l,a:ngq)(azl, ey TE) Tt ,azk))

¢ - G -Gy

Il
G = G~ G
}
}
GP > Gy »adY
}
A a

G(IE) = GO(:E) = exp(Gl(xla 1a RN 1))
[Wormald (1985)]: algorithm to compute the GF of chordal graphs. 10/12



Chordal graphs with small tree-width

g=1 q=2 q=3 qg=4 q=5 q=6 q="7

0.36788 -
0.14665 0.18394 -
0.07703 0.08421 0.12263 -
0.04444 0.04662 0.05664 0.09197 -
0.02657 0.02732 0.03092 0.04152 0.07358 - -
0.01608 0.01635 0.01773 0.02184 0.03214 0.06131 -
0.00974 0.00984 0.01038 0.01204 0.01614 0.02583 0.05255
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Chordal graphs with small tree-width

k| g=1 q=2 q=3 qg=4 q=5 q=06 q="17
1| 0.36788 - - - - - -
2 | 0.14665 0.18394 - - - - -
3 | 0.07703 0.08421 0.12263 - - - -
4 | 0.04444 0.04662 0.05664 0.09197 - - -
5 | 0.02657 0.02732 0.03092 0.04152 0.07358 - -
6 | 0.01608 0.01635 0.01773 0.02184 0.03214 0.06131 -
7 | 0.00974 0.00984 0.01038 0.01204 0.01614 0.02583 0.05255
0.35q
0.304
[Bender, Richmond & Wormald (1985)]:
025 almost all chordal graphs are split.
020 » # of (labelled) chordal graphs with n
vertices is
0.15] .
n \.n2
0.10] ~ (’I‘L/2)2 4
0.054 N
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Conclusion

Our results for chordal graphs with tree-width < k:
» enumerative formula of the form c; - n=%/2p;"n!
» CLT for the number of i-cliques, for i € [k]
» same results holds when restricting to g-connected graphs,
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» same results holds when restricting to g-connected graphs,

Further research:

» control the rate of decay of the singularity as a function of the tree-width &,
as k - oo

» same enumerative result should hold when k = o(logn) (maybe
k =0O(logn)), but fails for k = w(logn).

Dankel
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